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Free vibration analysis of homogeneous and isotropic circular thin plates with variable di-
stribution of parameters by using Green’s functions (solution to homogeneous ordinary dif-
ferential equations with variable coefficients) is considered. The formula of Green’s function
(called the influence function) depends on the Poisson ratio and the coefficient of distribu-
tion of plate flexural rigidity, and the thickness is obtained in a closed-form. The limited
independent solutions to differential Euler equations are expanded in the Neumann power
series using the Volterra integral equations of the second kind. This approach allows one to
obtain the analytical frequency equations as the power series rapidly convergens to exact
eigenvalues for different values of the power index and different values of the Poisson ratio.
The six lower natural dimensionless frequencies of axisymmetric vibration of circular pla-
tes of constant and variable thickness are calculated for different boundary conditions. The
obtained results are compared with selected results presented in the literature.
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1. Introduction

The study of vibration of a thin circular plate is basic in structural mechanics because it has
many applications in civil and mechanical engineering. Circular plates are the most critical
structural elements in high speed rotating engineering systems such as circular saws, rotors,
turbine flywheels, etc. In reality, a lot of complicating factors may come into play: non-uniform
thickness, elastic constraints, anisotropic or composite materials, etc. The natural frequencies
of the plates have been studied extensively for more than a century, if only because when the
frequency of external load matches the natural frequency of the plate, destruction may occur.
The free vibration of circular plates of constant and variable thickness has received consi-
derable attention in the literature. The vibration of circular plates has been discussed by many
authors. The work of Leissa (1969) is an excellent source of information about methods used for
free vibration analysis of plates. Free vibration analysis has been carried out by using a variety
of weighting function methods (Leissa, 1969) such as the Ritz method, the Galerkin method or
the finite element method. Conway (1957, 1958) analyzed the axisymmetric vibration of thin
circular plates with a power function thickness variation for a particular Poisson ratio in terms
of the Bessel functions. Jain et al. (1972) studied the axisymmetric vibration of thin circular
plates with linearly varying thickness using by the Frobenius method. Yang (1993) studied the
same problem using by perturbation method. Wang (1997) used the power series method for
free vibration analysis of circular thin plates with power variable thickness. Wu and Liu (2001,
2002) proposed a generalized differential quadrature rule (GDQR) for free vibration analysis
of circular thin plates of constant and variable thickness. Jaroszewicz and Zoryj (2006) studied
free vibration of circular thin plates with variable distribution of parameters using the method
of partial discretization (MPD). Taher et al. (2006) studied free vibration of circular and annu-
lar plates with variable thickness and different combinations of boundary conditions. Gupta et
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al. (2006) analyzed free vibration of nonhomogeneous circular plates with nonlinear thickness
variation by using the differential quadrature method (DQM). Yalcin et al. (2009) studied free
vibration of circular plates by using the differential transformation method (DTM). Zhou et al.
(2011) applied the Hamiltonian approach to solution of the free vibration problem of circular
and annular thin plates. Duan et al. (2014) proposed the DSC element method for free vibration
analysis of circular thin plates with constant and stepped thickness.

In the works by Leissa (1969), Conway (1957, 1958) the solutions for free axisymmetric
vibration of clamped circular plates with a power function thickness variation were presented.
Those solutions were possible to obtain only for few combinations of the Poisson ratios and
Bessel functions. That kind of solutions have limited practical applications. The aim of the
paper is frequency analysis of circular plates with different values of the power index m of the
plate parameters and different values of the Poisson ratios. The characteristic equations are
obtained for two different values of the Poisson ratio and different boundary conditions such as
free, clamped, simply supported, sliding and elastic supports. The limited independent solutions
of differential Euler equations are expanded in the Neumann power series using the properties
of integral equations. This approach allows one to obtain analytical frequency equations as the
power series rapidly converges to the exact eigenvalues. The numerical results of investigation
are in good agreement with selected results presented in the literature.

2. Statement of the problem

Consider an isotropic, homogeneous circular thin plate of variable thickness h = hrr™3 and
flexural rigidity D = Dgr™ in the cylindrical coordinate system (7,0, z) with the z-axis along
the longitudinal direction. hg and Dpg are thickness and flexural rigidity of circular plates on
the edge (r = R), respectively. The geometry and coordinate system of the considered plate are
shown in Fig. 1. For free axisymmetric vibration of circular plates, the deflection is independent
of 0. The partial differential equation for free vibration of thin circular plates has the following
form (Timoshenko and Woinowsky-Krieger, 1959)

0 (0°W 10w oD ,0*°W I/@W
D I - = 2.1
6r(6r2+r6r>+6r(8r2 7“61" /phaﬂrr 2.1)

where p is mass density,  is the radial coordinate and W (r, t) is the small axisymmetric deflection
compared with the thickness h of the plate.

Fig. 1. Geometry and coordinate system of the circular plate

The axisymmetric deflection of a circular plate may be expressed as follows

W(r,t) = w(r)e™! (2.2)
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where w(r) is the radial mode function and w is natural frequency. Substituting Eq. (2.2) into
Eq. (2.1) and using the dimensionless coordinate £ = r/R, the governing differential equation of
the circular plate becomes

L(w) — A2~y = 0 (2.3)
where L(w) is the operator defined by

dw 2m+1)dw mP+mtvm—1d2w  m?*v—mr—m+1dw

L = — 2.4
Wt e w Z & " Z € Y

and the dimensionless frequency A of vibration is given by
X = wRm/3, (PR (2.5)

Dpg

The governing differential equation for the circular plate of constant thickness has the form

L(w) — \w =0 (2.6)
where
L(w)=d4w+2d3w—id2w+ld—w A= wR?, [P0R (2.7)
Codgt Lded 2de? & dE a Dp '

The boundary conditions at the outer edge (£ = 1) of the circular plate may be one of
the following: clamped, simply supported, free, sliding supports and elastic supports. These
conditions may be written in terms of the radial mode function w(§) in the following form:

— clamped

dw
_ _— _ 2.
— simply supported
dPw  vdw
w@le =0 My = (G + ) =0 29)
— free
Bw 1w 1 dw
M _ _(dw  taw L dwy 2.1
(w)‘gzl 0 V(w)|5=1 <d§3 + £de2 T €2 d¢ )5:1 0 (2.10)
— sliding (vertical) supports
dw
FE e = 0 x/(zu)\£:1 =0 (2.11)
— elastic supports
d*>w dw dw
P = |- — — =0
Wleer = (G + ) + g (212

Bw  Pw  dw

w(w)|,_, = [(d—gg + e d_g) —ww]§:1 =0

M (w) and V(w) are the normalized radial bending moment and the normalized effective shear
force, respectively. ¢ = KyR/Dg and ¢ = K,R3/Dpg are parameters of the elastic supports.
K, and Ky, are the rotational and translational spring constants (Fig. 2), respectively.
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Fig. 2. Cross-section of a uniform circular plate with elastic supports

3. Finding Green’s functions

The characteristic equation of a homogeneous differential Euler equation for thin circular plates
with variable thickness, see Eq. (2.4)

L(w) =0 (3.1)
has the following form
st (2m — 4)s® + (m? + my — 5m + 4)s% + (—=m? + m?v — 2my + 2m)s = 0 (3.2)

The roots of Eq. (3.2) are

s1=0 59=2—m 33:1—%—71 34:1—%+H (3.3)
where
1
H= 5\/m2—4mu+4 (3.4)

The general solution to Eq. (3.1) is
w(é) = Cy+ Cog® ™+ Ca¢! T T Ot (3.5)

Green’s function (solution to the homogeneous Euler equation L(K,,(§,«)) = 0) for different
values of the power index m may be received from a formula presented in the following form
(Jaroszewicz and Zoryj, 2005)

A
Kn€ a)= ——""—— 3.6
&) = W) ol 0
where po(a) = 1 is a coefficient placed before the highest order of the derivative of Euler
differential equation (3.1) and
1 a2—m al=5H al—FtH
0 da2—m dal=—5%5—H dolt—%5+H
A — do do do
m = B2a2 ™ RolmF M R2ol-FTtH
da? da? da?
1 £2fm 51—%—7‘( 51—%-‘1-7‘(
1 a2 Q- B-H Ql-B+H (3.7)
0 da2—m dot—%H dolt—%5+tH
do do do
W(a)m = 0 2o ™ R2olmF M 2ol FTH
da? da? da?
Ba2—m d3a1—%—'H d3a1—%+7{
0
da3 da3 da3
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The functions 1, a®~™, a' =2 " o'~ 2+ are linear independent solutions, then the Wronskian

must satisfy the condition (Stakgold and Holst, 2011)

W(a)y = —%(—2 +m)[(=2+m)? —4H?PPa 205 L0 for m#AO A m#A2  (3.8)

After calculations, Green’s function (GF) has the following form
o¢—m—H1-H
K (57 (X) = 5 2 2

. [(2 _ m)fH%”HaH% 4 2em 2R ge2t My mAH | (m — 2)§1+%a1+%+2ﬁ}

and satisfies the conditions

aKm ) aQKm )
Emleye) = 67(506)‘@«1 N %‘sm - 3.10
83Km(§,a)’ , (3.10)
853 {=a N

according to the properties of influence functions (Kukla, 2009; Stakgold and Holst, 2011).

The function K,,(§,«) is indeterminate for m = 0 and m = 2. After calculation of lthe
imits of the function K,, (&, «) for m — 0 and m — 2, the determinate Green function have the
following form

lim Ko (€,0) = %[a2 N 2} (3.11)

when Poisson ratio v = 0.25

lim, K (€, 0) = %g—\/goﬁ[ Voo VEES — a¥0) — 66VE(Ing + ) (3.12)
and v = 0.33
Tim Ko (€, ) = 1—63 (V36 Vi Vi(¢V8 —a¥i) — 4Iné + 4Ina] (3.13)

Examples of the formulas of Green’s function K, ({«) for different values of the power index m
m € {-3,-2,—1,0,2,3,4} are presented as in the following:
— for Poisson ratio v = 0.25

Foalte) = Ba 2( 4¢° = 5¢2/a +5\/Eas — 4a?)
(60) = g (56t — 50— aviog VIV 1 aving-Via2 V)
Ae) = 5 (260 20 = Ve VIad VI 4 Vo Vil

Ko€.0) = T[o? ~ € +(€ + 0% &)

Ko (€, ) :15*\/%3[ V3~ a¥®) — 66VE(Ing + o)
45( 10 3+—+W§ V35 VE — Ve VE s +\/§)

(£ —a)Pa®(+ a)
12¢3

(3.14)

K3(£’ )

K4(§7 a) =
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— for Poisson ratio v = 0.33

5
K_3( a)= %(172 —17a® — 5\/ﬁ§%(5+m)a%7\/¥ + 5\/ﬁ§%7\/¥a%(”\/ﬁ)
a

Koalbye) = 3%(254 — 20" — VEE2VEa22VE 4 \/55272\/§a2+2\/g>
o
K18 0) = %(1953 — 190 — 3y/BTEs(OTVED 4 §(9-VET) 4 3\/55%(9_\/5)(}%(%@))
_ Q[ 2 2 5 o. £
K&, a) = Z[O‘ &+ (E+a)n E} .

Ksy(& a) = %{ﬁé_%a_%@% — a%> —4ln£—|—4lna}

_ 3.2
K3(§,a) = %
Ka(&,a) = %(Hf—a + Va3 VT VE BB VR VE _1a)

4. Solution of the problem

The ordinary differential equations with constant or variable coefficients can be transformed to
the Volterra or Fredholm integral equations by using e.g. Fubini’s method (Pogorzelski, 1958).
The solutions to these equations are solutions to the transformed ordinary differential equation.
If Green’s function (kernel of integral equation) is well known (or determined), the linear in-
dependent solutions can be expanded in the Neumann (called Liouville-Neumann) power series
rapidly convergent to the eigenvalues (spectrum of integral kernel) based onthe method of suc-
cessive approximations (Tricomi, 1957; Shestopalov and Smirnov, 2002).

The limited (for ¢ = 0) independent solutions of Eq. (3.1) are wy(£) = 1 and wo(&) = £27™
(or wa(€) = €172 for m > 2). These solutions are expanded in the Neumann power series in
the following form

U
o | (4.1)
Kon(&, M)y = Ko(€)o + Y Ki(€)u\”
i=1

where K;(&), and K;(§), are integral iterated kernels given by

£
Kz(ﬁ)u = /Km(ga O‘)O‘_%mKifl(a)u do KO(a)u = Xu
05 (4.2)
Kz(&)v = /Km(gaa)aingifl(a)v do KO(a)U = Xv
0

and 7 is the degree of approximations. y, and Y, are limited independent solutions to Eq. (3.1)
for £ = 0. x, = 1 for all values of the parameter m. Values of x, depend on the power index m
and the Poisson ratio v (for m > 2). They are shown in Table 1.
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Table 1. Values of x, for some considered values of the power index m

m|—=3|-2]—-1]0 2 3 4
5ot a3l a2l a2V3B | ol attV1/3

Xv | @

The characteristic equations 4,, = 0 for different boundary conditions and different values
of the parameter m are obtained from well known characteristic determinants given by:
— clamped

K& Nu  Kn(§ M)
Ap(N) = 0K (6N 0K (€, (4.3)

o 9 ey

— simply supported

K (& A)u K (& Ao
Ap(A) = 4.4
™ ’M[Km@, Nal MIKn(€ N, 4
— free
MK (&Ml M[Em (&, M)y
An(\) = ’ ’ 4.5
V= VI Nl VIER(E N, e
— sliding supports
OKm(§Nu OKm (8, M)
Ap(N) = o0& 0¢ (4.6)
VIEm(E Nl VIEmE Al
— elastic supports
PIEm (&, Au]  PIEm(E, A)o]
Ap(A) = 4.7
W ’W[Km@, Nal PI(EN] D
For all boundary conditions, the formula of A, has the following form
77 . .
Ay = ag + Z(—l)zai)\2l (4.8)
i=1
where ag, ar, ..., a, are coefficients of characteristic equations depending on the boundary con-

ditions and the parameter m.

5. Results and discussion

The numerical results for dimensionless frequencies of the uniform and non-uniform circular
plates with different boundary conditions are presented in Tables 2-5. The Neumann power
series (Eq. (4.1)) expanded only for n = 15 allows one to obtained six lower exact eigenvalues
for all considered cases. The numerical dimensionless frequencies of the uniform circular plates
are presented in Table 2 with comparison to the results by Duan et al. (2014), Leissa (1969), Wu
and Liu (2002) and Yalcin et al. (2009). The numerical results for uniform circular plates with
elastic supports are shown in Table 3 with comparison to the results by Wu and Liu (2002).
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Table 2. The first six lower dimensionless frequencies A = wR?\/phr/Dpg of the uniform circular

plates
Boundary conditions
A Clamped Simply Free Sliding
supported supports
u:0.3|1/:0.25 u:0.3|1/:0.25
Ao GF 10.216 4.935 4.860 9.003 8.889 14.682
Duan et al. (2014) 10.215 4.935 - 9.003 - -
Wu and Liu (2002) 10.216 4.935 - 9.003 - 14.682
Yalcin et al. (2009) 10.215 4.935 - 9.003 - -
A1 GF 39.771 29.72 29.66 38.443 | 38.335 49.218
Duan et al. (2014) 39.771 29.72 - 38.443 - -
Wu and Liu (2002) | 39.771 29.72 - 38.443 - 49.218
Yalcin et al. (2009) | 39.771 29.72 - 38.443 - -
Ao GF 89.104 74.156 | 74.101 | 87.750 | 87.645 | 103.499
Duan et al. (2014) | 89.104 | 74.155 = 87.753 - -
Wu and Liu (2002) | 89.104 74.156 - 87.750 - 103.499
Yalcin et al. (2009) | 89.104 74.156 - 87.750 - -
A3 GF 158.184 | 138.318 | 138.26 | 156.818 | 156.71 177.521
Duan et al. (2014) | 158.184 | 138.317 - 156.826 - -
Wu and Liu (2002) | 158.184 | 138.318 - 156.816 - 177.521
Yalcin et al. (2009) | 158.184 | 138.318 - 156.818 - -
A4 GF 247.006 | 222.215 | 222.25 | 245.634 | 245.53 | 271.282
Duan et al. (2014) | 247.006 | 222.213 - 245.651 - -
Wu and Liu (2002) | 247.007 | 222.215 - 245.634 - 271.282
Yalcin et al. (2009) | 247.006 | 222.215 - 245.633 - -
As GF 355.569 | 325.849 | 325.79 354.6 354.08 | 384.782
Leissa (1969) 355.568 - - - - -
Wu and Liu (2002) | 355.569 | 325.849 - - - -

GF — Green’s function

Table 3. The first six lower dimensionless frequencies A = wR?\/phr/Dpg of the uniform circular

plates with elastic supports, Poisson ratio v = 0.3

Elastic parameters

A =011 ¢=10 | ¢ =100
¥ =100 | ¥ =100 | ¥ =100

Ao GF 4.854 7.790 8.809

Wu and Liu (2002) 4.854 7.790 8.809

A1 GF 22.097 22.128 22.142
Wu and Liu (2002) | 22.098 22.128 22.143

Ao GF 44.938 49.253 51.441
Wu and Liu (2002) | 44.938 49.254 51.442
A3 GF 90.469 98.741 104.413
Wu and Liu (2002) | 90.469 98.741 104.413
A GF 158.359 | 168.599 | 177.926
Wu and Liu (2002) | 158.359 | 168.599 | 177.926
A5 GF 246.673 | 258.213 | 271.391
Wu and Liu (2002) | 246.673 | 258.213 | 271.391
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Table 4. The first six lower dimensionless frequencies A = wR™/3\/phg /Dp of the non-uniform

circular plates

Boundary conditions
m| A Clamped Simply Free Sliding
supported supports
v=033[r=025|r=033[r=025]r=033[r=025|r=033]r=025
Ao | 16.902 17.209 10.851 10.981 25.643 | 25.501 36.543 | 36.676
A1 | 86.044 | 86.188 | 67.382 | 67.403 | 90.847 | 90.722 114.63 114.75
_3 Ao | 197.11 197.25 167.37 167.38 | 210.79 | 201.67 | 236.94 | 237.07
Az | 352.64 | 352.78 | 311.75 | 311.76 | 357.14 | 357.01 403.59 | 403.71
Ag | 552.55 552.69 | 500.53 | 500.54 | 556.94 | 556.82 | 614.61 614.74
As | 796.86 | 796.99 | 733.71 733.72 | 801.18 | 801.05 | 870.03 | 870.16
Ao | 15.147 15.331 9.280 9.314 19.555 19.398 | 28.537 | 28.625
A1 | 68.932 | 69.027 | 53.458 | 53.440 | 71.203 | 71.062 | 90.109 | 90.192
_9 Ao | 156.66 156.75 132.43 132.41 158.85 158.71 186.69 186.77
Ag | 279.52 279.61 246.49 | 246.47 | 281.60 | 281.46 | 318.33 | 318.41
Ay | 437.46 | 437.54 | 395.64 | 395.61 439.47 | 439.33 | 485.04 | 485.13
A5 | 630.48 | 630.56 | 579.87 | 579.85 | 632.45 | 632.31 686.84 | 686.92
Ao | 12.868 12.951 7.302 7.256 14.041 13.868 | 21.254 | 21.297
A1 | 53.504 | 53.551 40.917 | 40.860 | 53.762 53.604 | 68.307 | 68.349
1 Ao | 120.65 120.70 101.37 101.31 120.86 120.70 142.21 142.25
As | 214.70 | 214.74 188.69 188.63 | 214.85 214.69 | 24297 | 243.01
Aq | 335.61 335.65 | 302.88 | 302.82 | 335.72 | 335.57 | 370.60 | 370.64
A5 | 483.38 | 483.42 | 443.93 | 443.87 | 483.48 | 483.32 525.09 | 525.13
Ao 8.894 9.111 3.297 3.334 5.302 5.412 8.876 9.193
A1 | 25.837 | 26.306 19.076 19.410 | 22.951 23.296 | 28.472 29.011
9 Ao | 51.575 02.278 | 42759 | 43.337 | 48.776 | 49.363 | 56.510 | 57.279
A3 | 86.082 | 87.017 | 75.135 75.949 | 83.323 | 84.144 | 93.262 | 94.260
Aq | 129.36 130.52 116.25 117.30 126.62 127.67 138.76 139.99
As | 181.41 182.81 166.13 167.41 178.68 179.97 193.03 194.49
Ao 8.719 8.965 3.002 3.073 4.686 4.843 8.787 7.170
(1] | 8.720 - - - - - - -
[7] 8.708 - - - - - - -
[16] | 8.719 8.965 - - - - - -
A1 | 21.145 21.609 15.761 16.110 18.152 18.520 | 21.638 | 22.170
[1] 21.15 - - - - - - -
3 | [16] | 21.145 21.609 - - - - - -
Ao | 38453 | 39.122 | 32.031 32.595 | 35.607 | 36.187 | 40.402 | 41.133
[1] 38.45 - - - - - - -
[16] | 38.453 | 39.122 - - - - - -
As | 60.680 | 61.551 53.108 | 53.879 | 57.892 58.677 | 63.964 | 64.894
Ag | 87.834 | 88.910 | 79.076 | 80.052 | 85.077 | 86.066 | 92.411 93.577
As | 119.91 121.19 109.95 111.03 117.18 118.31 125.78 126.78
Ao 8.458 8.705 2.877 2.965 4.395 4.569 3.644 4.273
A1 | 16.735 17.137 12.781 13.096 14.093 14.427 15.778 16.236
4 Ao | 27.094 | 27.643 | 22.827 | 23.299 | 24.645 25.131 27.042 27.639
Az | 39.611 40.303 | 34.898 | 35.418 | 37.240 | 37.872 | 40.255 | 41.007
Ay | 54.305 55.139 | 49.123 | 49.866 | 51.975 52.751 55.925 56.484
As | 70.806 | 71.542 | 65.087 | 66.243 | 68.884 | 69.791 70.875 74.118

[1] — Conway (1957), [7] — Jaroszewicz and Zoryj (2006), [16] — Wang (1997)
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Table 5. The first six lower dimensionless frequencies A = wR"™/3/ phr/Dpg of the non-uniform
circular plates with elastic supports

Elastic parameters
mo| A ¢=0.1,¥=10 ¢ =100, ¥ =10 ¢ =10, ¥ =10
v=033]v=025[r=033|v=025]rv=033]v=025
Ao | 3.595 3.670 2.965 3.011 0.317 0.322
Ar | 27.042 | 26.920 | 36.525 | 36.650 | 33.285 | 33.379
Ao | 91487 | 91.369 | 113.22 | 113.34 | 104.64 | 104.72
I 0 | 20225 | 20213 | 23381 | 233.93 | 21885 | 218.90
Mg | 357.53 | 357.41 | 398.25 | 398.37 | 376.43 | 376.46
As | 557.30 | 557.18 | 606.59 | 606.71 | 577.83 | 577.84
Ao | 3818 3.873 3.344 3.377 0.354 0.357
Ar | 21143 | 21.012 | 28709 | 28.790 | 26.104 | 26.164
_o| A2 | TL85T | 7L7T23 | 89.165 | 89.246 | 82.728 | 82.772
Az | 159.29 | 159.16 | 184.49 | 18458 | 173.21 | 173.23
A | 281.972 | 281.83 | 314.55 | 314.63 | 297.95 | 297.95
As | 439.81 | 439.67 | 479.34 | 47942 | 457.28 | 457.27
Ao | 3.860 3.886 3.749 3.769 0.394 0.396
Ar | 15947 | 15818 | 21.624 | 21.662 | 19.520 | 19.546
| A2 | 54447 | 54297 | 67.746 | 67.787 | 63.101 | 63.114
Az | 121,29 | 121.14 | 140.76 | 140.80 | 132.60 | 132.60
Ag | 21520 | 215.04 | 24043 | 24047 | 22833 | 22831
As | 336.06 | 335.88 | 366.76 | 366.77 | 350.51 | 350.48
Ao | 3.140 3.168 7.330 7.148 0.729 0.723
AL | 9.061 9.195 8.855 9.317 8.250 8.546
o | A2 | 23752 | 24.096 | 28495 | 29.027 | 26.982 | 27.482
A3 | 49.197 | 49.784 | 56.260 | 57.022 | 53.862 | 54.581
Ag | 83.620 | 84.442 | 92740 | 93.731 | 89.265 | 90.204
As | 126.86 | 127.918 | 137.94 | 139.16 | 133.27 | 134.43
Ao | 3.100 3.156 | 21.623 | 22.157 | 1.050 1.023
A | 8804 8.954 | 40.302 | 41.028 | 6.374 6.733
g | Ao | 18947 | 19.309 | 63.727 | 64.651 | 20771 | 21271
Az | 36.010 | 36.589 | 92.023 | 93.149 | 38923 | 39.615
Ag | 58170 | 58955 | 125.22 | 126.24 | 61.783 | 62.668
As | 85.295 | 86.304 | 153.08 | 155.33 | 89.454 | 90.552
Ao | 3.166 3.239 | 15.354 | 15.859 | 2.642 1.999
A | 8651 8.803 | 26.962 | 27.562 | 15401 | 15.832
g | A2 | 14881 | 15204 | 40.184 | 40.919 | 26.395 | 26.966
Az | 25.028 | 25512 | 55473 | 56.347 | 39.575 | 40.040
Ag | 37.810 | 38129 | 72903 | 73.921 | 48253 | 55.200
As | 45.062 | 52.949 | 92495 | 93.111 | 59.544 | 72.493

The dimensionless frequencies of the non-uniform circular plates with different boundary
conditions are presented in Table 4 with comparison to the results by Conway (1957), Jaroszewicz
and Zoryj (2006), Wang (1997). The numerical results for the non-uniform circular plates with
elastic supports are shown in Table 5.

The dimensionless frequencies of the non-uniform circular plate (Table 4) decrease when
values of the power index increase. However, the absolute values of frequencies w increase if
the power index increases, which is according to physical properties of this kind of plates with
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variable thickness (Wu and Liu, 2002). Additionally, the dimensionless frequencies depend on
functions describing the distribution of plate parameters such as thickness or rigidity. The di-
mensionless frequencies and absolute values w for the uniform and the non-uniform circular
plates with elastic constraints (Table 3 and 5) depend on combination of values of the elastic
parameters.

6. Conclusions

In this paper, Green’s functions have been employed to solve the problem of natural vibration of
uniform and non-uniform circular thin plates with different boundary conditions. The universal
Green function for different power indices m and different Poisson ratios is defined. The limi-
ted solutions to the Euler equation expanded in the Neumann power series allow one to obtain
characteristic equations of circular plates rapidly convergent to the exact eigenvalues. The cha-
racteristic equations have been obtained for different values of the parameter m, different values
of Poisson’s ratio and different boundary conditions. The considered values of Poisson’s ratio
have not large influence on the dimensionless eigenvalues, but the numerical results of the inve-
stigation can be used to validate the accuracy of other numerical methods as benchmark values.
The obtained results are in good agreement with the results obtained by other methods presen-
ted in the literature. The calculations have been carried out with the help of Mathematica v10,
which is a symbolic calculation software.
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