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An analytical solution of a 3D transversely isotropic thermoelastic problem of a uniform
heat flow disturbed by a penny-shaped rigid sheet-like inclusion (anticrack) with some small
conductivity is obtained by using the potential theory method. The behaviour of thermal
stresses near the edge of the disc is analysed from the standpoint of the mechanics of fracture
initiation.
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1. Introduction

The study of thermal stresses in solids containing foreign inhomogeneities has great importan-
ce for the evaluation of the strength of materials and structures which operate under thermal
actions. The rapid development of high-strength composite materials has driven researches to
take into account the influence of anisotropy in thermomechanical fields for fractured bodies.
In addition to cracks, rigid lamellate inclusions (also called anticracks, for brevity) are objects
around which stress concentrations occur, which will stimulate failure of materials. Most of rese-
arch works discuss 2D problems dealing with these defects. Owing to mathematical complexity,
only few publications on the subject within 3D statement of thermoelastic anticrack problems
can be found in the literature (see Kit and Khay, 1989; Stadnyk, 1994, 2011; Podil’chuk, 2001;
Chaudhuri, 2003; Kaczyński and Kozłowski, 2009; Kaczyński and Monastyrskyy, 2013).
This work treats a rigid penny-shaped inclusion obstructing a uniform perpendicular heat

flow in a transversely isotropic space. It may be regarded as a sequel to our papers (Kaczyński
and Monastyrskyy, 2009; Kaczyński, 2014; see also extensive references therein) in which a clas-
sical condition of thermal insulation of the inclusion faces was assumed. The present contribution
focuses on the determination of a stationary temperature field with more general thermal con-
dition by taking into account certain conductivity of a rigid inclusion. The associated problem
of induced thermal stresses is reduced to a two-dimensional singular equation with the unknown
normal stress discontinuity across inclusion faces, a closed-form solution to which is found by
use of Dyson and Galin theorems. Relations for the evaluation of stresses near the inclusion edge
are presented and interpreted from a fracture perspective. Moreover, thermal and mechanical
fields for thermally conductive and insulated anticracks are compared.

2. Thermoelastostatics of transversely isotropic materials

Let us recall the basic relations of uncoupled thermoelasticity for homogeneous transversely
isotropic materials. Referring to a Cartesian coordinate system (X1,X2,X3) and denoting the
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temperature, fluxes, displacements and stresses by T , qi, ui, σij , respectively, the governing
equations for an infinite transversely isotropic thermoelastic solid whose isotropic plane is per-
pendicular to the X3-axis and, in absence of body forces and heat sources, are (Ding et al., 2006;
Kaczyński, 2014)

T,γγ + k
−2
0 T,33 = 0

qα = −k1T,α q3 = −k3T,3
1

2
(c11 + c12)uγ,γα +

1

2
(c11 − c12)uα,γγ + c44uα,33 + (c13 + c44)u3,3α = β1T,α

(c13 + c44)uγ,γ3 + c44u3,γγ + c33u3,33 = β3T,3

σ3α = c44(uα,3 + u3,α)

σ33 = c13uγ,γ + c33u3,3 − β3T

σ12 =
1

2
(c11 − c12)(u1,2 + u2,1)

σ11 = c11u1,1 + c12u2,2 + c13u3,3 − β1T
σ22 = c12u1,1 + c11u2,2 + c13u3,3 − β1T

(2.1)

Moreover,

k0 =

√
k1
k3

β1 = (c11 + c12)α1 + c13α3 β3 = 2c13α1 + c33α3 (2.2)

In the equations given above, k1(α1) and k3(α3) denote the coefficients of conductivity (of
thermal expansion) in the plane isotropy and along the X3-axis of rotational material symmetry,
respectively, and c11, c12, c13, c33, c44 are five independent elastic constants. Indices i, j run
over 1, 2, 3 while indices α, γ run over 1, 2. Summation convention holds unless otherwise stated.
Subscripts preceded by a comma indicate partial differentiation with respect to the corresponding
coordinates.

3. Formulation of the anticrack problem

Consider a transversely isotropic space weakened by a penny-shaped rigid inclusion (anticrack)
subjected to a uniform steady-flow of heat q0 in the direction of the negative X3-axis as shown
in Fig. 1. The anticrack region S on the mid-plane of transverse isotropy x3 = 0 is denoted as

r ≡
√
x21 + x

2
2 ¬ a.

We are faced with the boundary-value value problem: find the fields T and ui suitable smooth
on R3 − S such that Eqs. (2.1) hold, subject to the following boundary conditions:
— thermal conditions taking into account the thermal conductivity within the anticrack S

— mechanical conditions for (x1, x2, x3 = 0
±) ∈ S with a small constant ε characterizing the

rigid vertical translation

u1 = u2 = 0 u3 = ε (3.1)

— thermal and mechanical conditions at infinity

q1 = q2 = 0 q3 = −q0 (q0 > 0)

σij = 0
(3.2)
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Fig. 1. A transversely isotropic space with a penny-shaped conductive anticrack subjected to a
perpendicular uniform flow

4. Solution

By means of the superposition principle, it is convenient to represent the solution to the anticrack
boundary-value problem as a sum of two components, namely

T = T (0) + T̃ ui = u
(0)
i + ũi σij = σ

(0)
ij + σ̃ij (4.1)

where the components attached by 0 describe the basic state of the defect-free solid, and the
components with the tilde represent perturbations due to the anticrack.

The results for the first 0-problem are found to be given by Kaczyński (2014)

T (0) =
q0
k3
x3

u(0)α =
β3q0

k3(2c13 + c33)
xαx3 u

(0)
3 =

β3q0
2k3(2c13 + c33)

(x23 − x21 − x22)

σ
(0)
ij = 0

(4.2)

Attention will be next drawn to the corrective solution of the perturbed problem. The distur-
bing thermal field T̃ , decaying at infinity, is determined by solving quasi-Laplace equation (2.1)1
with applying the following model expressions related to the rigid disc S, given from Kaczyński
and Monastyrskyy (2009)

T̃,3(x1, x2, x3 = 0
+)− T̃,3(x1, x2, x3 = 0−) = 0

T̃ (x1, x2, 0
+)− T̃ (x1, x2, 0−)− k3R(x1, x2)T̃,3(x1, x2, 0+) = q0R(x1, x2)

(4.3)

where R(x1, x2) is interpreted as the thermal anticrack resistance.

From the potential theory (Kellogg, 1953), the solution is expressed as follows

T̃ (x1, x2, x3) =
∂ω̃(x1, x2, z0)

∂z0

∣∣∣∣∣
z0=k0x3

(4.4)

with

ω̃(x1, x2, z0) = −
1

2π

∫∫

S

ω(ξ1, ξ2) dξ1 dξ2√
(x1 − ξ1)2 + (x2 − ξ2)2 + z20

(4.5)
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Using the well-known property of a simple layer potential, the satisfaction of Eq. (4.3)2 leads
to an integro-differential singular equation of the Newton type for the unknown density of the
potential of the single layer ω(ξ1, ξ2)

2ω(x1, x2)−
√
k1k3R(x1, x2)

2π
∆

∫∫

S

ω(ξ1, ξ2) dξ1 dξ2√
(x1 − ξ1)2 + (x2 − ξ2)2

= q0R(x1, x2) (4.6)

in which ∆ ≡ ∂2

∂x2
1

+ ∂2

∂x2
2

stands for the two-dimensional Laplace operator. Assuming next that

R(x1, x2) = R̃(r) = R0
√
a2 − r2 R0 > 0 (4.7)

an analytical solution to Eq. (4.6) is achieved in the form

ω(x1, x2) = ω̃(r) =
2q̃

π
√
k1k3

√
a2 − r2 (4.8)

with

q̃ = q0
(
1 +

4

π
√
k1k2R0

)−1
¬ q0 (4.9)

Inserting Eq. (4.8) into (4.5) and after integration we arrive at the following elementary
formulas for the main thermal potential ω̃ for x3 ­ 0 (see Fabrikant, 1989)

ω̃(x1, x2, z0) = −
q̃

2π
√
k1k3

[
(2a2 + 2z20 − r2) sin−1

a

l20
− 2a

2 − 3l210
a

√
l220 − a2

]
(4.10)

and, in view of Eqs. (4.4) and (2.1)2, for the temperature T̃ and heat fluxes q̃i

T̃ (x1, x2, x3) = −
2q̃

π
√
k1k3

(
k0x3 sin

−1 a

l20
−
√
a2 − l210

)

q̃α =
2q̃a2

π

√
k1
k3

xα

√
a2 − l210

l220(l
2
20 − l210)

q̃3 =
2q̃

π

(
sin−1

a

l20
−
a
√
l220 − a2
l220 − l210

) (4.11)

Here

l1 = l1(x3) =
1

2

[√
(r + a)2 + x23 −

√
(r − a)2 + x23

]
l10 = l1(z0)

l2 = l2(x3) =
1

2

[√
(r + a)2 + x23 +

√
(r − a)2 + x23

]
l20 = l2(z0)

(4.12)

In the inclusion plane x3 = 0
± (making use of the relations l10|x3=0 = min(a, r), l20|x3=0 =

max(a, r)), we obtain

T (r, 0±) =





± 2q̃

π
√
k1k3

√
a2 − r2 0 ¬ r ¬ a

0 r > a

qr(r, 0
±) = −k1

∂T (r, 0±)

∂r
=





±2q̃
π

√
k1
k3

r√
a2 − r2

0 ¬ r ¬ a

0 r > a

q3(r, 0
±) = −k3T,3(r, 0±) =






q̃ − q0 0 ¬ r < a
2q̃

π

(
sin−1

a

r
− a√
r2 − a2

)
− q0 r > a

(4.13)
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It follows from these formulas that the rigid inclusion acts as an obstruction to the given
heat flow, producing thermal local disturbances such as the jump of temperature T across the
inclusion plane and the infinite increase of the heat fluxes in the interior vicinity of the inclusion
edge.

Now we pass to the non-trivial perturbed elastic problem, affixed by the tilde and connected
with the determination of the induced state of stress and deformation resulting from the known
disturbed temperature T̃ = (∂ω̃/∂z0)|z0=k0x3 . Because of the anti-symmetry of the temperature
and stress system, and bearing in mind Eqs. (3.1), (4.1) and (4.2), it reduces to that of the half
space x3 ­ 0 subjected to the following mixed boundary conditions

ũα(x1, x2, x3 = 0
+) = 0 (x1, x2) ∈ R2

ũ3(x1, x2, x3 = 0
+) =

β3q0
2k3(2c13 + c33)

(x21 + x
2
2) + ε (x1, x2) ∈ S

(4.14)

and

σ̃33(x1, x2, x3 = 0
+) = 0 (x1, x2) ∈ R2 − S

ũi = O(|x|−1) |x| =
√
x21 + x

2
2 + x

2
3 →∞

(4.15)

Moreover, having found the distribution of the normal stress σ̃33|S+ ≡ q(x1, x2) in the region S,
the unknown rigid translation ε can be calculated from the equilibrium condition

∫∫

S

q(x1, x2) dx1 dx2 = 0 (4.16)

A solution to this problem was given by Kaczyński (2014). Here only the main idea and final
results with some modifications will be presented.

An efficient approach is based on the construction of harmonic potentials that satisfy gover-
ning equations (2.1)3,4 and are well suited to the above-mentioned anticrack boundary conditions.

We take the following displacement representation expressed by potentials φ̃α ≡ φ̃α(x1, x2, zα),
zα = tαx3, α = 1 or α = 2

ũα =

(
φ̃1 + φ̃2 + c1

∞∫

z0

ω̃(x1, x2, z0) dz0

)

,α

ũ3 = mαtα
∂φ̃α
∂zα
+ c2k0ω̃ (4.17)

with the potentials satisfying the harmonic equations

(
∆+

∂2

∂z2α

)
φ̃α = 0 α = 1, 2 (no sum on α) (4.18)

Here the constants mα, cα, tα are given in Appendix A of Kaczyński (2014). Note that the
general case t1 6= t2, tα 6= k0 is considered.
Next we put

φ̃α = (−1)αf̃(x1, x2, zα) + aα
∞∫

zα

ω̃(x1, x2, zα) dzα α = 1, 2 (no sum on α) (4.19)

where

(
∆+

∂

∂x23

)
f̃(x1, x2, x3) = 0 (4.20)
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and choose the constants aα in order to satisfy a part of boundary conditions (3.1). In this
way, the perturbed anticrack problem reduces to the determination of a potential function f̃ in
the upper half-space, decaying at infinity and satisfying the following mixed conditions on the
X1X2-plane

∂f̃(x1, x2, x3)

∂x3

∣∣∣∣∣
x3=0+

=
1

m2t2 −m1t1
f0(x1, x2) (x1, x2) ∈ S

∂2f̃(x1, x2, x3)

∂x23

∣∣∣∣∣
x3=0+

= 0 (x1, x2) ∈ R2 − S
(4.21)

where

f0(x1, x2) = f̃0(r) = −β∗ω̃(r, 0) +Ar2 + ε =
β∗q̃a2

2
√
k1k3
+ ε+

(
A− β∗q̃

4
√
k1k3

)
r2 (4.22)

with the following constants

β∗ = c2k0 − aαmαtα a1 =
c1(1 +m2)− δ3c44
m1 −m2

a2 =
−c1(1 +m1) + δ3c44
m1 −m2

δ3 = β3 − c1c13 − c2c33k20 A =
β3q0

2k3(2c13 + c33)

(4.23)

It is known from the potential theory (Kellogg, 1953) that the solution to this problem is
represented by the Newton potential of a simple layer distributed over the region S as

f̃(x1, x2, x3) =
1

2πc44(m1 −m2)

∫∫

S

q(ξ1, ξ2) ln
(√
(x1 − ξ1)2 + (x2 − ξ2)2 + x23 + x3

)
dξ1 dξ2

(4.24)

where the unknown layer density q can be identified as the normal stress σ̃33|S+ . Taking con-
sideration of the first condition in Eq. (4.21), the following governing two-dimensional singular
integral equation (similar to that arising in classical contact mechanics) is obtained

H̃

∫∫

S

q(ξ1, ξ2) dξ1 dξ2√
(x1 − ξ1)2 + (x2 − ξ2)2

= −f0(x1, x2) (x1, x2) ∈ S (4.25)

with f0 given by Eq. (4.22) and H̃ defined by

H̃ =
m2t2 −m1t1
2πc44(m2 −m1)

=

√
c11c33 + c44

2π
√
c44c33

√
(
√
c11c33 − c13)(

√
c11c33 + c13 + 2c44)

(4.26)

Taking a solution to this equation in the form (using Dyson’s and Galin’s theorems)

q(x1, x2) = q̃(r) =
p̃0a
2 − p̃2r2

H̃π2
√
a2 − r2

0 ¬ r < a (4.27)

and substituting it into Eq. (4.25), after appropriate calculations and utilizing Eq. (4.16), we
find the unknown coefficients p̃0 and p̃2 as well as the rigid vertical displacement ε

p̃2 = 4A−
β∗q̃√
k1k3

p̃0 =
2

3
p̃2 ε = −a2

(
2A− 1

3
p̃2
)

(4.28)



The thermoelastic problem for a penny-shaped anticrack... 599

The primary harmonic potential to the thermoelastic perturbed problem is obtained by
calculating integral (4.24) with the use of Eq. (4.27). From the results given in Fabrikant (1989,
1991), it is found that for x3 ­ 0

f̃(r, x3) = −
p̃2

3π2(m2t2 −m1t1)
[
x3 sin

−1 a

l2

(
a2 − 3

2
r2 + x23

)

+
√
a2 − l21

(5
2
r2 +
1

3
a2 − l22 −

11

6
l21

)] (4.29)

The expressions for the full-space stress-displacement field can then be obtained from Eq.
(4.29) by simple differentiation, with all results being in terms of elementary functions. As
easily seen, the solution is axially symmetric. In particular, let us focus on some quantities in
the anticrack plane which are presented below

u1(r, 0
±) = u2(r, 0

±) = 0 0 ¬ r <∞

u3(r, 0
±) =






ε 0 ¬ r < a
2

π
(ε+Ar2) sin−1

a

r
− 2Aa
π

√
r2 − a2 −Ar2 r > a

σ33(r, 0
±) =





± p̃2
3H̃π2

2a2 − 3r2√
a2 − r2

0 ¬ r < a
0 r > a

σ3r(r, 0
±) =





β̃r 0 ¬ r < a

2

π

(
β̃r sin−1

a

r
− β̃0a

3

r
√
r2 − a2

− β̃a
√
r2 − a2
r

)
r > a

(4.30)

where

β̃0 = p̃2
c44(
√
c11c33 − c13)

3(
√
c11c33 + c44)

β̃ =
c44
2

[
3β̃0 − q0

δ̃ + (c1 − c2)k0√
k1k2

]

δ̃ =
(
√
c11c33 − c13)(2c1c44 − δ3)
c33c44(t1 + t2)

− c1(t1 + t2)
(4.31)

5. Analysis of the results and conclusions

The analytical results obtained in the previous Section are useful in interpreting the mechanics
of fracture initiation at the rim of the rigid inclusion. In view of linear fracture mechanics, two
failure mechanisms are possible: mode II (edge-sliding) of fracture deformation characterized by
the stress intensity factor

KII = lim
r→a+

√
2π(r − a)σ3r(r, 0) = −

2β̃0a
√
a√
π

(5.1)

and the possible detachment of the material from the inclusion surface described by the stress
intensity coefficients

S±I = lim
r→a−

√
2π(a− r)σ33(r, 0±) = ∓

p̃2a
√
a

3π
√
πH̃

(5.2)

These parameters can be used in conjunction with a suitable failure criterion.
In conclusion, by taking into account some interior conductivity of the anticrack, we ha-

ve pointed out that by letting R0 → ∞ (see Eqs. (4.6) and (4.7)) the present solution with
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q̃ = q0 (cf. Eq. (4.9)) reduces to that dealing with the case of a thermally insulated rigid circular
inclusion obtained in Kaczyński (2014). Moreover, comparison between thermally conductive
and insulated anticracks in a transversely isotropic (in particular, isotropic) space has shown
only quantitative changes in the temperature and stress distributions.
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