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In this paper, a micro resonator is modeled as a thin rectangular microplate with ther-
moelastic damping that is actuated electrostatically. Large static deformation due to high
polarization voltage is considered, and vibration of microplate occurs around the static de-
flection. Due to the effect of thermoelastic damping, the frequency of vibration is a complex
value that is used to determine the quality factor of thermoelastic damping. Also, the pull-in
voltage is considered because nonlinear properties are more appeared when approaching the
polarization voltage to the pull-in voltage.
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1. Introduction

Thermoelastic damping is the intrinsic damping in Micro Electro Mechanical Systems (MEMS).
It arises from the entropy generation due to irreversible heat flux in vibrating device (Sun and
Saka, 2009). Zener (1937, 1938) was the first who predicted thermo-elastic damping. He found
an expression for quality factor of thermoelastic damping in beams. Conversion of mechanical
energy into heat in vibrating elastic beams was treated by Alblas (1981). He also found that this
damping is negligible for macro structures. Lifshitz and Roukes (2000) investigated the quality
factor of a thermo-elastic microbeam and found that thermoelastic damping has important
effects in micro and nano scales.
There are two methods for calculating the quality factor of thermoelastic damping: energy

method, in which dissipated and maximum stored energy should be calculated (Sudipto et al.,
2006; Prabhakar and Vengallatore, 2008; Serra and Bonaldi, 2009; Guo and Rogerson, 2003),
and eigenfrequency method, in which real and imaginary parts of the eigenfrequency should be
calculated (Sun and Saka, 2009; Nayfeh and Younis, 2004b; Yi and Matin, 2007; Choi et al.,
2010). Each method can be done with numerical or analytical procedures or combination of
them.
Nayfeh and Younis (2004b) modeled the electrostatically actuated microplate by considering

thermoelastic damping. They obtained an expression for quality factor analytically by using
perturbation theory. Sudipto and Aluru (2006) investigated thermoelastic damping in an elec-
trostatically actuated microbeam by the thermal energy method. They studied the effect of
applied voltage on thermoelastic damping.

In MEMS, there are different actuation and sensing properties such as thermal, optical,
electrostatic, electromagnetic, piezoresistive and piezoelectric but electrostatics is often preferred
(Fargas Marquès et al., 2005). In electrostatics actuation, an elastic conductor is located above a
stationary conductor. The electrical load can be composed of two components, including DC and
AC voltage. The applied DC voltage deforms the elastic surface that causes to change the system
capacitance and to stretch the mid-plane of the elastic surface. The applications are transistors,
switches, micro-mirrors, pressure sensors, micro-pumps, moving valves and micro-grippers which
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have no harmonic motion in their systems. If AC voltage is added then resonators are obtained
(Batra et al., 2007).
There are many works and papers that investigated the electrical actuation in micro struc-

tures. Batra et al. (2007) reviewed them in their work. Abdel-Rahman et al. (2002) presented a
nonlinear model of electrically actuated microbeams considering mid-plane stretching. They sho-
wed static deflection of the microbeam due to DC polarization and vibration of the microbeam
around its statically deflected position.
MEMS resonators are devices that vibrate with AC voltage around the static deflection due

to DC polarization voltage. The thermoelastic damping as well as frequency of the structure of
the resonator is affected by the DC voltage because the thermoelastic damping is directly related
to the imaginary part of the frequency. In addition, in MEMS resonators, high sensitivity and
resolution are needed (Nayfeh and Younis, 2004a), so for achieving this purpose, the damping
in such devices should be decreased. However, studying the behavior of thermoelastic damping
in resonators is necessary for manufacturers of MEMS.
In this paper, a resonator is modeled as a thin rectangular microplate with thermoelastic

damping that is actuated electrostatically. Large static deformation due to high polarization
voltage is considered, and vibration of the microplate occurs around the static deflection. Because
of thermoelastic damping, the frequency of vibration is a complex value that is used to determine
the quality factor of thermoelastic damping. Also, the pull-in voltage is investigated because
nonlinear properties are more appeared when approaching the polarization voltage to the pull-
in voltage.

2. Model description and assumptions

A resonator is modeled as a rectangular microplate subject to the effect of a high electrostatic
polarization voltage Vp. The equations of motion of the isotropic thin microplate are derived by
using the combination of the classical plate theory and von-Karman type nonlinearity (Nayfeh
and Pai, 2004). A Cartesian coordinate system (x, y, z) is attached to the microplate such that the
xy plane corresponds to the mid-plane of the rectangular microplate over the domain 0 ¬ x ¬ a
and 0 ¬ y ¬ b
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which are the thermal moment, thermal axial force, plate flexural rigidity and two-dimensional
Laplacian operator, respectively, and θ = T − T0, in which T (x, z, t) and T0 are defined as the
temperature field of the beam, and stress-free temperature (in equilibrium), respectively. Also,
t, αT , E, ν, h, d, ε0 and ρ are time, coefficient of thermal expansion, Young’s modulus, Pois-
son’s ratio, thickness of the microplate, capacitor gap, dielectric constant and material density,
respectively. u, v and w are displacement components along with the x, y and z directions,
respectively.

The thermal conduction equation, containing the thermoelastic coupling term, can be written
as (Sun and Saka, 2009; Nayfeh and Pai, 2004)
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where cv and κ are the specific heat at constant volume and the thermal conductivity, respecti-
vely. β = EαT /(1 − 2ν) is the thermal modulus.

So equations (2.1) and (2.3) represent the governing equations of nonlinear vibration of the
micro-plate with thermoelastic damping (TED). In addition, thermal and elastic properties are
assumed independent of temperature, and the temperature change due to TED is assumed to
be small, thus the vibration of the micro-plate is investigated in a constant temperature T0.

For convenience, the following nondimensional variables are introduced (denoted by hats)
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Substituting equations (2.4) into equations (2.1), the following equations are obtained
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∂ŷ2
+ α1

∂ŵ
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∂ŷ2
+
1

2
(1 + ν)

∂ŵ
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In this model, Lifshitz and Roukes (2000) assumption is used. So the thermal gradient in
the z direction is much larger than the gradients in the x and y directions. Therefore, κ∇2θ in
equation (2.3) can be ignored. Thus the equation is simplified, and substituting equations (2.4)
into equations (2.3), yields
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Equations (2.6) and (2.7) represent the nondimensional governing equations of the system,
where
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It should be noted that the parameters of equations (2.8) and (2.9) are related as follows
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3. Large deformations under electrostatic load

The microplate undergoes deflection under electrostatic voltage Vp. For calculating this deflec-
tion, the dynamic and thermoelastic terms should be eliminated form equations (2.6)
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∂ŵs
∂ŷ
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(∂ûs
∂ŷ
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(∂ŵs
∂x̂

)2)]∂2ŵs
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where ûs, v̂s and ŵs are static displacements. Nonlinear static equations (3.1) can be solved by
Galerkin’s method, using the following approximations (Szilared, 2004)
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To simplify the solution only the first term (m = n = 1) of equations (3.2) is considered.
Substituting into equations (3.1) the functions ϕ11 and ψ11 as is listed in Table 1 with respect
to the boundary conditions, equations (3.1) become
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Table 1. List of functions ψ11 and ϕ11 with respect to the boundary condition (Leissa, 1969)
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ψ11 = sin(πx̂) sin(πŷ)
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A3 =

∫∫ [
α1
∂ϕ11
∂x̂

∂2ϕ11
∂x̂2

+
1

2
(1 + ν)

∂ϕ11
∂ŷ
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+
1

2
(1− ν)

∂ϕ11
∂x̂

∂2ϕ11
∂ŷ2
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Equations (3.3) can be rewritten as
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Now, by solving these equations, U s11, V
s
11 and W

s
11 can be calculated, and then substituting

them into equations (3.2), the static deflection is obtained.
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4. Transverse vibration around the static deflection

The micro plate deflections have two components. The static deflections, as discussed in the
previous section, due to the polarization voltage Vp and the dynamic vibration deflections, occur
around the static state. Consider only lateral vibration, thus the deflections û(x̂, ŷ), v̂(x̂, ŷ) and
ŵ(x̂, ŷ, t̂) can be written as

ŵ(x̂, ŷ, t̂) = ŵs(x̂, ŷ) + ŵd(x̂, ŷ, t̂) v̂(x̂, ŷ, t̂) = v̂s(x̂, ŷ)

û(x̂, ŷ, t̂) = ûs(x̂, ŷ)
(4.1)

The equations describing vibration of the microplate around the static deflections are obtained by
substituting equation (4.1) into equations (2.6)3 and (2.7) and dropping the terms representing
the equilibrium position that is the static deflection, equation (3.1)3, and high order terms of
the dynamic deflections. The result can be written as
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(∂ûs
∂ŷ
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(∂ŵs
∂x̂

)2)]∂2ŵd
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ŵd +

2α11Vp
(1− ŵs)2
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(4.2)

For calculating the quality factor of TED, coupled thermoelastic equations (4.2) should be solved
in the case of harmonic vibrations. So, ŵd and θ̂ are set as in the following

ŵd(x̂, ŷ, ẑ, t̂) =
∞∑

n=0

∞∑

m=0

Wmn(x̂, ŷ, ẑ)e
iΩmn t̂

θ̂(x̂, ŷ, ẑ, t̂) =
∞∑

n=0

∞∑

m=0

Θmn(x̂, ŷ, ẑ)e
iΩmn t̂

(4.3)

where Wmn(x̂, ŷ) and Θmn(x̂, ŷ, ẑ) are the (m,n)-th transverse mode shapes of the plate, and
the associated temperature variation, respectively, and Ωmn is the complex frequency that has
the real part ωmn, and the imaginary part λmn which is related to the damping. Therefore,
substituting equations (4.3) into the equation of transverse vibration around static deflection
(4.4)1 and thermal conduction equation (4.4)2 yields
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∂ŷ2

)
+ 12α210

{[
α1
∂ûs
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(∂ŵs
∂x̂

)2)]∂2Wmn
∂ŷ2
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where

N̂Tmn =

1/2∫

−1/2

Θmn dẑ M̂Tmn =

1/2∫

−1/2

Θmnẑ dẑ (4.5)

Assuming that there is no heat flow across the upper and lower surface of the beam, the
boundary conditions for solving equation (4.4)2 are ∂Θmn/∂ẑ = 0 at ẑ = ±1/2. Then solving
equation (4.4)2, and substituting the results into equation (4.5), the following equations are
obtained

M̂Tmn =
1

α10α12
CTmn

(
α1
∂2Wmn
∂x̂2

+
∂2Wmn
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)
N̂Tmn = 0 (4.6)

where
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1

12
−
2

N3mn

[
tan
(Nmn
2

)
−
Nmn
2

]
Nmn = (1− i)

√
Ωmnα12
2

(4.7)

Therefore, equations (4.6) should be substituted into equation (4.4)1. Since in the case of
free vibration the amplitude of higher harmonic terms are dramatically small relative to the
primary amplitude, their effects on thermoelastic damping are negligible. Thus by considering
m = n = 1 and setting Wmn = ϕmn, Galerkin’s method is used for calculating Ωmn, see
Hagedorn and Gupta (2007). The function ϕ11 should satisfy the boundary conditions and is
selected with respect to the boundary conditions that are listed in Table 1. Therefore, equation
(4.4)1 should be rewritten as
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∂ŷ

) ∂2ŵs
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∂ŵs
∂x̂

∂ϕ11
∂x̂

)]∂2ŵs
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Introducing new parameters
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(4.9)

Equation (4.8) can be written as follows

L1P1 + L2P2 + L3P3 +Ω
2
11P5 + P6 = 0 (4.10)

Finally, by calculating Ω11 from equation (4.10) and separating the real and imaginary parts,
the quality factor of TED for large deformation of the microplate is obtained

Q−1 = 2
∣∣∣
λ11
ω11

∣∣∣ (4.11)
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5. Pull-in voltage

Beyond the maximum value of DC voltage, the microplate of the resonator snaps and touches the
rigid plate. This maximum value, denoted by VM , is called pull-in voltage (Batra et al., 2007).
For calculating VM , the minimum voltage at which the microplate becomes unstable, should be
found. For example, for a microplate whose properties are listed in Table 2, the pull-in voltage is
shown in Fig. 1. As can be seen in this figure, beyond this voltage, that the microplate becomes
unstable and the deflection grows suddenly. In this case, the pull-in voltage is VM = 130.73V
and the related deflection is ŵmax = 0.45.

Table 2. List of geometrical and material properties of the microplate

h [µm] d [µm] a [µm] b [µm] T0 [K] κ [Wm−1K−1]

1.5 1.2 200 100 300 148

cp [Jkg
−1K−1] αT [10

−6K−1] E [Gpa] υ [–] ρ [kgm−3] ε0 [C
2m−2N−1]

712 2.6 170 0.25 2330 8.85 · 10−12

Fig. 1. Pull-in voltage in the microplate with properties listed in Table 2

6. Results

Francais and Dufour (1999) measured the centre deflection of a fully clamped square microplate
under various electrostatic actuations. They depicted the center deflection versus the following
parameter

CD =
ε0V

2
p (ab)

2

32d3D
(6.1)

In Fig. 2, the static deflection at the centre of the plate ŵmax, which is calculated here
using the Galerkin’s method, is compared with the experimental results of Francais and Dufour
(1999). There is a good agreement between Francais and Dufour’s measurments and the large
deformation model of microplate.
In Fig. 3, the large deformation model in two cases ν = 0 and ν = 0.25 are compared with

Lifshitz model (Lifshitz and Roukes, 2000) in which the TED is calculated for the clamped-
clamped microbeam. The microplate and microbeam have the same properties that are listed
in Table 2. The microplate is also considered with the CFCF boundary condition and without
electrical load (Vp = 0). As can be seen in Fig. 3, TED in the Lifshitz model and the microplate
with ν = 0 are in good agreement.
In Fig. 4, the TED of large deformation model is depicted versus α based on the configuration

of Table 2, for two cases of voltages: Vp = 0.1VM and Vp = 0.9VM . α is an important parameter
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Fig. 2. Comparison of ŵmax calculated using Galerkin’s method with the experimental results of
Francais and Dufour (1999)

Fig. 3. Comparison of TED in large deformation models of the microplate (ν = 0 and ν = 0.25) with
the Lifshitz model

because it represents the properties of the material. As can be seen in this figure, by increasing α
the difference between two cases becomes larger. In small values of α, these two cases are
coincided, so small α can change the nonlinear model to a linear model of the microplate. For
example, α of silicon is α = 0.005, thus silicon has linear properties.

Fig. 4. TED of the large deformation model versus α

In Fig. 5, TED is depicted versus α1 that is geometrical parameter for α = α10 = α11 =
α12 = 1, α2 = 0.1, VM = 10.0899 and ν = 0.25. As can be seen in this figure, there is a critical
value of α1 in which TED has the maximum value. Also, the maximum values of TED are
increased by growing the electrostatic load.
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Fig. 5. TED of the large deformation model versus α

7. Conclusion

In this paper, a resonator is modeled as a rectangular microplate. TED of the microplate is cal-
culated by linear and nonlinear assumptions. In the large deformation model, large deformation
due to electrostatic load is considered by von-Karman assumptions. For calculating the thermo-
elastic damping, the static and vibration equations are solved by using Galerkin’s method.

The material properties may exhibit nonlinear effects on TED, but silicon has linear proper-
ties. Figures 4 and 5 have useful results for MEMS resonator designers about material properties
and geometrical dimensions of the resonators. In the future work, the thermoelastic damping
of a thick plate can be studied, and the thermal conduction equation can be solved in two
dimensional space.

References

1. Abdel-Rahman E.M., Younis M.I., Nayfeh A.H., 2002, Characterization of the mechanical
behavior of an electrically actuated microbeam, Journal of Micromechanics and Microengineering,
12, 759-766

2. Alblas J.B., 1981, A note on the theory of thermoelastic damping, Journal of Thermal Stresses,
4, 3/4, 333-355

3. Batra R.C., Porfiri M., Spinello D., 2007, Review of modeling electrostatically actuated
microelectromechanical systems, Smart Materials and Structures, 16, 6, R23-R31

4. Choi J., Cho M., Rhim J., 2010, Efficient prediction of the quality factors of micromechanical
resonators, Journal of Sound and Vibration, 329, 1, 84-95

5. Fargas M.A., Costa Castelló R., Shkel A.M., 2005, Modelling the electrostatic actuation
of MEMS: state of the art 2005, Technical Report

6. Francais O., Dufour I., 1999, Normalized abacus for the global behavior of diaphragms: pneu-
matic, electrostatic, piezoelectric or electromagnetic actuation, Journal of Modeling and Simulation
of Microsystems, 2, 149-160

7. Guo F.L., Rogerson G.A., 2003, Thermoelastic coupling effect on a micro-machined beam
resonator, Mechanics Research Communications, 30, 6, 513-518

8. Hagedorn P., Gupta A.D., 2007, Vibrations and Waves in Continuous Mechanical Systems,
Wiley

9. Leissa A.W., 1969, Vibration of Plates, DC: NASA, Washington

10. Lifshitz R., Roukes M.L., 2000, Thermoelastic damping in micro- and nanomechanical systems,
Physical Review B, 61, 8, 5600-5609



Effect of high electrostatic actuation on thermoelastic damping... 329

11. Nayfeh A.H., Pai P.F., 2004, Linear and Nonlinear Structural Mechanics, Wiley, New Jersey

12. Nayfeh A.H., Younis M.I., 2004a, A new approach to the modeling and simulation of flexible
microstructures under the effect of squeeze-film damping, Journal of Micromechanics and Micro-
engineering, 14, 2, 170-181

13. Nayfeh A.H., Younis M.I., 2004b, Modeling and simulations of thermoelastic damping in mi-
croplates, Journal of Micromechanics and Microengineering, 14, 1711-1717

14. Prabhakar S., Vengallatore S., 2008, Theory of thermoelastic damping in micromechanical
resonators with two-dimensional heat conduction, Journal of Microelectromechanical Systems, 17,
2, 494-502

15. Serra E., Bonaldi M., 2009, A finite element formulation for thermoelastic damping analysis,
International Journal for Numerical Methods in Engineering, 78, 6, 671-691

16. Sudipto K. De, Aluru N.R., 2006, Theory of thermoelastic damping in electrostatically actuated
microstructures, Physical Review B, 10, 144305-144318

17. Sun Y., Saka M., 2009, Thermoelastic damping in micro-scale circular plate resonators, Journal
of Sound and Vibration, 310, 392-405

18. Yi Y.-B., Matin M.A., 2007, Eigenvalue solution of thermoelastic damping in beam resonators
using a finite element analysis, Journal of Vibration and Acoustics, 129, 4, 478-483

19. Zener C., 1937, Internal friction in solids. I. Theory of internal friction in reeds, Physical Review,
52,3, 230-235

20. Zener C., 1938, Internal friction in solids. II. General theory of thermoelastic internal friction,
Physical Review, 53, 90-99

Manuscript received March 17, 2013; accepted for print September 27, 2014


