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It is shown in this paper that the proposed concept by Krużelecki and Życzkowski (1990)
of the equivalent rod can be applied in calculations of natural lateral vibrations of springs
and that the obtained results will be nearer FEM results than the standard model based on
the Timoshenko equivalent beam. The model, created on this base, allows one to calculate
natural frequencies of the clamped-clamped spring. It is also shown that models based on the
equivalent beam concept, which are easier to apply than the models treating the spring as the
spatially curved rod, have only a slightly smaller accuracy. It is also indicated that in the most
common practice making of manufacturing end coils of springs, the natural frequencies differ
significantly from the frequencies calculated by means of all tested methods. The performed
simulations show that differences between the first and the second as well as the third and
the fourth natural frequency of the spring are small and, therefore, the axially symmetrical
equivalent beam model can be used without a large error. The diagram allowing one to
determine whether the desired frequencies are lower or higher than the cut-off frequency is
developed for the presented model.

Keywords: helical spring vibrations, axially loaded spring,coil spring, Timoshenko equivalent
beam

1. Introduction

Lateral vibrations of helical springs constitute essential hazards for their operation safety, since
they can cause high stress amplitudes and contribute to the loss of stability. On account of
that, looking for ways of limiting natural vibrations of helical springs and the development of
calculation methods allowing one to determine these limitations efficiency is essential. Equally
essential is the accurate determination of natural frequencies.
Problems related to determination the above value can be considered when the spring is

treated as a spatially curved rod or using the concept of the equivalent beam. Analyses of spring
vibrations treated as the spatially curved rod were presented, among others, by Love (1899),
Wittrick (1966), Mottershead (1980), Pearson and Wittrick (1986) Jiang et al. (1991), Yıldırım
(1999) Becker et al. (2002), Lee and Thompson (2001), Lee (2007), Stander and Du Preez (1992),
Nagaya et al. (1986), Taktak et al. (2008), Yu and Yang (2010). The analyses enabled a relatively
accurate description of the effect, but due to problem complexity it was very difficult to apply
and – depending on assumptions – to obtain analytical results in a closed form. For practical
reasons much more suitable is the equivalent rod or beam model (Haringx, 1949; Della Pietra
and Della Valle, 1982; Kobelev, 2014; Michalczyk, 2014). However, the beam model does not
take into account several factors related to dynamic effects in springs. It assumes, among others,
that the equivalent beam modelling the spring in the case of lateral vibrations is prismatic
and has axially symmetrical parameters characterising stiffness and mass distribution. It can be
expected that this assumption in the case of clamped-clamped springs (with fixed ends) – the
most often met case in practice – can be the reason of significant errors, since the spring lateral



746 K. Michalczyk

stiffness is not the same in all directions and its distribution round the axis depends on the
partial coil number. The problem of lateral vibrations of helical springs treated as the equivalent
beam was considered in the paper by Kobelev (2014). However, only the simplest case, such as
the simply-supported beam, was solved in that study.
A new concept of an equivalent rod, which could be applied to analysis of the helical spring

static stability was proposed by Krużelecki and Życzkowski (1990). That idea, in contrast to the
model of Timoshenko and Gere (1961), took into account the influence of the lead angle of the
helix line on its flexural, shearing and compression rigidities. In addition, that concept allowed
the analysis of spring buckling in two planes.
The aim of the hereby paper is the analysis of the possibility of application of the Krużelecki

and Życzkowski (1990) concept to the determination of lateral vibrations of axially loaded helical
springs. The results obtained on the basis of such formulated model will be compared with the
classical model of the Timoshenko equivalent beam, with the numerical simulation results and
with the results achieved by other authors. The presented model additionally takes into account
the non-rotational way of mounting of the end coils.

2. Analysis

For an element of the equivalent beam modelling the axially helical spring loaded by a force P ,
as shown in Fig. 1, the following equations of motion can be written (Haringx, 1949)
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The angle ψ originates only from bending, while the angle ϕ originates only from the equ-
ivalent beam shearing
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Fig. 1. Model of the equivalent rod for analysis of lateral vibrations of the helical spring

The coefficients α and β are up-to-date flexural and shearing rigidities of the equivalent
beam, respectively. The spring mass for its length unit is marked by me, while the radius of
gyration of the equivalent beam cross-section is marked by rg. Limiting the vibration analysis
to small deflections only, it can be assumed that N ≈ P . Making use of (2.2) in (2.1) on this
assumption, after transformations, we obtain
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Eliminating ϕ from equations (2.3) and transforming, we obtain the wave equation of lateral
vibrations of the spring under the axial static load (Haringx, 1949)
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Since we are considering the model with undamped vibrations, separating variables in equation
(2.4), the function ψ(x, t) can be written as the product of the amplitude Ψ(x) and the time
function T (t) = sinωt. Analogous expressions can be also written for the functions ϕ and y

ψ(x, t) = Ψ(x) sinωt ϕ(x, t) = Φ(x) sinωt y(x, t) = Y (x) sinωt (2.5)

Substituting proper derivatives (2.5)1 into equation (2.4) and performing transformations, we
obtain the equation for amplitudes in the form
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Denoting for simplification
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The characteristic equation for (2.6), after substituting Ψ(x) = Cerx, takes the form

r4 + br2 − c = 0 (2.8)

Substituting q = r2, we obtain a quadratic equation q2 + bq − c = 0, whose roots are
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The expression, which occurs in square roots in (2.9) can be transformed, using (2.7), into
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This expression, similarly as b, is higher than null for an arbitrary frequency ω, which means
∧

ω­0

q2 < 0

Thus, the solution form of equation (2.6) depends on sign of the root q1. The cut-off frequency
value ωb at which the solution form of equation (2.8) changes, is calculated by equating the
right-hand side of equation (2.9)1 to null
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where

k1 =

√

1
2

(

−b+
√

b2 + 4c
)

k2 =

√

1
2

(

b+
√

b2 + 4c
)

(2.13)



748 K. Michalczyk

and
∧

ω>ωb

Ψ(x) = C5 cos(k3x) + C6 sin(k3x) + C7 cos(k4x) + C8 sin(k4x) (2.14)
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The way of determining the cut-off frequency ωb for short, not loaded beams, was studied by
Stephen and Puchegger (2006) and Majkut (2009). From the investigations of the author (which
are presented in the further part of this paper) it results that even for relatively short springs, the
first natural frequencies of lateral vibrations are lower than the cut-off frequency ωb. Therefore,
in further considerations, expression (2.12) is used.
The spring deflection angle resulting only from shearing, on the basis of (2.3)1, equals
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Making use of (2.2)3, (2.5)2,3 and (2.16) in equation (2.1)2, after transformations, we obtain the
equation of amplitudes in the form
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Using derivatives (2.12) in equation (2.17) and transforming, we finally obtain the equation of
displacements in the form
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where, for notation simplification, the following marks are introduced
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The boundary conditions, being the clamped-clamped spring, correspond properly with the real
operation conditions of a majority of springs applied in industry and, therefore, such a model
will be considered. These conditions are

1) y(0, t) = 0 2) y(L, t) = 0 3) ψ(0, t) = 0 4) ψ(L, t) = 0 (2.20)

where L is the real height of the spring.
From conditions 1, 3 and 4, we obtain the following relationships
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On the basis of the second boundary condition (2.20), we obtain the frequency equation
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(2.22)

The models proposed by Krużelecki and Życzkowski (1990) have been used for the determination
of the equivalent stiffness of the beam modelling the spring. The equivalent flexural rigidity and
shear stiffness are expressed by
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2 + ν cos2 δ
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where EJ is the product of Young’s modulus and area moment of inertia of the wire section,
ν is Poisson’s ratio. The values δ and R are the lead angle of the helix and half of the diameter
of the nominal spring for an arbitrary force P , respectively. The angle φ, occurring in (2.23)2,
is the angle marked by the lead radius between the transverse force vector and an arbitrary
cross-section of the spring wire. Since the transverse force direction may not coincide with the
direction determined by the spring axis and the beginning of the helix line, the angle coordinate
of the spring beginning φ0 can generally differ from zero.
As compared to the widely applied in the references equivalent stiffness, see e.g. Timoshenko

and Gere (1961), Guido et al. (1978), in which the lead angle of the helix δ is assumed as constant
and equal to zero, expressions (2.23) allow one to take into account a non-zero value of the angle δ
dependent on the axial force P . The relationships given by Krużelecki and Życzkowski (1990)
take also into account the nominal spring radius R change as well as the change of the active coils
number n, under the influence of the force P . The authors assumed that the way of supporting
the spring ends enables their free rotation. In such a case, during compression of the spring
the number of its coils usually decreases (Michalczyk, 2009). Since the wire length is constant,
it results in an additional increase in its nominal radius R. Its value as well as the value of
the up-to-date helix line pitch angle δ can be determined by rearrangement of the relationships
between the torsion and curvature of the helix wire and the force P given by Haringx (1948)

PR2(1 + ν) cos δ
EJ

= sin δ cos δ−
R

R0
sin δ0 cos δ0

PR2 sin δ
EJ

= cos2 δ−
R

R0
cos2 δ0 (2.24)

In order to realise the condition of free rotation of the spring ends, one of them has to be
supported on a thrust bearing. Only in such a case equations (2.24) can be used for calculating
R and δ.
However, most often, springs are supported in a way making free rotations of the end coils

impossible and, therefore, this case will be considered further. The number of active coils n of the
spring loaded by the force P is equal – due to the clamped-clamped condition – to the number of
active coils n0 of the not loaded spring. On this assumption and making use of the geometrical
relations, it is possible to determine the helix line pitch angle δ and the spring nominal radius R
under load

δ = arcsin

(
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)
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)
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cos δ
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(2.25)

The equivalent shear stiffness γ0 occurring in equation (2.25)1 can be expressed by the equation
(Krużelecki and Życzkowski, 1990)

γ0 =
EJ sin δ0

R20(1 + ν cos2 δ0)
(2.26)
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Knowing the nominal radius R of the axially loaded clamped-clamped spring, it is possible to
calculate its equivalent radius of gyration rg. In the case of modelling the radius of gyration of
cylindrical helical springs, the equivalent rod constitutes the thin-walled cylinder of the average
radius equal to the nominal spring radius R and of the mass equal to the spring mass. On this
assumption, making use of (2.25)2, the equivalent radius of gyration rg can be written in the
form

rg =

√
2
2
R0
cos δ
cos δ0

(2.27)

Introducing (2.25)1, (2.26), (2.27) into (2.11), (2.22), (2.23), we can calculate cut-off frequ-
encies and natural frequencies of lateral vibrations.

3. Simulations, results and discussion

3.1. Analysis of natural frequencies of lateral vibrations of not axially loaded springs

Comparisons of the results obtained on the basis of numerical FEM simulations of models
(given in references) in which the spring is considered as a spatially curved rod of the classic
model of the Timoshenko equivalent beam (applied up-to-date in all investigations concerning
lateral vibrations of the spring modelled as the equivalent rod) with the proposed in this paper
model using the concept of the equivalent beam given by Krużelecki and Życzkowski (1990) is
presented below. As the first example, the spring of the same parameters as those used in work
by Lee and Thompson (2001) is analysed. These parameters are as follows: total spring length
L = 332mm, spring nominal radius R0 = 65mm, wire radius r = 6mm, density ρ = 7800 kg/m3,
number of active coils n = 6, Young’s modulus E = 209000MPa, Poisson’s ratio ν = 0.28. The
first four forms of lateral vibrations of the clamped-clamped spring not loaded by a longitudinal
force obtained by the FEM in the ANSYS software are presented in Fig. 2.

Fig. 2. Forms and frequencies of lateral natural vibrations of the clamped-clamped spring

As can be seen in Fig. 2, the frequency f2 is only insignificantly higher than f1. In the case
of frequencies f4 and f3, the difference is even smaller.
The comparison of natural frequencies of the spring not loaded by a longitudinal force ob-

tained by means of FEM, the dynamic stiffness method (Lee and Thompson, 2001), transfer
matrix method (Pearson, 1982), standard model of the Timoshenko equivalent beam (STB) and
the model presented in this paper (MTB) is presented in Table 1. In the methods presented by
Lee and Thompson (2001) and Pearson (1982), the spring is treated as a spatially curved rod.
The solution, in both methods, is obtained by means of a numerical method.
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It should be noticed, that in methods using the concept of the equivalent rod modelled as
acylinder, all frequencies of lateral vibrations are doubled due to the axial symmetry.

Table 1

f1 f2 f3 f4

FEM model (Fig. 2) 45.181 47.007 89.051 91.581
Dynamic stiffness method 45.135 46.951 88.976 91.586
Transfer matrix method 45.13 46.95 88.97 91.59
Equivalent Timoshenko beam (STB) 45.975 45.975 94.088 94.088
Model presented in the work (MTB) 45.764 45.764 93.62 93.62

Comparing the results given in Table 1 it is seen that the application of the modified Ti-
moshenko beam model (MTB) with taking into account non-rotational ends support and using
stiffness given in the paper by Krużelecki and Życzkowski (1990) provides, in the case of the
analysed not axially loaded spring, results very similar to those ones obtained on the basis of
the standard Timoshenko beam model (STB). The largest difference between the frequencies
obtained from the FEM simulation and the frequencies obtained from the two last models did
not exceed 6%.
The most often occurring case in the engineering practice is the spring of end coils bent and

ground off, since only this way of support (except cases of using special spring holders or spring
guided on a pin or in a cylindrical sleeve) ensures its stable operation. It can be expected that
the way of making the end coils has an influence on the natural frequencies. In order to illustrate
this problem, FEM analyses have been performed for a spring of the same parameters as before
but with different shapes of neutral coils. The model of such spring and its first four lateral
vibration modes are presented in Fig. 3.

Fig. 3. Forms and frequencies of lateral natural vibrations of the clamped-clamped spring with typical
industrial end coils

Comparing data contained in Table 1 and 2, it can be noticed that in the case of the spring
with end coils bent and ground off, a better similarity of the FEM results for the models proposed
by Lee and Thompson (2001) and Pearson (1982) is not obtained (at least for the first two
frequencies) than the results obtained on the basis of the models based on the equivalent beam
concept.

Table 2

f1 f2 f3 f4

FEM model with bent coils (Fig. 3) 43.298 43.798 85.846 87.291
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3.2. Analysis of natural frequencies of lateral vibrations of axially loaded springs

Helical springs applied in the industry most often operate under a certain preliminary axial
load, usually caused by the supported machine, weight or preliminary tension, e.g. in overload
clutches, valves or in variable-speed transmission systems. Thus, the influence of the axial force
(approximately statical) on natural frequency vibrations of helical springs is essential. Diagrams
of the first four natural frequencies of lateral vibrations obtained (as before) from FEM analyses
and from the solution presented in this study are presented in Fig. 4. The FEM simulations
were carried out in two stages: in the first one, the statistical analysis was performed at the
determined spring load, while in the second, the modal analysis was performed for such a loaded
model. Analyses and calculations were performed for the following spring relative deflections: 0;
0.125; 0.25; 0.375; 0.5. Simulations were carried out in the ANSYS packet, Mechanical APDL
module.
As can be seen in Fig. 4, along with an increase in the axial force P and thus an increase in

the spring relative deflection, the model presented in this study improves convergence with the
FEM in relation to the standard model of the equivalent beam.

Fig. 4. Comparison of the first four natural frequencies of lateral vibrations obtained from FEM
simulations with the first two double frequencies calculated on the basis of the standard model of the

equivalent beam (STB) and the model presented in this study (MTB)

3.3. Cut-off frequencies of lateral vibrations of helical springs according to the presented

model

As has been mentioned above, equations (2.12), (2.18) and (2.22) are applicable only in
the case when the cut-off frequency ωb determined by equation (2.11) is larger than the looked
for natural frequencies. Thus, from the point of view of analysis of spring lateral vibrations, it
is important to find out whether the looked for vibrations form is above or below the cut-off
frequency ωb. This problem was analysed by Guido et al. (1978), where the authors indicated
that for slenderness L0/D0 = 1 (or less) natural frequencies always correspond to solution
(2.13). However, they did not provide neither slenderness values nor relative deflections at which
the successive natural frequencies can be calculated from (2.12). On the basis of the studies
performed at various material and geometrical parameters, it can be stated that the spring
slenderness and its deflection decide whether the given natural frequency is higher or lower than
the cut-off frequency.
The diagram allowing one to determine whether equation (2.12) or (2.14) should be used in

calculations of natural frequencies of lateral vibrations is presented in Fig. 5. The up-to-date
spring length L1 related to the length of a not loaded spring L0 is marked in the vertical axis,
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while the not loaded spring slenderness L0/2R0 in the horizontal axis. If, e.g. we are interested in
natural frequencies of lateral vibrations of the clamped-clamped spring of a slenderness being 2.5
and compressed to 0.6 of its initial height (point A in Fig. 5), then the first two double frequencies
ω1,2 and ω3,4 can be calculated using the solution in form (2.12) and (2.22), while in order to
find the parameters of higher frequencies, the solution in form (2.14) should be used.

Fig. 5. Curves separating the zones in which the cut-off frequency ωb is higher than the successive
frequencies of lateral natural vibrations

4. Conclusions

The modified model of the equivalent beam, presented in this study, allows one to determine
form (2.18) and frequencies (2.22) of lateral natural vibrations of the axially loaded spring. The
results obtained on the basis of the presented model, using the concept given by Krużelecki
and Życzkowski (1990) are slightly closer to the results of the FEM analysis than the standard
model based on the Timoshenko equivalent beam. The developed model allows calculation of
natural frequencies of the axially loaded spring and supported in a way making free rotations of
its end coils impossible. It is also shown that the models based on the equivalent beam concept,
easier in applications than models treating the spring as a spatially curved rod, have only
insignificantly smaller accuracy. The largest difference between the frequencies obtained from
the FEM simulation for the spring without bent end coils (Fig. 2) and the frequencies obtained
from the presented model is a little bit above 5%. Comparing the frequencies obtained from the
FEM simulation for the spring without bent end coils (Fig. 2) with the frequencies obtained from
the FEM simulation for the spring of typical industrial end coils (Fig. 3) can be noticed that the
differences are even larger – the maximum difference for the second frequency exceeded 6%. Thus,
the way of making the end coils significantly influences the natural frequencies. In the most often
met in practice case of spring end coils being bent and ground off, the natural frequencies differ
significantly from the frequencies calculated by all tested methods. The performed simulations
indicated also that the differences between the first and the second as well as the third and the
fourth natural frequency are small for springs and, therefore, the axially symmetric equivalent
beam model can be applied for calculating (without large error) these frequencies. The diagram
(Fig. 5) allowing one to determine which form of the solution to equation (2.6) should be applied
in calculating frequencies and forms of natural vibrations of the spring of the given slenderness
and static deflection has also been developed for the presented model.
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