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In single-wire hot-wire measurements, velocity fluctuations acting normal to the hot-wire
and its prongs will cause additional heat transfer known as binormal cooling. With respect
to wall turbulence, the influence of this additional cooling is well-studied for crossed wires,
while it is commonly ignored in single hot-wire measurements. The latter view is challenged
in the recent work by Dróżdż and Elsner (2014) that claims significant errors in variance
measurements when using single-wire probes in turbulent boundary layers. This short com-
munication revisits these claims and quantifies binormal cooling errors through an expansion
of the effective-velocity concept and utilisation of direct numerical simulation data. Results
support the common habit that binormal cooling errors can safely be ignored in single
hot-wire measurements.
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1. Introduction and motivation

Hot-wire anemometry is still the method that provides the highest degree of accuracy when
measuring turbulent fluctuations, in particular, when it comes to temporal and spatial resolution.
Recent detailed comparisons between hot-wire measurements and direct numerical simulations
(DNS) in turbulent boundary layer (TBL) flows revealed that most of the remaining differences
between hot-wire measurements and DNS can be explained by insufficient spatial resolution of
the measuring sensor (Örlü and Schlatter, 2013); but is with sufficient care within the scatter
of various DNS. On the other hand, there are still open questions when it comes to the scaling
of the streamwise velocity variance profile, in particular, with respect to turbulent pipe flows
(Örlü and Alfredsson, 2012). Some of the discrepancies, besides spatial resolution (Hutchins
et al., 2009), could recently also be related to end-conduction effects (Miller et al., 2014) and
frequency response (Hutchins et al., 2015) effects, while the effect of temperature fluctuations
were found to be comparably mild (Örlü et al., 2014).

In a recent study by Dróżdż and Elsner (2014), the streamwise velocity variance profiles obta-
ined from a single-wire (SW) and crossed-wire, i.e. X-wire (XW), probe in a TBL were compared,
and the authors concluded that binormal cooling effects (i.e. velocity fluctuations acting normal
to the hot-wire and its prongs that cause additional heat transfer) were not negligible. In par-
ticular, they claimed “that the underestimation of the near-wall peak of streamwise fluctuating
component in X-wire measurements results from disregarded wall-normal fluctuations, which is

obviously taken [into account] in the case of a single-wire probe”. This statement implies also
that all previous comparisons of streamwise velocity statistics between SW probes and other
measurement techniques such as laser Doppler velocimetry (LDV) and Particle Image Veloci-
metry (PIV), but also numerical simulations such as DNS, have apparently compared different
quantities. The authors furthermore concluded that the readings from a SW probe should be
compared to the sum of energies of the streamwise (u) and wall-normal (v) component from an
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XW probe (assuming the wire is normal to the mean flow direction and parallel to the wall), i.e.
uu+SW = uu

+
XW+ vv

+
XW, where the superscript + denotes scaling with wall units and the overbar

the time-average operator. These results have consequently been used by the authors in follow-
up studies (Dróżdż and Elsner, 2015) as well as to compare SW results with PIV measurements
(Dróżdż and Uruba, 2014).

In absence of a quantification of binormal cooling errors in SWmeasurements in the literature
and in light of the consequences, which the aforementioned claims bring for past and future SW
measurements, there is a need to address this problem. This short communication will therefore
revisit the statements of Dróżdż and Elsner (2014), present clarifications for their observations
as well as quantify binormal cooling errors based on recent DNS data. It is believed that these
will not only be useful to remedy the claims made, but also give confidence in past and future
SW measurements, which – none-withstanding the progress in optical measurement techniques
– remains the measurement technique of choice when single-point streamwise velocity statistics
are of interest.

2. Comments and Results

Let us start with the relevant statements by Dróżdż and Elsner (2014), which will be reproduced
(in italic) and commented on:

1) “Most researchers who do measurements in the turbulent boundary layer believe that the
influence of v component is insignificant and can be ignored, ...”. Indeed, most researchers
employing SW probes in wall-bounded flows ignore the effect of the wall-normal and spanwise
velocity component as evident from a large number of studies. On the other hand, the effect of
the binormal velocity component in turbulence measurements using XW probes has been studied
to some extent. It is e.g. well-known that large errors can be obtained in jet flows (Ovink et
al., 2001), while the errors in wall-bounded flows are small, but not negligibly (Zhao and Smits,
2006). Hence, this statement by Dróżdż and Elsner (2014) is correct, i.e. most researchers who do
measurements with SW probes “believe” (or know) that the influence of the binormal component
is insignificant, while researchers using XW probes are aware of them.

2) “... but it is only a simplifying assumption” and “... from the physical point of view, the
negligible small influence of the v component in a single-wire readings is not so convincing.”
To address this claim, we start out by considering the effective cooling velocity. Accounting for
pitch and yaw angles of the effective cooling velocity with respect to a SW aligned normal to
the flow and parallel to the wall, the effective cooling velocity (Ue) in a three-dimensional flow
is given by (Jørgensen, 1971)

U2e = U
2 + h2V 2 + k2W 2 (2.1)

where W denotes the spanwise velocity (i.e. parallel to the hot-wire), k the yaw factor which
accounts for the effects of finite wire length and the prong orientation with respect to the flow,
and h the pitch factor, which is related to the binormal component. There is a rich literature
with regard to the values of these two factors, but they are commonly k ≃ 0.10-0.20 and
h ≃ 1.02-1.05 for standard wire probes, while they asymptote to 0 and 1 for an infinitely large
length-to-diameter ratio (Bruun, 1995). Since W = 0 and V ≈ 0 (where the overbar indicates
the time-average) in the aforementioned canonical wall-bounded flows,W = w and V ≈ v. Since
h2 ≫ k2 and h ≈ 1, the series expansion of Eq. (2.1) on the assumption that
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yields for the mean effective cooling velocity

Ue = U
(

1 +
v′
2

2U
2 +O

[ u

U

]3)

(2.3)

while the measured variance becomes

u′e
2
= u′

2
(

1 +
uv2

Uu′2
−
u2v2

U
2
u′2
+
v4 − v′

4

4U
2
u′2
+O
[ u

U

]5)

(2.4)

where the prime denotes the root mean square (rms) value. Similar expressions for the mean
and (a truncated form of the) variance can be found in Bruun (1995). As apparent Ue ­ U , since
the second term in brackets in Eq. (2.3) is per definition positive, while the situation for u′e

2 is
dependent on the sign of the leading order term (i.e. ∼ uv2). To assess the error between the
measured (effective cooling) velocity and the actual horizontal velocity component, the error for
the mean

ε
Ue
=
Ue − U

U
=
v′
2

2U
2 (2.5)

and variance
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2
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(2.6)

are obtained.
To demonstrate the effect of the binormal velocity component on the readings of a SW probe

aligned normal to the mean flow, and not be affected by data that suffers from insufficient spatial
and temporal resolution, here DNS data from a TBL (Schlatter and Örlü, 2010) has been utilized.
The response of a SW has been imitated by computing the statistics upon utilization of Eq. (2.1)
on the time-series data, cf. Segalini et al. (2011) and Örlü and Schlatter (2013). Figure 1a depicts
the “true” and “measured” (i.e. effecttive) mean and variance profile. As apparent, the difference
between Ue and U as well as u

′

e

2 and u′2 is barely visible and can hence, as commonly done, safely
be neglected. The obtained statistics can now be used to compute the aforementioned errors and
compare them with the derived simplified expressions given above as depicted in Fig. 1b,c. The
mean streamwise velocity is overestimated up to 0.3%, while the variance is underestimated

Fig. 1. (a) Inner-scaled mean and variance profile for a TBL at Reτ ≈ 1200 (Schlatter and Örlü, 2010)
with the dashed line and dots indicating “measured” (i.e. effective) and real values, respectively. Inset
shows the region around y+ = 50, where the error in the mean and variance has its maximum.

Percentile error in the (b) mean velocity and (c) variance, where dots indicate the results computed
from the DNS through Eq. (2.1) and the solid line represent the approximation given through Eqs. (2.5)
and (2.6). The dashed and dash-dotted line in (c) denote Eq. (2.6) with only the first two and the first

term, respectively
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up to 1%. This is in contrast to the errors induced in XW measurements when ignoring the
binormal velocity, which are approximately fivefold (Zhao and Smits, 2006). Although these
errors are obtained for a TBL at a specific Reynolds number, the estimated errors can directly
be transferred to pipe and channel flows as well. Furthermore, the errors are representative for a
wide range of Reynolds numbers due to the logarithmic dependence of the variance amplitudes
(Alfredsson et al., 2011). With regards to the initial statement that “the negligible small influence
of the v component in a single-wire readings is not so convincing”, it can now clearly be stated
that binormal cooling effects on SW probes can safely be neglected in wall-bounded flows, under
the premise that assumption (2.2) is not severely violated.1

3) Dróżdż and Elsner (2014) furthermore observed, with respect to a XW, that “the vector
summing these two components (i.e. uu+XW and vv

+
XW), obtained from the X-wire probe, gives

the shape of fluctuation distribution obtained from the SW (i.e. uu+SW) probe”. Consequently, the
authors compared (uu+ + vv+)XW (Dróżdż and Elsner, 2014) or (uu

+ + vv+)PIV (Dróżdż and
Uruba, 2014) and not directly the measured uu+ component with the variance read from a SW
probe and found a seemingly better agreement as demonstrated in Fig. 2a, which is a reproduc-
tion from Dróżdż and Elsner (2014). This proposed workaround is, however, at odds with the
aforementioned results, which demonstrated that binormal cooling errors are safely negligible
in turbulent boundary layer measurements. Streamwise and wall-normal velocity fluctuations
are furthermore strongly anti-correlated and the simple addition of the energies is principal-
ly only permissible for fully uncorrelated signals. The reason why the summation of measured
variances from an XW probe or PIV measurements lead to a better agreement with SW me-
asurements in the work by Dróżdż and Elsner (2014) and Dróżdż and Uruba (2014) is simply
related to the larger viscous-scaled wire length utilized for the XW measurements (the length
of the XW was around three times longer than that of the SW), which causes attenuation of
the fluctuation amplitudes (Örlü and Alfredsson, 2010). This can simply be shown by utilising
any of the available spatial resolution correction schemes for hot-wire measurements available
in the literature (e.g. Segalini et al., 2011; Smits et al., 2011). As demonstrated in Fig. 2b,
the streamwise variance profile measured by the SW, uu+SW, compares well with DNS data and
is apparently well-resolved. Matching now the viscous-scaled wire length of the SW with that
of the employed XW, by utilization of the scheme by Smits et al. (2011), the variance profile
attenuates towards the variance read by the XW, uu+XW. The comparison with the DNS data
also reveals that the wall-normal variance profile becomes increasingly overestimated the closer

Fig. 2. Inner-scaled variance profile for a TBL at Reτ ≈ 1000 with data taken from Fig. 3 of Dróżdż and
Elsner (2014). (a) SW, uu+

SW
: •, X-wire, uu+

XW
: ⊲, vv+

XW
: △, and uu+

XW
+ vv+

XW
: ✷; (b) reverse

application of the spatial resolution correction scheme by Smits et al. (2011) on the SW data (•) to
match the less resolved resolution of the X-wire (◦). For reference, also DNS from Schlatter and Örlü

(2010) at the same Re for uu+ (—) and vv+ (−−) is shown

1In this respect, it is also worth referring to Kalpakli Vester et al. (2015), where the results from a
SW and PIV measurements in a rotating pipe flow are compared.
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to the wall the probe is. Such an increase is well documented and known to be related to the
spatial resolution as well as the spacing between the two inclined wires (Talamelli et al., 2000).

3. Conclusions

The present short communication addresses the claims made by Dróżdż and Elsner (2014),
viz. that binormal cooling errors in SW measurements are not negligible in wall turbulence.
They further claimed that the measured variance by a SW probe needs to be compared to
the sum of energies from the streamwise and wall-normal components, e.g. when comparing
with results from XW or PIV measurements. These claims have been addressed by means of
a simple expansion of the effective velocity, which showed that the effect of binormal cooling
in SW measurements can – under the premise that assumption (2.2) is not severely violated –
safely be neglected. The results have also been validated by means of DNS data and provide a
quantification of binormal cooling errors, which has been missing in the literature, and might
have given rise to the claims by Dróżdż and Elsner (2014).
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