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This article presents the solution for free vibration of nanobeams based on Eringen nonlocal
elasticity theory and Timoshenko beam theory. The small scale effect is considered in the
first theory, and the transverse shear deformation effects as well as rotary inertia are taken
into account in the latter one. Through variational formulation and the Hamilton principle,
the governing differential equations of free vibration of the nonlocal Timoshenko beam and
the boundary conditions are derived. The obtained equations are solved by the differential
transformation method (DTM) for various frequency modes of the beams with different end
conditions. In addition, the effects of slenderness and on vibration behavior are presented. It
is revealed that the slenderness affects the vibration characteristics slightly whilst the small
scale plays a significant role in the vibration behavior of the nanobeam.
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1. Introduction

Nanostructures have significant mechanical, electrical and thermal performances that are supe-
rior to conventional structural materials. They have attracted much attention in modern science
and technology. For example, in micro/nano electromechanical systems (MEMS/NEMS); na-
nostructures have been used in many areas including communications, machinery, information
technology, biotechnology technologies, etc. So far, three main methods have been provided to
study the mechanical behavior of nanostructures. These are the atomistic (Baughman et al.,
2002), semi-continuum (Li and Chou, 2003) and continuum models (Wang and Cai, 2006). Ho-
wever, both atomistic and semi-continuum models are computationally expensive and are not
suitable for analyzing large scale systems.
Due to the inherent size effects, at nanoscale, the mechanical characteristics of nanostructures

are often significantly different from their behavior at macroscopic scale. Such effects are essential
for nanoscale materials or structures and the influence on nano-instruments is great (Maranganti
and Sharma, 2007). Generally, theoretical studies on size effects at nanoscale are by means of
surface effects (Zhu et al., 2009), strain gradients in elasticity (Mindlin, 1964) and plasticity
(Aifantis, 1984) as well as nonlocal stress field theory (Eringen, 1983, 1972a), etc. Unfortunately,
the classical continuum theories are deemed to fail for these nanostructures, because length
dimensions at nano scale are often sufficiently small such that call the applicability of classical
continuum theories into the question. Consequently, the classical continuum models need to be
extended to consider the nanoscale effects. This can be achieved through the nonlocal elasticity
theory proposed by Eringen (1972a) which considers the size-dependent effect. According to
this theory, the stress state at a reference point is considered as a function of strain states of all
points in the body. This nonlocal theory is proved to be in accordance with the atomic model
of lattice dynamics and with experimental observations on phonon dispersion (Eringen, 1983).
In nonlocal theory, nonlocal nanoscale in the constitutive equation could be considered simply
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as a material-dependent parameter. The ratio of internal characteristic scale (such as the lattice
parameter, C-C bond length, granular distance, etc.) to external characteristic scale (such as
crack length, wave length, etc.) is defined within a nonlocal nanoscale parameter. If the internal
characteristic scale is much smaller than the external characteristic scale, the nonlocal nanoscale
parameter approaches zero and the classical continuum theory is recovered.
For analyzing these nanoscale beams, Euler-Bernoulli and Timoshenko beam theories appear

to be inadequate, since they are scale free. For this problem, continuum mechanics is needed,
and one of the efficient theories for nonlocal continuum mechanics is Eringen’s (Eringen, 1983;
1972a,b) theory which allows small scale effect by indicating that stress at one point is a function
of strain at all points of the body.
In the recent years, nanobeams and carbon nanotubes (CNTs) have held a wide variety of

potential applications (Zhang et al., 2004; Wang, 2005; Wang and Varadan, 2006) such as sen-
sors, actuators, transistors, probes, and resonators in nanoelectromechnical systems (NEMSs).
Thus, establishing an accurate model of nanobeams is a key issue for successful NEMS design.
As a result, nanotechnological research on free vibration properties of nanobeams is important
because such components can be used as design components in nano-sensors and nano-actuators.
Furthermore, many researchers worked on bending, buckling and vibration of beam-like elements
(Peddieson et al., 2003; Liew et al., 2008; Xu, 2006; Amara et al., 2010) and in some papers the
Euler-Bernoulli theory has been applied for vibration of nanobeams (Lu et al., 2006; Zhang et
al., 2005; Xu, 2006). But they used the Euler-Bernoulli theory which does not account trans-
verse shear force and rotary inertia which are significant in stubby beams and high vibration
frequencies. So in this paper, we used Timoshenko beam theory and the governing equations
and boundary conditions for free vibration of a nonlocal Timoshenko beam have been derived
via Hamilton’s principle. To the author’s best knowledge, there is no work reported on the ap-
plication of DTM on vibration analysis of nonlocal Timoshenko beams with various boundary
conditions. Furthermore, the solution procedure in this study is the differential transformation
method (DTM) which is a semi analytical-numerical technique depending on Taylor series expan-
sion. This method was first introduced by Zhou (1986) in his study about electrical circuits, and
this method has the advantage of its simplicity in use as well as high accuracy. The results in
this paper are provided by a MATLAB code with respect to DTM rules, for the first time.

2. Nonlocal Timoshenko beam equations and boundary conditions

Consider a beam with length L and cross sectional area of A. Based on Timoshenko beam theory,
strain-displacement and strain energy relations are as follows (Wang et al., 2000)

εxx = z
dφ

dx
γxz = φ+

dw

dx
(2.1)

in which x is the longitudinal coordinate measured from the left end of the beam and z is the
coordinate measured from the mid-plane of the beam, w represents the transverse displacement
and φ is rotation of the beam due to bending, εxx is the normal strain, γxz is the transverse
shear strain, σxx is normal stress and σxz – transverse shear stress. The strain energy relation
is as follows (Leissa and Qatu, 2011)

U =
1
2

L∫

0

∫

A

(σxxεxx + σxzγxz) dAdx (2.2)
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After substituting equations (2.1) into equation (2.2) and putting the bending moment and shear
force into relation (2.2), the strain energy becomes

U =
1
2

L∫

0

∫

A

(
σxxz

dφ

dx
+ σxz

(
φ+

dw

dx

)]
dAdx =

L∫

0

1
2

[
M
dφ

dx
+Q

(
φ+

dw

dx

)]
dx

M =
∫

A

σxxz dA Q =
∫

A

σxz dA

(2.3)

where M is the bending moment and Q is the shear force. The kinetic energy T , by assuming
free harmonic motion and rotary inertia effect, is

T =
1
2

L∫

0

(ρAω2w2 + ρIω2φ2) dx (2.4)

in which ω is the circular frequency of vibration and ρ and I are the mass density and the second
moment of area of the beam, respectively. Applying Hamilton’s principle (Chow, 2013), requires

δ(T − U) = 0 =
L∫

0

[
−Mdδφ

dx
−Q

(
δφ +

dδw

dx

)
+ ρAω2wδw + ρIω2φδφ

]
dx (2.5)

After performing integration by parts, we reach

0 =
L∫

0

[(dM
dx
−Q+ ρIω2φ

)
δφ+

dQ

dx
+ ρAω2w

)
δw
]
dx− [Mδφ]L0 − [Qδw]L0 (2.6)

This results in the following equations

dM

dx
= Q− ρIω2φ dQ

dx
= −ρAω2w (2.7)

And the boundary conditions are in two forms of below relations

Either w = 0 or Q = 0

Either φ = 0 or M = 0
(2.8)

As can be seen, the equations appear to be the same as in local Timoshenko beam theory, but
the shear force and bending moment expressions in nonlocal beam theory must be different. The
constitutive equation of classical elasticity is an algebraic relationship between stress and strain
tensors while Eringen nonlocal elasticity includes spatial integrals which indicate the average
effect of strain of all points of the body to the stress tensor at the given point (Eringen, 1972b;
1983). Since the spatial integrals in constitutive equations are mathematically difficult to solve,
they can be converted into equal differential constitutive equations under certain conditions.
The nonlocal constitutive stress-strain relation for an elastic material in the one dimensional
case beam can be simplified as (Eringen, 1983)

σxx − (e0a)2
d2σxx
dx2

= Eεxx (2.9)

in which E is the Young modulus, e0a is the scale coefficient that incorporates the small scale
effect, a represents the internal characteristic length and e0 is a constant appropriate to each
material which is measured experimentally. The local and nonlocal constitutive shear strain-
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-stress relations are the same, since form of the Eringen nonlocal constitutive model cannot be
applied in the z direction

σxz = Gγxz (2.10)

in which G is the shear modulus. After multiplying the term (z dA) and integrating over the
area A, equation (2.9) becomes

M − (e0a)2
d2M

dx2
= EI

dφ

dx
(2.11)

By integrating equation (2.10) over the area, we obtain

Q = KsGA
(
φ+

dw

dx

)
(2.12)

in whichKs is the shear correction factor in the Timoshenko beam theory in order to compensate
for the error in assuming equal shear stress or strain in the whole beam thickness. Now by
substituting equations (2.7) into equation (2.11), the moment can be reached as below

M = EI
dφ

dx
− (e0a)2

(
ρAω2w + ρIω2

dφ

dx

)
(2.13)

And by utilizing equations (2.12) and (2.13) in Timoshenko beam equations (2.7), the governing
equation for the vibration of nonlocal Timoshenko beam may be obtained as below

EI
d2φ

dx2
−KsGA

(
φ+

dw

dx

)
+ ρIω2φ− (e0a)2

(
ρAω2

dw

dx
+ ρIω2

d2φ

dx2

)
= 0

KsGA
(dφ
dx
+
d2w

dx2

)
+ ρAwω2 = 0

(2.14)

On the basis of equation (2.8) and due to various endings of the beam, e.g. for a simply supported
end, we have

w = 0 M = EI
dφ

dx
− (e0a)2

(
ρAω2w + ρIω2

dφ

dx

)
= 0 (2.15)

and for a clamped end

w = 0 φ = 0 (2.16)

and for a free end

M = EI
dφ

dx
− (e0a)2

(
ρAω2w + ρIω2

dφ

dx

)
= 0

Q = KsGA
(
φ+

dw

dx

)
= 0

(2.17)

3. Non-dimensional parameters

The non-dimensional parameters contributes to simplification of the equations and to the making
of comparisons in the studies possible. The non-dimensional parameters are introduced as the
following terms

x =
x

L
w =

w

L
λ2 = ω2

ρAL4

EI

Ω =
EI

KsGAL2
α =

e0a

L
ε =

L
√
A√
I
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where λ2 is frequency parameter, Ω – shear deformation parameter, α – scaling effect arameter,
ε – slenderness ratio.
By applying the non-dimensional parameters to governing equations (2.14), the following

relations are obtained

Ω
(
1− α2λ2

ε2

)d2φ
dx2
+
(Ωλ2

ε2
− 1

)
φ− (α2λ2Ω + 1)dw

dx
= 0

dφ

dx
+
d2w

dx2
+ λ2Ωw = 0

(3.1)

Also boundary conditions equations (2.15)- (2.17) appear for the simply supported end as

w = 0 M =
(
Ω − Ωα2λ2

ε2

)dφ
dx
−Ωα2λ2w = 0 (3.2)

And for the clamped end as

w = 0 φ = 0 (3.3)

And for the free end as

M =
(
Ω − Ωα2λ2

ε2

)dφ
dx
−Ωα2λ2w = 0 Q = KsGA

(
φ+

dw

dx
= 0 (3.4)

4. Differential transformation method

The differential transformation method is one of the useful techniques to solve differential equ-
ations with small calculation errors and capable of solving nonlinear equations with boundary
condition value problems. Abdel-Halim Hassan (2002) applied the DTM to eigenvalues and nor-
malized eigenfunctions. Also Wang (2013) and Chen and Ju (2004) used the method in their
studies. The DTM is a transformation technique based on the Taylor series expansion and is a
useful tool to obtain analytical solutions to differential equations. The DTM is proved to be a
good computational tool for various engineering problems. Using the differential transformation
technique, ordinary and partial differential equations can be transformed into algebraic equ-
ations from which a closed-form series solution can be obtained easily. In this method, certain
transformation rules are applied to both the governing differential equations of motion and the
boundary conditions of the system in order to transform them into a set of algebraic equations
as presented in Table 1 and 2.

Table 1. Basics of the differential transform method (Chen and Ju, 2004)

Original function Transformed function

f(x) = g(x ± h(x) F (K) = G(K)±H(K)
f(x) = λg(x) F (K) = λG(K)

f(x) = g(x)h(x) F (K) =
K∑
l=0

G(K − l)H(l)

f(x) =
dng(x)
dxn

F (K) =
(k + n)!
k!

G(K + n)

f(x) = xn F (K) = δ(k − n) =





0 if k 6= n
1 if k = n
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Table 2. Transformed boundary conditions (BC) based on DTM (Chen and Ju, 2004)

X = 0 X = 1

Original Transformed Original Transformed
BC BC BC BC

f(0) = 0 F [0] = 0 f(1) = 0
∞∑
k=0

F [k] = 0

df

dx
(0) = 0 F [1] = 0

df

dx
(1) = 0

∞∑
k=0

kF [k] = 0

d2f

dx2
(0) = 0 F [2] = 0

d2f

dx2
(1) = 0

∞∑
k=0

k(k − 1)F [k] = 0
d3f

dx3
(0) = 0 F [3] = 0

d3f

dx3
(1) = 0

∞∑
k=0

k(k − 1)(k − 2)F [k] = 0

The solution of these algebraic equations gives the desired results of the problem. It is
different from the high-order Taylor series method because the Taylor series method requires
symbolic computation of necessary derivatives of data functions and is expensive for large orders.
The basic definitions and the application procedure of this method can be introduced as

follows:
The transformation equation of the function f(x) can be defined as (Chen and Ju, 2004)

F [k] =
1
k!
dkf(x)
dxk

∣∣∣
x=x0

(4.1)

where f(x) the original function and F [k] is the transformed function.
The inverse transformation is defined as

f(x) =
∞∑

k=0

(x− x0)kF [k] (4.2)

Combining equations (4.1) and (4.2), one obtains

f(x) =
∞∑

k=0

(x− x0)k
k!

dkf(x)
dxk

∣∣∣
x=x0

(4.3)

Considering equation (4.3), it is noticed that the concept of the differential transform is
derived from Taylor series expansion. In actual application, the function f(x) is expressed by a
finite series, and equation (4.3) can be written as follows

f(x) =
n∑

k=0

(x− x0)k
k!

dkf(x)
dxk

∣∣∣
x=x0

(4.4)

which implies that the term in relation (4.5) is negligible

f(x) =
∞∑

k=n+1

(x− x0)k
k!

dkf(x)
dxk

∣∣∣
x=x0

(4.5)

In this study, the natural frequencies determine the value of n.
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5. Solution with DTM

According to the DTM rules given in Table 1, equations (3.1) will be transformed into the
following equations

Ω
(
1−α

2λ2

ε2

)
(k + 1)(k + 2)Φ(k + 2) +

(Ωλ2

ε2
−1
)
Φ(k)− (α2λ2Ω + 1)(k + 1)W (k + 1) = 0

(5.1)
(K + 1)Φ(k + 1) + (k + 1)(k + 2)W (k + 2) + λ2ΩW (k) = 0

The rules of the DTM for defining boundary conditions are given in Table 2. W (k) and Φ(k)
are transforms of w(x) and φ(x), respectively. By substituting values for k = 0, 1, 2, . . ., α = 0,
ε = 34.641 and Ω = 0.2436 into equations (5.1), we can evaluate the amounts of W (2),W (3), . . .
and Φ(2), Φ(3), . . . in terms of ω2 and some constants like c1, . . .. The values can be achieved
with a computer program, and after substituting W (i) and Φ(i) into boundary conditions the
following equation is obtained

Nr1(n)(ω)c1 +Nr2(n)(ω)c2 = 0 r = 1, 2, . . . , n (5.2)

in whichNs are polynomials in terms of ω corresponding to the n-th term. When solving equation
(5.2) in matrix form, the following eigenvalue equation may be obtained

∣∣∣∣∣
Nn
11(ω) Nn

12(ω)
Nn
21(ω) Nn

22(ω)

∣∣∣∣∣ = 0 (5.3)

The solution to equation (5.3) gives ωnr which is the r-th estimated eigenvalue for the n-th
repeat. The number of repeats can be obtained by equation (5.4) as

|ωnr − ωn−1r | < δ (5.4)

In the present study, δ = 0.0001 and this shows the accuracy of calculations. With respect
to the differential transformation method and the algorithm above, a MATLAB code has been
developed in order to determine vibration characteristics of the nonlocal Timoshenko nanobeam.

6. Results and discussion

In the present study, the impact of the small scale coefficient as well as the effect of slenderness
on the first, second and third frequencies of the nonlocal Timoshenko nanobeam are presented.
Also, three types of boundary conditions are compared. In order to validate the computed
results, a comparison between the present paper and the results obtained by Wang et al. (2007)
is performed. The mechanical properties of the nonlocal Timoshenko nanobeam are given in
Table 3.

Table 3. Mechanical properties of the nonlocal Timoshenko nanobeam (Wang et al., 2007)

Property Unit

E T·Pa 5.5
P g·cm−3 2.3
ν – 0.19

Also, the Timoshenko shear correction factor ks is taken 0.563. For calculating the exact
difference between the results of the present paper and the available results in literature, relation
(6.1) has been applied

%difference = 100 · |reference− present|
present

(6.1)
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As shown by the comparisons given in Tables 4 and 5, a close correlation between these results
validates the proposed method of solution.

Table 4. First three nondimensional frequencies
√
λ of the nonlocal Timoshenko beam for both

clamped ends and L/d = 10

Mode 1 Mode 2 Mode 3
α pre- Wang et al. diff. pre- Wang et al. diff. pre- Wang et al. diff.

sent (2007) [%] sent (2007) [%] sent (2007) [%]

0 4.53 4.45 1.766 7.19 6.95 3.33 9.6 9.2 4.1
0.1 4.4233 4.3471 1.72 6.67 6.4952 2.62 8.4 8.2 2.38
0.3 3.83 3.7895 1.057 5 4.9428 1.14 5.95 5.846 1.74
0.5 3.2657 3.242 0.725 4 3.994 0.15 4.75 4.6769 1.53
0.7 2.85 2.8383 0.41 3.45 3.4192 0.89 4.05 3.9961 1.33

Table 5. First nondimensional natural frequency
√
λ of the nonlocal Timoshenko beam for two

kinds of boundary conditions and L/d = 10

Clamped-simple Simple-free
α pre- Wang et al. diff. pre- Wang et al. diff.

sent (2007) [%] sent (2007) [%]

0 3.82 3.7845 0.929 3.08 3.0929 0.418
0.1 3.73 3.6939 0.967 3.059 3.0243 1.13
0.3 3.23 3.2115 0.5727 2.91 2.6538 8.8
0.7 2.415 2.4059 0.37 2.4 2.0106 16

In addition, the convergence of the differential transformation method is perused. In Fig. 1,
the convergence of the third frequency of the nonlocal Timoshenko beam with both clamped
ends is presented. It illustrates that the third frequency converges at the 46th repeat, while the
first and the second frequencies converged before, in this example at the 29th and 37th repeats.

Fig. 1. Convergence of the third frequency, L/d = 10, α = 0

The variables in governing equations (3.1) are α, ε and Ω. α relates to the small scale
effect, ε is in terms of the slenderness (L/d) and Ω relates to the mechanical properties and
slenderness. So, it is possible to investigate the effects of slenderness and small scale on various
frequencies and mode shapes of the nonlocal Timoshenko beam. Furthermore, determination
of the magnitude of e0 is significant due to its prominent effect on the small scale coefficient.
Some researchers worked on estimating the magnitude of e0a. For instance, Zhang et al. (2005)
estimated the magnitude of the parameter for carbon nanotubes to be approximately 0.82. In
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this study, we adopt 0 ¬ α < 0.8 in our investigations as reported by Lu et al. (2006). As
Figs. 2a,b,c show when the coefficient α equals zero, the frequency of the nonlocal Timoshenko
beam equals its local counterpart. As the coefficient increases, the frequency ratio decreases,
which means that the nonlocal beam frequency becomes smaller than the local counterparts.
This reduction is especially noticeable in higher modes and cannot be neglected. In sum, the
small scale effect makes the beam more flexible since in nonlocal theory elastic springs link the
atoms together (Liew et al., 2008).

Fig. 2. Effect of small scale on different frequency modes, L/d = 10: (a) clamped ends, (b) simply
supported beam, (c) clamped-simply beam

Figure 3 indicates that the small scale have significant effect on short beams and, as the
beam gets longer, its impact becomes gradually negligible. So, the small scale will diminish for a
very long and thin (slender) beam. Also, Fig. 4 illustrates that the nonlocal Timoshenko beam
frequency approaches the local Timoshenko beam frequency as the slenderness increases.

Fig. 3. Small scale effect on the frequency ratio with different values of L/d (both ends clamped)
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Table 6. First three frequencies
√
λ of the nonlocal Timoshenko beam with two kinds of boun-

dary conditions

e0a Mode L/d = 10 L/d = 20 L/d = 30

Simply supported-simply supported beam
0

1

3.08057 3.12577 3.13451
0.1 3.08056 3.12577 3.13451
0.3 3.08056 3.12577 3.1345
0.5 3.08052 3.12576 3.1345
0.7 3.08047 3.12574 3.13449
0.9 3.08040 3.12572 3.13448
0

2

5.94588 6.18907 6.24037
0.1 5.94584 6.18906 6.24036
0.3 5.94558 6.18898 6.24033
0.5 5.94466 6.18882 6.24025
0.7 5.94425 6.18858 6.24015
0.9 5.94318 6.18826 6.24000
0

3

8.53236 9.15198 9.29787
0.1 8.53225 9.15194 9.29785
0.3 8.53139 9.15165 9.29771
0.5 8.52995 9.15107 9.29743
0.7 8.52936 9.15020 9.29702
0.9 8.52366 9.14904 9.29647

Clamped-simply supported beam
0 3.829744 3.901179 3.915187
0.1 3.829726 3.901175 3.915186
0.3 3.829653 3.901155 3.915176
0.5 1 3.829491 3.901111 3.915155
0.7 3.829248 3.901045 3.915136
0.9 3.828925 3.900957 3.915086
1 3.828732 3.900904 3.915063
0 6.644277 6.948166 7.01359
0.1 6.644219 6.948148 7.013581
0.3 6.642754 6.948008 7.013516
0.5 2 6.642824 6.947726 7.013386
0.7 6.641431 6.947305 7.013191
0.9 6.639576 6.946740 7.01293
1 6.638475 9.946408 7.012778
0 9.177342 9.888691 10.05988
0.1 9.177189 9.888635 10.05986
0.3 9.175962 9.888215 10.05966
0.5 3 9.173494 9.887381 10.05925
0.7 9.169836 9.886127 10.05866
0.9 9.164950 9.883445 10.05853
1 9.162052 9.883461 10.05806
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Fig. 4. Effect of slenderness on the nonlocal beam frequency (α = 0.7, both ends clamped)

7. Conclusion

A semi-analytical method called the differential transformation method is generalized to ana-
lyze vibration characteristics of a nanobeam. The formulation is based on the assumptions of
Timoshenko beam theory and the nonlocal differential constitutive relations of Eringen. The
transverse shear force and rotary inertia that become significant at short beams and higher fre-
quencies are taken into account in the equations. Also, the effect of the small scale coefficient as
well as the slenderness and boundary conditions in various frequency ratios are investigated. It
is demonstrated that the DTM has high precision and computational efficiency in the vibration
analysis of nanobeams.
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