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Assuming that the thermo-elastic creep response of the material is governed by Norton’s law
and material properties, except Poisson’s ratio, are considered as a function of the radius
of the spherical vessel, an analytical solution is presented for calculation of stresses and
displacements of axisymmetric thick-walled spherical pressure vessels made of functionally
graded materials. This analytical solution could be used to study the time and temperature
dependence of stresses in spherical vessels made of functionally graded materials. Creep
stresses and displacements are plotted against dimensionless radius and time for different
values of the powers of the material properties.

Keywords: spherical pressure vessels, creep, time-dependent, thermo-elastic, functionally gra-
ded material

1. Introduction

Composites are commonly employed in various structural and engineering applications. Recently,
a new class of composite materials known as functionally graded materials (FGMs) has drawn
considerable attention. From viewpoints of solid mechanics, FGMs are non-homogeneous elastic
mediums (Ghannad and Nejad, 2013). FGMs are those in which two or more different material
ingredients change continuously and gradually along a certain direction (Noda et al., 2012).
The mechanical and thermal responses of materials with spatial gradients in composition are
of considerable interests in numerous industrial applications such as tribology, biomechanics,
nanotechnology and high temperature technologies. These materials are usually mixtures of
metal and ceramic which exhibit excellent thermal resistance with low levels of thermal stresses
(Alashti et al., 2013).
Extensive studies have been carried out, both theoretically and numerically, on thermo-elastic

creep stress distribution in functionally gradient materials. Time-dependent creep analysis of
FGM spheres and cylinders has been an active area of research over the past decade.
Assuming the infinitesimal strain theory, Finnie and Heller (1959) studied creep problems

in engineering materials and a steady-state creep solution for a spherical vessel under internal
pressure. Johnson and Khan (1963) obtained a theoretical analysis of the distribution of stress
and strain in metallic thick-walled spherical pressure vessels subject to internal and external
pressures at elevated temperatures. Penny (1967) investigated creep of spherical shells containing
discontinuities.
In this study, the solution procedure has been applied to pressurized spherical shells conta-

ining discontinuities with a view to discovering, in broad terms, how stresses change with time
and how strains accumulate during the creep process. Bhatnagar and Arya (1975) obtained cre-
ep analysis of a pressurized thick-walled spherical vessel made of a homogeneous and isotropic
material by making use of the finite strain theory, and with considering large strains. Miyazaki
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et al. (1977) presented a parametric analysis of the creep buckling of a shallow spherical shell
subjected to uniform external pressure using the finite element incremental method. Xiroucha-
kis and Jones (1979) investigated creep buckling behavior of a geometrically imperfect complete
spherical shell subjected to a uniform external pressure using Sanders’ equilibrium and kinema-
tic equations appropriately modified to include the influence of initial stress-free imperfections
in the radius.
In this study, the Norton-Bailey constitutive equations are used to describe the secondary

creep behavior, and elastic effects are retained. Arya et al. (1980) studied effect of material ani-
sotropy on creep of pressurized thick-walled spherical vessel considering the large strain theory.
Kao (1981) obtained creep deformations and creep buckling times for axisymmetric shallow sphe-
rical shells with and without initial imperfections. For nonlinear creeps, both strain-hardening
and time-hardening rules are employed in this study. Creep of a sphere subjected to inner and
outer pressures, and also thermal stress, was discussed by Sakaki et al. (1990) by using internal
stress arising from a spherically symmetric, finite plastic strain. Assuming that the elastic beha-
vior of the material is undergoing both creep and dimensional changes, Miller (1995) presented
a solution for stresses and displacements in a thick spherical shell subjected to internal and
external pressure loads. Based on basic equations of steady-state creep of spherically symme-
tric problems, You et al. (2008) proposed a simple and efficient iterative method to determine
creep deformations and stresses in thick-walled spherical vessels with varying creep properties
subjected to internal pressure. Using a long-term material creep constitutive model defined by
the Θ projection concept, Loghman and Shokouhi (2009) evaluated the damage histories of
a thick-walled sphere subjected to an internal pressure and a thermal gradient. They studied
the creep stress and damage histories of thick-walled spheres using the material constant creep
and creep rupture properties defined by the theta projection concept. Aleayoub and Loghman
(2010) studied time-dependent creep stress redistribution analysis of thick-walled FGM spheres
subjected to internal pressure and a uniform temperature field.
In this study, using equations of equilibrium, compatibility and stress-strain relations, a dif-

ferential equation, containing creep strains, for radial stress is obtained. Ignoring creep strains
in this differential equation, a closed-form solution for initial thermo-elastic stresses at zero time
is presented. Pankaj (2011) investigated creep stresses for a thick isotropic spherical shell by
finitesimal deformation under steady-state temperature and internal pressure by using Seth’s
transition theory. Marcadon (2011) presented mechanical modelling of the creep behavior of
Hollow-Sphere Structures. Based on basic equations of steady-state creep of spherically symme-
tric problems, Nejad et al. (2011) presented a new exact closed form solution for creep stresses in
isotropic and homogeneous thick spherical pressure vessels. Loghman et al. (2011) investigated
time-dependent creep stress redistribution analysis of thick-walled spheres made of a functionally
graded material (FGM) subjected to internal pressure. In another study, Loghman et al. (2012)
investigated magneto-thermo-elastic creep behavior of thick-walled spheres made of functionally
graded materials (FGM) placed in uniform magnetic and distributed temperature fields and
subjected to internal pressure using the method of successive elastic solution. They developed
a semi-analytical method in conjunction with Mendelson’s method of successive elastic solution
to obtain history of stresses and strains. Assuming that the creep response of the material is
governed by Norton’s law, Nejad et al. (2013) presented a new exact solution for steady state
creep stresses of hollow thick-walled spherical shells subjected to internal and external pressure,
made of functionally graded materials (FGMs). By using the method of successive elastic solu-
tion, Fesharaki et al. (2014) presented a semi-analytical solution for the time-dependent creep
behavior of hollow spheres under thermomechanical loads.
In this study, assuming that the thermo-elastic creep response of the material is governed by

Norton’s law, an analytical solution is presented for the calculation of stresses and displacements
of FGM thick-walled spherical pressure vessels. For the creep material behavior, the solution is
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asymptotic. For the stress analysis after creeping for a long time, an iterative procedure is
necessary.

2. Geometry and loading condition, material properties and creep constitutive
model

2.1. Geometry and loading condition

A thick-walled spherical vessel made of a functionally graded material with inner radius a,
and outer radius b, subjected to internal pressure Pi and external pressure Po and a distributed
temperature field due to steady-state heat conduction from the inner surface to the outer surface
of the vessel is considered.

2.2. Material properties

The material properties are assumed to be radially dependent

E(r) = Ei
( r
a

)n1
α(r) = αi

( r
a

)n2
λ(r) = λi

( r
a

)n3
(2.1)

Here Ei, αi and λi are the modulus of elasticity, linear expansion and thermal conductivity on
the linear surface, r = a and n1, n2 and n3 are inhomogeneity constants determined empirically.

Fig. 1. Geometry and boundary conditions of the sphere

2.3. Creep constitutive model

For materials with creep behavior, Norton’s law (1956) is used to describe the relations
between the rates of stress σ̇ij and strain ε̇ij in the multi-axial form

ε̇ij =
1 + ν
E

σ̇ij −
ν

E
σ̇kkδij +

3
2
Dσ
(N−1)
eff Sij (2.2)

and

Sij = σij −
1
3
σkkδij

σeff =

√
3
2
SijSij =

1√
2

√
(σrr − σθθ)2 + (σrr − σφφ)2 + (σφφ − σθθ)2 = σrr − σθθ

(2.3)

where D and N are material constants for creep. σeff is the effective stress, Sij is the deviator
stress tensor and σrr and σθθ = σφφ are respectively the radial and circumferential stresses.
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3. Heat conduction formulation

In the steady-state case, the heat conduction equation for the one-dimensional problem in sphe-
rical coordinates simplifies to

1
r2

∂

∂r

(
r2λ

∂T

∂r

)
= 0 (3.1)

We can determine the temperature distribution in the spherical vessel by solving Eq. (3.1) and
applying appropriate boundary conditions. Equation (3.1) may be integrated twice to obtain
the general solution

T (r) = A1r−n3−1 +A2 (3.2)

It is assumed that the inner surface is exposed to uniform heat flux, whereas the outer surface
is exposed to airstream. To obtain the constants of integration A1 and A2, we introduce the
following boundary conditions

−λT ′ =
{
qa for r = a

h∞(T − T∞) for r = b
(3.3)

where T ′ = dT/dr.
Applying these conditions to the general solution, we obtain

A1 =
an3+2qa
(n3 + 1)λi

A2 = T∞ +
qa
h∞

(a
b

)2
− an3+2qa
λi(n3 + 1)bn3+1

(3.4)

Substituting the constants of integration A1 and A2 into the general solution, we obtain the
temperature distribution

T (r) = T∞ +
qa
h∞

(a
b

)2
+

an3+2qa
(n3 + 1)λi

(r−n3−1 − b−n3−1) (3.5)

4. Formulation of the thermo-elastic creep analysis

4.1. Solution for linear elastic behavior of FGM thick spherical pressure vessels

For the stress analysis inan FGM thick spherical pressure vessel, having material creep be-
havior, solutions of the stresses at a time equal to zero (i.e. the initial stress state) are needed,
which correspond to the solution of materials with linear elastic behavior. In this Section, equ-
ations to calculate such linear stresses in FGM thick spherical pressure vessel analytically will
be given. The elastic stress-strain relations in each material read

σrr =
E

(1 + ν)(1− 2ν) [(1− ν)εrr + 2νεθθ − (1 + ν)αT ]

σθθ = σφφ =
E

(1 + ν)(1− 2ν) [εθθ + νεrr − (1 + ν)αT ]
(4.1)

where σrr and σθθ = σφφ are radial and circumferential stresses, respectively. Here E, ν and α are
Young’s modulus, Poisson’s ratio and thermal expansion coefficient, respectively, and T = T (r)
is the temperature distribution in the sphere. The strain displacement relation is written as

εrr =
dur
dr

εθθ =
ur
r

(4.2)



Time-dependent thermo-elastic creep analysis of thick-walled spherical pressure... 1057

where εrr and εθθ = εφφ are radial and circumferential strains and ur is the displacement in the
r-direction. The equation of the stress equilibrium inside the FGM spherical pressure vessel is

dσrr
dr
+
2
r
(σrr − σθθ) = 0 (4.3)

Using Eqs. (4.1)-(4.3), the essential differential equation for the displacement ur can be obtained
as

d2ur
dr2
+
n1 + 2
r

dur
dr
+
ν ′′n1 − 2

r2
ur = ν ′(Arn2−1 +Brn2−n3−2)

ν ′ =
1 + ν
1− ν ν ′′ =

2ν
1− ν

(4.4)

where

A = (n1 + n2)
[T∞αi
an2
+

qaαi
h∞an2

(a
b

)2]
− an3−n2+2qaαi(n1 + 1)b−n3−1

λi(n3 + 1)

B =
(n1 + 1)an3−n2+2qaαi

λi(n3 + 1)
− an3−n2+2qaαi

λi

(4.5)

It is obvious that the homogeneous solution for Eq. (4.4) can be obtained by assuming

ur = Crx (4.6)

Substituting Eq. (4.6) into Eq. (4.4) one can obtain the following characteristic equation

x2 + (n1 + 1)x+ (ν ′′n1 − 2) = 0 (4.7)

The roots of Eq. (4.7) are

x1 =
−(n1 + 1) +

√
(n1 + 1)2 − 4(ν ′′n1 − 2)
2

x2 =
−(n1 + 1)−

√
(n1 + 1)2 − 4(ν ′′n1 − 2)
2

(4.8)

For selected common values of n1 = ±0.4,±0.8 and ν = 0.292 in this study, the discriminant of
Eqs. (4.8) is always greater than zero; therefore, x1 and x2 are real and distinct. The homogeneous
solution to Eq. (4.4) is then as follows

uh = C1rx1 + C2rx2 (4.9)

The particular solution to differential equation (4.4) can be obtained as

up = u1rx1 + u2rx2 (4.10)

where

u1 =
∫ −rx2P (r)
W (rx1, rx2)

dr u2 =
∫

rx1P (r)
W (rx1, rx2)

dr (4.11)

in which

P (r) = ν ′(Arn2−1 +Brn2−n3−2) (4.12)

is the expression on the right-hand side of Eq. (4.4), and W is defined as

W (rx1, rx2) =

∣∣∣∣∣
rx1 rx2

x1r
x1−1 x2r

x2−1

∣∣∣∣∣ = (x2 − x1)r
x1+x2−1 (4.13)
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Therefore, u1 and u2 can be obtained by the following integration

u1 = ν ′
[∫ −rx2Arn2−1
(x2 − x1)rx1+x2−1

dr +
∫ −rx2Brn2−n3−2
(x2 − x1)rx1+x2−1

dr
]

= −ν ′
[ Arn2−x1+1

(x2 − x1)(n2 − x1 + 1)
+

Brn2−n3−x1

(x2 − x1)(n2 − n3 − x1)
]

u2 = ν ′
[∫ rx1Arn2−1

(x2 − x1)rx1+x2−1
dr +

∫
rx1Brn2−n3−2

(x2 − x1)rx1+x2−1
dr
]

= ν ′
[ Arn2−x2+1

(x2 − x1)(n2 − x2 + 1)
+

Brn2−n3−x2

(x2 − x1)(n2 − n3 − x2)
]

(4.14)

Substituting Eqs. (4.14) into Eq. (4.10), one can obtain the particular solution as

up = ν ′
[ Arn2+1

(n2 − x2 + 1)(n2 − x1 + 1)
+

Brn2−n3

(n2 − n3 − x2)(n2 − n3 − x1)
]

(4.15)

The complete solution to Eq. (4.4) can be written as

ur(r) = C1rx1 + C2rx2 + ν ′
[ Arn2+1

(n2 − x2 + 1)(n2 − x1 + 1)
+

Brn2−n3

(n2 − n3 − x2)(n2 − n3 − x1)
]

(4.16)

The corresponding stresses are

σrr =
Ei
(
r
a

)n1

(1 + ν)(1− 2ν)
{
C1r

x1−1[2ν + (1− ν)x1] + C2rx2−1[2ν + (1− ν)x2]

+
Aν ′[(n2 + 1)(1 − ν) + 2ν]rn2
(n2 − x2 + 1)(n2 − x1 + 1)

+
Bν ′[(n2 − n3)(1− ν) + 2ν]rn2−n3−1
(n2 − n3 − x2)(n2 − n3 − x1)

− (1 + ν)
[(T∞αi

an2
+

qaαi
h∞an2

(a
b

)2
− an3−n2+2qaαib−n3−1

λi(n3 + 1)

)
rn2

+
an3−n2+2qaαi
λi(n3 + 1)

rn2−n3−1
]}

σθθ =
Ei
(
r
a

)n1

(1 + ν)(1− 2ν)
{
C1r

x1−1(1 + x1ν) + C2rx2−1(1 + νx2)

+
Aν ′[(n2 + 1)ν + 1]rn2

(n2 − x2 + 1)(n2 − x1 + 1)
+
Bν ′[(n2 − n3)ν + 1]rn2−n3−1
(n2 − n3 − x2)(n2 − n3 − x1)

− (1 + ν)
[(T∞αi

an2
+

qaαi
h∞an2

(a
b

)2
− an3−n2+2qaαib−n3−1

λi(n3 + 1)

)
rn2

+
an3−n2+2qaαi
λi(n3 + 1)

rn2−n3−1
]}

(4.17)

To determine the unknown constants C1 and C2 in each material, boundary conditions have to
be used, which are

σrr =

{
−Pi for r = a

−Po for r = b
(4.18)

The unknown constants C1 and C2 are given in Appendix.
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4.2. Solution for creep behavior of FGM thick spherical pressure vessel

The relations between the rates of strain and displacement are

ε̇rr =
du̇r
dr

ε̇θθ =
u̇r
r

(4.19)

And the equilibrium equation of the stress rate is

dσ̇rr
dr
+
2
r
(σ̇rr − σ̇θθ) = 0 (4.20)

The relations between the rates of stress and strain are

σ̇rr =
E

(1 + ν)(1− 2ν) [(1− ν)ε̇rr + 2νε̇θθ]−
3
2

E

(1− ν)(1− 2ν)Dσ
(N−1)
eff S′rr

σ̇θθ =
E

(1 + ν)(1− 2ν) [ε̇θθ + νε̇rr]−
3
2

E

(1− ν)(1− 2ν)Dσ
(N−1)
eff S′θθ

(4.21)

where

S′rr = (1− ν)Srr + 2νSθθ S′θθ = Sθθ + νSrr (4.22)

Using Eqs. (4.19)-(4.22), the essential differential equation for the displacement rate u̇r in FGM
spherical vessel can be obtained as

d2u̇r
dr2
+
du̇r
dr

(2
r
+
d lnE
dr

)
+
u̇r
r

( 2ν
1− ν

d lnE
dr
− 2
r

)
=
d lnE
dr

3
2(1− ν)Dσ

(N−1)
eff S′rr

+
1
1− ν

d

dr

(3
2
Dσ
(N−1)
eff S′rr

)
+

3
r(1− ν)Dσ

(N−1)
eff (S′rr − S′θθ)

(4.23)

In general, the quantities σeff , S′rr and S
′
θθ are very complicated functions of the coordinate r,

even in an implicit function form. Therefore, it is almost impossible to find an exact analytical
solution to Eq. (4.23). We can alternatively find an asymptotical solution to Eq. (4.23). At first,
we assume that σeff , S′rr and S

′
θθ are constant, i.e. they are independent of the coordinate r

d2u̇r
dr2
+
1 + n1
r

du̇r
dr
− νn1 − 1

r2
u̇r =

3
2
D

r
σ
(N−1)
eff [S′rr(1 + n1 − v′) + S′θθ(n1ν ′ − 1 + ν ′)] (4.24)

The homogeneous solution to Eq. (4.24) is then

uh = D1rx1 +D2rx2 (4.25)

The particular solution to differential equation (4.24) can be obtained as

up = u′1r
x1 + u′2r

x2 (4.26)

where

u′1 =
∫ −rx2Hr−1
(x2 − x1)rx1+x2−1

dr u′2 =
∫

rx1Hr−1

(x2 − x1)rx1+x2−1
dr

H =
3
2

D

(1− ν)σ
(N−1)
eff [S′rr(2 + n1)− 2S′θθ]

(4.27)

The complete solution to Eq. (4.24) can be written as

u̇r(r) = D1rx1 +D2rx2 +
3
2

Drσ
(N−1)
eff [(n1 + 2)S′rr − 2S′θθ]
(1− ν)[n1(ν ′′ − 1)− 2]

(4.28)
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where the unknown constants D1 and D2 can be determined from the boundary conditions. The
corresponding stress rates are

σ̇rr =
Ei
(
r
a

)n1

(1− 2ν)(1 + ν)
{
D1r

x1−1[2ν + (1− ν)x1] +D2rx2−1[2ν + (1− ν)x2]

+
3
2

ν ′

n1(ν ′′ − 1)− 2
Dσ
(N−1)
eff [(n1 + 2)S′rr − 2S′θθ]−

3
2
Dσ
(N−1)
eff S′rr

}

σ̇θθ =
Ei
(
r
a

)n1

(1− 2ν)(1 + ν)
{
D1r

x1−1(1 + νx1) +D2rx2−1(1 + νx2)

+
3
2

1 + ν
n1(ν ′′ − 1)− 2

Dσ
(N−1)
eff [(n1 + 2)S′rr − 2S′θθ]−

3
2
Dσ
(N−1)
eff S′θθ

}

(4.29)

To determine the unknown constants D1 and D2 in each material, boundary conditions have to
be used. Since the inside and outside pressures do not change with time, the boundary conditions
for stress rates on the inner and outer surfaces may be written as

σ̇rr =

{
0 for r = a

0 for r = b
(4.30)

The unknown constants D1 and D2 are given in Appendix. When the stress rate is known, the
calculation of stresses at any time ti should be performed iteratively

σ
(i)
ij (r, ti) = σ

(i−1)
ij (r, ti−1) + σ̇

(i)
ij (r, ti)dt

(i) ti =
i∑

k=0

dt(k) (4.31)

To obtain a generally useful solution, a higher-order approximation of σeff , S′rr and S
′
θθ should

be made

σeff (r) =σeff (r) +

d
dr [σeff (r)]

∣∣∣
r=r

1!
(r − r) +

d2

dr2
[σeff (r)]

∣∣∣
r=r

2!
(r − r)2 +

d3

dr3
[σeff (r)]

∣∣∣
r=r

3!
(r − r)3

S′rr(r) = S
′
rr(r) +

d
dr [S

′
rr(r)]

∣∣∣
r=r

1!
(r − r) +

d2

dr2 [S
′
rr(r)]

∣∣∣
r=r

2!
(r − r)2 +

d3

dr3 [S
′
rr(r)]

∣∣∣
r=r

3!
(r − r)3
(4.32)

S′θθ(r) = S
′
θθ(r) +

d
dr [S

′
θθ(r)]

∣∣∣
r=r

1!
(r − r) +

d2

dr2 [S
′
θθ(r)]

∣∣∣
r=r

2!
(r − r)2 +

d3

dr3 [S
′
θθ(r)]

∣∣∣
r=r

3!
(r − r)3

where r is the center point of the wall thickness in the following analysis.

5. Numerical results and discussion

In the previous Sections, the analytical solution of creep stresses for FGM thick-walled spheri-
cal vessels subjected to uniform pressures on the inner and outer surfaces has been obtained.
In this Section, some profiles are plotted for the radial displacement, radial stress and circum-
ferential stress as a function of the radial direction and time. An FGM thick-walled spherical
vessel with creep behavior under internal and external pressure is considered. Radii of the sphere
are a = 20mm, b = 40mm. Mechanical properties of the sphere such as modulus of elastici-
ty, linear expansion and thermal conductivity are assumed to be varying through the radius.
The inhomogeneity constants n1 = n2 = n3 = n, and n ranges from −0.8 to +0.8. The fol-
lowing data for loading and material properties are used in this investigation: Ei = 207GPa,
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ν = 0.292, αi = 10.8 · 10−6K−1, Pi = 80MPa, Po = 0MPa, qa = 500W/m2, λi = 43W/(m◦C),
h∞ = 6.5W/(m2 ◦C), T∞ = 25◦C, D = 1.4 · 10−8, N = 2.25.
The distributions of creep stress components σrr and σθθ after 10h of creeping for values

of n = ±0.4, ±0.8 are plotted in Fig. 2. It must be noted from Fig. 2a that the radial stress
increases as n decreases, and that the radial stress for different values of n is compressive. The
absolute maximums of radial stress occur at the outer edge. It means the maximum shear stress,
which is τmax = (σθθ − σrr)/2 for each value of n will be very high on the outer surface of the
vessel.

Fig. 2. Normalized radial and circumferential stresses versus dimensionless radius after 10h of creeping

It is also clear from Fig. 2a that the maximum changes in the radial stresses with time
take place for the material n = 0.8 and the minimum changes occur for n = ±0.4, −0.8.
The circumferential stress shown in Fig. 2b remains compressive throughout and is observed
to decrease with the increasing radius for n = −0.4, −0.8, and reaches the minimum value
somewhere towards the inner radius followed by an increase with a further increase in the
radius. It also can be seen from Fig. 2b that the circumferential stress remains compressive
throughout the cylinder for n = +0.8 with the maximum value at the inner radius and zero at
the outer radius under the imposed boundary conditions, and that the minimum changes occur
for n = 0.4.

Time dependent stress redistributions at the point r = 30mm are shown in Fig. 3. It can
be seen in Fig. 3a that the radial stress increases as time increases. It must be noted from
Fig. 3b that, for n = +0.4, +0.8 the circumferential stress decreases as time increases, whereas
for n = −0.4, −0.8 the circumferential stress increases as time increases.

Fig. 3. Time-dependent radial and circumferential stresses at the point r = 30mm

The radial displacement along the radius is plotted in Fig. 4a. There is an increase in the
value of the radial displacement as n increases and the maximum value of radial displacement
occurs at the outer edge. The time-dependent radial displacement at the point r = 30mm
is shown in Fig. 4b. Figure 4b shows that the radial displacement redistribution at the point
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r = 30mm increases as time increases for n = −0.4, −0.8, while for n = +0.4, +0.8 the radial
displacement decreases as time increases. Figure 5 shows the effect of adding external pressure to
the radial and circumferential stresses. It can be seen in Fig. 5 that the radial stress decreases as
the external pressure increases while the circumferential stress increases as the external pressure
increases.

Fig. 4. (a) Normalized radial displacement versus dimensionless radius after 10h of creeping,
(b) time-dependent radial displacement at the point r = 30mm

Fig. 5. The effect of adding external pressure to the radial and circumferential stresses

Temperature distribution of four different values of n is shown in Fig. 6. It can be seen in
Fig. 6 that the maximum values of temperature occur at the inner radius for n = −0.8 and
that the minimum values of temperature occur at the outer radius for all values of n under the
imposed boundary conditions.

Fig. 6. Temperature distribution of FGM thick-walled spherical vessel for values of n = ±0.4, ±0.8

6. Conclusions

In this paper, assuming that the thermo-creep response of the material is governed by Norton’s
law, an analytical solution is presented for the calculation of stresses and displacements of FGM
thick-walled spherical pressure vessels. For the stress analysis inasphere, having material creep
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behavior, the solutions of the stresses at a time equal to zero (i.e. the initial stress state) are
needed, which corresponds to the solution of materials with linear elastic behavior. It is assumed
that the material properties change as graded in the radial direction to a power law function.
To show the effect of inhomogeneity on the stress distributions, different values are considered
for inhomogeneity constants. The pressure, inner radius and outer radius are considered con-
stant. The heat conduction equation for the one-dimensional problem in spherical coordinates
is used to obtain temperature distribution in the sphere. For the creep material behavior, the
solution is asymptotic. For the stress analysis after creeping for a long time, the iterative proce-
dure is necessary. It could be seen that the inhomogeneity constants have significant influence
on the distributions of the creep stresses and radial displacement. By increasing the grading
parameter n, the normalized radial stress increases due to internal pressure and temperature
distribution while the normalized circumferential stress decreases (Fig. 2). The absolute maxi-
mums of radial and circumferential stresses occur at the outer edge. It must be noted that the
radial and circumferential stresses at the point r = 30mm for different values of n are com-
pressive. As can be seen, the absolute maximum of radial stress at the point r = 30mm occurs
at a time equal to 10 hours for different values of n, whereas for n = +0.4, +0.8 the absolute
maximum of circumferential stress occurs at a time equal to zero, and for n = −0.4, −0.8 the
absolute maximum of circumferential stress occurs at a time equal to 10 hours.

Appendix

The unknown constants in Eqs. (4.17) are

C1 =
−Pi(1 + ν)(1− 2ν)

Ei[2ν + (1− ν)x1]ax1−1
− C2[2ν + (1− ν)x2]ax2−1
[2ν + (1− ν)x1]ax1−1

− Aν ′[(n2 + 1)(1 − ν) + 2ν]an2
(n2 − x2 + 1)(n2 − x1 + 1)[2ν + (1− ν)x1]ax1−1

− Bν ′[(n2 − n3)(1− ν) + 2ν]an2−n3−1
(n2 − n3 − x2)(n2 − n3 − x1)[2ν + (1− ν)x1]ax1−1

+
1 + ν

[2ν + (1− ν)x1]ax1−1
{[T∞αi

an2
+

qaαi
h∞an2

(a
b

)2
− an3−n2+2qaαib−n3−1

λi(n3 + 1)

]
an2

+
aqaαi

λi(n3 + 1)

}

(A.1)

C2 =

(
Pib

x1−1 − Poan1+x1−1

bn1

)
(1 + ν)(1− 2ν)

Ei[2ν + (1− ν)x2](bx2−1ax1−1 − bx1−1ax2−1)

− Aν ′[(n2 + 1)(1 − ν) + 2ν](n2 + ν ′ + 1)(bn2ax1−1 − bx1−1an2)
(n2 − x2 + 1)(n2 − x1 + 1)[2ν + (1− ν)x2](bx2−1ax1−1 − bx1−1ax2−1)

− Bν ′[(n2 − n3)(1− ν) + 2ν](bn2−n3−1ax1−1 − bx1−1an2−n3−1)
(n2 − n3 − x2)(n2 − n3 − x1)[2ν + (1− ν)x2](bx2−1ax1−1 − bx1−1ax2−1)

+
1 + ν

[2ν + (1− ν)x2](bx2−1ax1−1 − bx1−1ax2−1)
{[T∞αi

an2
+

qaαi
h∞an2

(a
b

)2

− an3−n2+2qaαib−n3−1

λi(n3 + 1)

]
(bn2ax1−1 − bx1−1an2)

+
qaαi

λi(n3 + 1)
(bn2−n3+1an3−n2+x1+1 − bx1−1a)

}

(A.2)
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The unknown constants in Eqs. (4.29) are

D1 =
3
2ν
′Dσ(N−1)eff (ax2−1 − bx2−1)[(n1 + 2)S′rr − 2S′θθ]

[2ν + (1− ν)x1][n1(ν ′′ − 1)− 2](ax1−1bx2−1 − bx1−1ax2−1)

+
3
2Dσ

(N−1)
eff S′rr(b

x2−1 − ax2−1)
[2ν + (1− ν)x1](ax1−1bx2−1 − bx1−1ax2−1)

(A.3)

D2 =
3
2ν
′Dσ(N−1)eff (ax1−1 − bx1−1)[(n1 + 2)S′rr − 2S′θθ]

[2ν + (1− ν)x2][n1(ν ′′ − 1)− 2](ax2−1bx1−1 − bx2−1ax1−1)

+
3
2Dσ

(N−1)
eff S′rr(b

x1−1 − ax1−1)
[2ν + (1− ν)x2](ax2−1bx1−1 − bx2−1ax1−1)

(A.4)
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