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In this paper, analysis of a half-car model with linear and nonlinear semi-active dampers
is performed. Using Matlab-Simulink software, a response of the system to a harmonic
excitation of variable frequency and to an impulse excitation is found. The effect of both the
distribution of spring-supported mass and the asymmetry of the support on the frequency
characteristics of velocities and displacements at the mounting points of the dampers are
analyzed. Additionally, characteristics of forces generated by the semi-active dampers and
the response of the system when crossing an obstacle are determined.
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Notations

a0 – excitation amplitude
cb – sum of damping parameters of suspension
c1f , c2f , c1r, c2r – damping parameters of front and rear semi-active damper
cwf , cwr – damping coefficients of front and rear wheel
Ib – moment of inertia of body
kbf , kbr, kb – stiffness of front and rear spring, sum of stiffness
kwf , kwr – stiffness parameters of front and rear wheel
lf , lr – distance of axles from center of body mass
l – distance between both axles
mb,mwf ,mwr – mass of body (spring-supported mass), front and rear wheel

(non-spring-supported mass)
pmin, pmax, pmean – minimum, maximum and the mean value of the parameter p
t0 – delay time of kinematic excitation acting on rear wheel
uf , ur – control force of front and rear semi-active dampers
V0 – driving speed
vbf , vbr – dimensionless velocity of front and rear body points
wf , wr – kinematic excitation applied to front and rear wheel
xbf , xbr, xwf , xwr – dimensionless displacements of body points, front and rear wheel
yb – displacement of center of body mass
ybf , ybr, ywf , ywr – displacements of body points and front and rear wheel
α,α0 – dimensionless and dimensional scaling factors of Bouc-Wen force
β, γ,A, n – control shape parameters of hysteresis loops
δ – dimensionless amplitude of parameters c1f , c2f , c1r, c2r α0f , α0r
κc – ratio of stiffness of front spring to sum of stiffnesses
η – dimensionless excitation frequency
λ – mass distribution index of body
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φb – angle of rotation of body
ω, ω0 – excitation and reference frequency

1. Introduction

The primary cause of vibrations affecting the driver of a car are kinematic disturbances resulting
from road surface irregularities. Elimination of these vibrations is essential in order to improve
both the comfort and the safety of the passenger. When the vehicle is driving across a road with
large irregularities (obstacles), its wheels might get separated from the surface of the road, which
in turn decreases the efficiency of force transmission of the drive, braking and steering systems
of the car. An improved driving dynamics and better road traction on curves and bumps can be
achieved by using the so-called “hard suspension”. However, the cost is the reduction of comfort
of the passenger. The criteria for assessing the quality of shock absorbers should therefore include
both the minimization of car body vibration and appropriate wheel-road adhesion (Łuczko and
Ferdek, 2012).

In order to perform dynamical analysis, either a quarter-car (Gopala Rao and Narayanan,
2009; Huang and Chen, 2006) or a half-car (Ihsan et al., 2009; Sapiński and Rosół, 2008) model
can be used. The quarter-car model that consists of a non spring-supported mass (a wheel with
partial of suspension) and a spring-supported mass (1/4 car body) is a two-degrees of freedom
model and is usually used for testing of the performance of control algorithms. The half-car four-
-degrees of freedom model consist of two non-spring supported masses and a spring-supported
one (1/2 car body). It additionally includes rotation angle of the body and allows analysis of
the response to the excitation applied to both wheels of the vehicle.

Dampers used in the suspension system can be either passive, semi-active or active. Dyna-
mical properties of the dampers are usually defined by models with hysteresis characteristics,
such as Bingham (Prabakar et al., 2009), Bouc-Wen (Dominguez et al., 2008; Yao et al., 2002)
or Spencer model (Spencer et al., 1996).

Requirements set for the comfort and safety of driving can be fulfilled by using semi-active
suspension systems, introduced by Crosby and Karnopp (1973). In comparison to passive ones,
the semi-active systems allow the damping force to be adjusted depending on driving conditions.
Additionally, they require less power than similar active systems.

Several methods of control have been used, some of which can be found in the paper by Ah-
madian (2001). Liu et al. (2005) as well as Wu and Griffin (1997), when analyzing on-off control,
assume that the damping force should by high if the product of relative and absolute velocity is
more than zero. Fischer and Isermann (2004) analyzed the relation between parameters of the
car suspension system and the driving comfort as well as the safety indexes. They defined the
comfort index as the effective acceleration value while the safety index as the effective ratio of
the dynamic and static response. In the study by Sapiński and Martynowicz (2005), the results
were presented for the theoretical and experimental half-car model, in which the car suspension
was controlled by two separate magneto-rheological dampers (MR damper).

Some interesting options for control of a semi-active car suspension were presented by Ahma-
dian (2001). The most common model to be analyzed was the quarter-car one. In the steady-state
case, the response to the harmonic excitation was analyzed, while in the transient one (Ahma-
dian and Vahdati, 2006), the response to the unit step. To ensure a compromise between the
requirements for both comfort and safety, hybrid control with a MR damper is used (Goncalves
and Ahmadian, 2003) and a combination of sky-hook and ground-hook control. The damping
control algorithm was changed by a step function (on-off control) in order to simulate the be-
haviour of the damper between the constant reference point and a spring-supported (sky-hook
– comfort) or non spring-supported mass (ground-hook – safety).
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In the paper by Łuczko and Ferdek (2012), the effectiveness of damping of vibration of a
quarter-car model by both semi-active and passive dampers was compared. Several different
algorithms were proposed for semi-active dampers. The effect of these algorithms on the factors
corresponding to driving safety and comfort were analyzed.
In this paper, analysis of a half-car model of a car by semi-active suspension is performed.

The influence of parameters of the model on the efficiency of spring-supported mass damping is
considered.

2. Half-car suspension model

Figure 1 shows the analyzed half-car model of an automobile. Vibration of the system around
the static equilibrium position can be written using the following differential equations

mwf ÿwf = −cwf (ẏwf − ẇf )− kwf (ywf − wf ) + kbf (ybf − ywf)− uf

mwrÿwr = −cwr(ẏwr − ẇr)− kwr(ywr − wr) + kbr(ybr − ywr)− ur

mbÿb = −kbf (ybf − ywf)− kbr(ybr − ywr) + uf + ur

Ibφ̈b = lfkbf (ybf − ywf)− lrkbr(ybr − ywr)− lfuf + lrur

(2.1)

where ywf and ywr, are displacements of the front and rear suspension systems (i.e. the non-
-spring-supported mass mwf and mwr), ybf and ybr are displacements of the points connecting
the car body (spring-supported mass mb of inertia Ib) with the suspension systems.

Fig. 1. Half-car model

Additionally, two parameters are introduced which are respectively: position yb of the mass
center and rotation angle φb of the car body. They can be found using the following equations
(on the assumption of small displacements)

yb =
lrybf + lfybr

l
φb =

ybr − ybf
l

(2.2)

The function wf (t) and wr(t) = wf (t− t0) define the applied kinematic excitation, which corre-
sponds to the profile of the road. The delay time t0 is related to driving velocity V0 and distance
l = lf + lr between both vehicle axles. The parameters: kwf , kwr and cwf , cwr define stiffness
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and damping parameters of the front and rear wheel, while kbf , kbr are stiffneses of the front and
rear spring respectively. The definition of forces uf and ur which are generated by semi-active
dampers and applied to the non-spring-supported and spring-supported masses, are defined in
Section 2 of this paper.

Equations (2.1) can be written in a matrix form. In order to do so, the third and the
fourth equation of the system must be transformed (2.1), including additional relations (2.2).
By choosing the displacements ywf , ywr, ybf and ybr for coordinates of the vector y, vibration of
the system can be, after introduction of massM, damping C and stiffness matrix K, presented
in form of the second-order matrix equation

Mÿ +Cẏ +Ky = B̃u+ F̃w(t) (2.3)

where y = [ywf , ywr, ybf , ybr]T , u = [uf , ur]
T and w = [wf , wr]

T. The stiffness matrix is as
shown below

K =




kwf + kbf 0 −kbf 0
0 kwr + kbr 0 −kbr
−kbf 0 kbf 0
0 −kbr 0 kbr


 (2.4)

The damping matrix, after inclusion of passive dampers present in the vibroisolation systems,
has the identical structure as the stiffness matrix. As damping properties of the wheels are
usually omitted (cwf = cwr = 0) and the effect of passive dampers is already included in the
forces uf and ur, the matrix C is empty. The mass matrix can be presented in the form:

M =

[
Mw 0

0 Mb

]
(2.5)

where

Mw =

[
mwf 0
0 mwr

]
Mb =




mbl
2
r + Ib
l2

mblf lr − Ib
l2

mblf lr − Ib
l2

mbl
2
f + Ib

l2


 (2.6)

From Eqs (2.5) and (2.6), it can be seen that when the condition mblf lr − Ib = 0 is fulfilled,
the matrix M becomes diagonal, and with the matrix K given in (2.4), decoupling of vertical
vibration of the rear and front part of the vehicle, is possible. If the so-called “mass distribution
index” λ = Ib/mblf lr is close to 1, the excitation applied to one axle does not cause vibration

of the other one. The matrices B̃ and F̃ can be written as follows

B̃ =




−1 0
0 −1
1 0
0 1


 F̃ =




kwf 0
0 kwr
0 0
0 0


 (2.7)

In order to transform matrix equation of motion (2.3) in the first-order form suitable for
performing the numerical simulations, a modified state vector that includes velocities, is intro-
duced

x =

[
x1
x2

]
=

[
y

ẏ

]
(2.8)
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Motion of the system can be now written using the equation

ẋ = Ax+Bu+ Fw(t) (2.9)

The relation between the matrix A and the matrices present in equation (2.3) is

A =

[
0(4×4) I(4×4)

−M−1K −M−1C

]
(2.10)

where 0(4×4) and I(4×4) are, respectively, an empty and singular matrix of 4× 4 size. The same
holds for the matrices

B =

[
0(4×2)

M−1B̃

]
F =

[
0(4×2)

M−1F̃

]
(2.11)

where the matrix 0(4×2) is an empty matrix of 4×2 size. Matrix equation (2.9) is well-suited for
analysis of active systems in which the control vector u is treated as the sought optimal control
vector.

3. Semi-active dampers

The analysis presented below is limited to testing the effect of several selected half-car model
parameters and two semi-active dampers on dynamical characteristics of the system. The forces
generated by a simplified model of the semi-active damper (denoted as SA1) after introduction
of the functions

uLin(ẏ1, ẏ2) =

{
cmax(ẏ1 − ẏ2) ẏ2(ẏ1 − ẏ2) ¬ 0
cmin(ẏ1 − ẏ2) ẏ2(ẏ1 − ẏ2) > 0

(3.1)

can be calculated from the equations

uf = u
Lin(ẏwf , ẏbf )

ur = u
Lin(ẏwr, ẏbr)

(3.2)

In SA1 damper model, the forces are proportional to the relative velocity, with higher energy
dissipation if the momentary power if less than zero (which means that energy is retrieved
from the spring-supported mass). For cmax = cmin, equations (3.1) and (3.2) define the passive
damper (PS).
The other type of a semi-active damper (SA2) is defined (Spencer et al., 1996) using the

Spencer model (Fig. 2). The mathematical description of the generated force is more complicated
in this case. Based on the study by Ferdek and Łuczko (2011), a concise force definition can be
presented

uf = u
Spencer(ywf , ẏwf , ẏbf )

ur = u
Spencer(ywr, ẏwr, ẏbr)

(3.3)

where

uSpencer(y1, ẏ1, ẏ2) = c2(ż1 − ẏ2) (3.4)

Additional parameters z1 and z2 can be obtained from the set of equations

k1(y1 − z1) + c1(ẏ1 − ż1)− α0z2 = c2(ż1 − ẏ2)

ż2 = Aż0{1− [γ + βsgn(z2ż0)]|z2|
n}

(3.5)
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Fig. 2. Model of the semi-active Spencer damper

in which z0 = z1 − y1 and β + γ = 1(0 < β < 1, 0 < γ < 1). Equation (3.5)1 can be interpreted
as the equilibrium condition of forces acting on a massless middle element in the Spencer mo-
del (Fig. 2). The dimensionless variable z2, which is the solution of differential equation (3.5)2
proposed in a similar form by Bouc-Wen (Spencer et al., 1996), determined the appearance of
a hysteresis. Its shape depends on the parameters A, γ, β and n. The parameters β and γ have
impact on the characteristic only when A is small. In such a case, an increase in β causes the
width of the hysteresis to be slightly decreased. Most often, when forming the characteristic,
the value n = 2 is chosen, in rare cases n = 1 is taken. The parameter A is the one that
strongly influences the shape of the hysteresis. With a increase in the parameter A, the lower
and upper limits of the Bouc-Wen model characteristic are symmetrical. In the numerical cal-
culations, emphasis is put on the analysis of coefficients α0, c1 and c2 and their impact on the
solution. The parameters of A = 50 m−1, γ = β = 0.5 and n = 2 have been taken from the
literature.

The slope of the force characteristic in the high velocity range depends on the value
of a substitute damping coefficient cz = c1c2/(c1 + c2) with a relation close to linear.
For lower velocities, the slope and inflection point of the characteristic are related to the
parameter α0.

In the semi-active damper (e.g. magneto-rheological one), it is assumed that the parameters
α0, c1 and c2 of the Spencer model are linearly dependent on the control voltage. By taking a
control algorithm analogical to (3.1), it can be assumed that ck = p(ẏ1, ẏ2, c

max
k , c

min
k ), k = 1, 2

and α0 = p(ẏ1, ẏ2, α
max
0 , α

min
0 ), with p defined using the formula

p(ẏ1, ẏ2, p
max, pmin) =

{
pmax

pmin
ẏ2(ẏ1 − ẏ2) ¬ 0
ẏ2(ẏ1 − ẏ2) > 0

(3.6)

4. Results of numerical calculations

In the numerical calculations, the emphasis is placed on analyzing the effect of a few selected
parameters of the system, with other parameters assumed as follows: lf = 0.94 m, lr = 1.66 m,
mb = 510 kg, mwf = mwr = 28 kg, Ib = λmblf lr (variable λ), kwf = kwr = 180000 N/m,
kb = 40000 N/m, k1 = 0.01kb, cwf = cwr = 0, A = 50 m

−1 and β = γ = 0.5. When analyzing
the effect of stiffness of the front and rear suspension system, it is assumed that kbf = κkkb,
kbr = (1−κk)kb, (0 < κk < 1), kb – is the sum of stiffness parameters. Similarly, when considering
the effect of energy dissipation, the parameters of PS damper are: cbf = κccb, cbr = (1 − κc)cb,
(0 < κc < 1). The value of cb = 2260 Ns/m has been chosen such that the dimensionless damping
factor, given by equation

ζ =
cb
2mbω0

=
cbf + cbr
2mbω0

(4.1)
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is ζ ≈ 0.25 – the recommended value for vehicle shock absorbers. The dimensionless angular
velocity ω0 (close to the two highest vibration modes of the system) present in Eq. (4.1) is
defined as follows

ω0 =

√
kb
mb
=

√
kbf + kbr
mb

(4.2)

When choosing the parameters of semi-active dampers, the same assumption is made re-
garding the parameters of front and rear dampers as well as the energy dissipation level. For
SA1 damper, it is assumed that the mean value of damping coefficients are: cmeanf = κccb,
cmeanr = (1− κc)cb, while the extreme values can be calculated from

pmax = (1 + δ)pmean pmin = (1− δ)pmean (4.3)

where p = cf or p = cr and 0 < δ < 1.

SA2 damper has a higher number of significant parameters. Formulas (4.3) need to be used
for the extreme parameters α0, c1 and c2 of the front and rear damper, while the mean values
cmean1f , c

mean
2f , c

mean
1r and cmean2r must be chosen such that the coefficient ζ has the desired value.

From literature (Prabakar et al., 2009; Spencer et al., 1996), it can be seen that cmean1f , c
mean
1r

values are an order lower from cmean2f , c
mean
2r ones. These are chosen as follows: c1f = 1.1κccb,

c2f = 11κccb, c1r = 1.1(1 − κc)cb and c2r = 11(1 − κc)cb. For the chosen values, the relation
czf + czr = cb, where cz = c1c2/(c1 + c2) is true and coefficient (4.1) is equal to ζ = 0.25.

The values of varying parameters are presented with analysis of the results of numerical
simulations. When presenting the results, the dimensionless parameters are introduced rela-
ting the displacements with the excitation amplitude a0, velocities with the value ω0a0, while
accelerations with ω20a0, and forces with kba0.

One of less known parameters of the system is the delay time t0 between the functions
describing motion of the front and rear wheel of the vehicle. In order to estimate it, it is assumed
that the angular frequency of the kinematic excitation ω is related for the given road profile
linearly with the velocity V0, or using the formula: ω = µV0. For motion with constant velocity
V0, the relation t0 = l/V0, where l is the distance between both axles, is also true. By additionally
assuming that the lowest vibration mode of the approximate frequency ω0 is related to a known
velocity Vr, the value of the parameter µ = ω0/Vr and the delay time t0 = ω0l/Vrω can be
calculated, e.g. for given: Vr = 20 km/h, l = 2.6 m and ω0 = 8.856 rd/s a value of t0 ≈ 4.15/ω
is found.

The frequency characteristics are ideal for the purpose of global evaluation of dynamical
properties of the system. In the simulations, the kinematic excitation is usually defined by the
harmonic function of a modulated angular frequency: (e.g. “Chirp Signal” in Simulink). If the
simulation time is high enough, an approximate frequency characteristic can be acquired by
graphing the maximal responses of the system.

In order to illustrate the effect of car body mass distribution, characteristics of maximal
dimensionless velocities vbf = ẋ3/ω0a0 and vbr = ẋ4/ω0a0 (in the points connecting the body and
the suspension) with relation to the dimensionless angular frequency of the excitation η = ω/ω0
are shown in Fig. 3. The analysis is limited to vibration comparison of systems with identical
shock absorbers (κk = κc = 0.5). The parameter defining the semi-active damper has been
chosen as δ = 0.5. The only modified value is the mass distribution ratio λ. The corresponding
inertia of the spring-supported mass is Ib = λmblf lr ≈ 795.8λ. The actual value of λ should be
close to one. Several exemplary values of this coefficient, calculated from the data presented in
the literature, are equal: λ = 1.01 (Feng et al., 2003), λ = 1.09 (Sam et al., 2008), λ = 1.16
(Lozia et al., 2008), λ = 0.823 (Prabakar et al., 2009). However, in some cases this value is
different, e.g. (Shamsi and Choupani, 2008) λ = 0.544, which is far from one.
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Fig. 3. Effect of spring-supported mass distribution on the frequency characteristics: (a) velocity vbf ,
(b) velocity vbr

From the results presented in Fig. 3, it can be seen that the lower the coefficient λ becomes,
the larger are the maximal velocities, especially within the resonance regimes. Although this
model has four degrees of freedom, only two resonance regions can be seen on the presented
frequency characteristics. This is caused by close proximity of the paired natural frequencies of
the system. For example, when λ = 0.5, the natural frequency values of the linearized system
related to ω0 are equal to: 0.88 (dominant displacement of the front part of the vehicle), 1.44
(rear part), 8.97 and 9.16 (wheel vibration), while for λ = 2 these values are respectively: 0.67,
0.97, 9.14 and 9.21.

A consequence of such a distribution of frequencies is dislocation of the lowest frequency
region towards the lower frequency with an increase in λ and its slightly different disposition in
the velocity characteristics vbf and vbr. The location of the “second” region is less vulnerable to
a change in the parameter λ and is similar to Fig. 3a and Fig. 3b.

Although the obtained results are only for SA1 damping system, the conclusions are more
general, and essentially similar results are obtained for PS and SA2 systems.

In the case of SA2 system described by the Spencer model, the effectiveness of the damper,
depends on chosen values of cmean1f , c

mean
2f , c

mean
1r , c

mean
2r and δ, but mostly on the parameter

α0. Fig. 4 the shows the dimensionless displacement characteristics xwf = x1/a0 (non-spring-
-supported mass) and xbf = x3/a0 (spring-supported mass) for several values of the parameter
α = αmean0 /αmean0 kba0. At κc = 0.5 (symmetrical support), the relations are: c1f = c1r = 0.55cb,
c2f = c2r = 5.5cb and the mean value of the coefficient ζ is close to 0.25. By analyzing Fig. 4b,
one can see that the characteristic closest to the optimal is the curve obtained for α = 0.5.
Too high values of α cause the forces to be much higher for low velocities, and also shift the
inflation point location, which is undesirable especially in the range of high-frequency excitation.
From the graphs shown in Fig. 4a, it can be concluded that within the range of high oscillation,
which includes the third and fourth natural frequencies, the amplitudes of non-spring-supported

Fig. 4. Effect of the parameter α on the frequency characteristics of SA2 system: (a) displacement xwf ,
(b) displacement xbf
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masses (wheels) are significant. Additionally, within this range, the dynamic response values are
also large, and so the indexes related to the driving safety and comfort are lower, which means
that these semi-active dampers are not efficient.
In order to compare SA1 and SA2 dampers, the dimensionless force characteristics

Uf = uf/kba0 generated by both types of semi-active dampers are shown in Fig. 5. Only the
front part of the car suspension is presented. As before, it is assumed that κk = κc = 0.5,
(symmetrical model) with λ = 1, α = 0.5, ζ = 0.25 and δ = 0.5.

Fig. 5. Damper SA1 and SA2 characteristics: (a) ω = 1, (b) ω = 4

The characteristic of SA1 damper is relatively simple. Two of its branches are straight lines
of slopes equal to the given cminf and cmaxf values, while the lines linking the other two, should
be, in theory, vertical. The reason for this deviation is due to the approximation used for the
continuous switching step function (based on arctan). Such an approach is recommended for
discontinuous functions due to its accuracy and the time of numerical computation required,
and also in some cases for avoidance of undesirable effects caused by too frequent switching, e.g.
chattering.
The characteristic of SA2 damper in the range of high velocities is similar to the one described

above. The differences are visible within the range of low velocities. The average slope of the
characteristic is higher and depends primarily on the parameter α. The higher complexity of the
graph is also due to the other parameters of the half-car model. Less complex characteristics
can be obtained by analyzing a simpler model, such as a quarter-car model (Łuczko and Ferdek,
2012).
Figure 6 shows the frequency response of dimensionless displacements xbf = x3/a0 and

xbr = x4/a0 for passive PS and both semi-active SA1 and SA2 systems.

Fig. 6. Effect of the parameters κk and κc on frequency characteristics PS, SA1 and SA2:
(a) displacement xbf , (b) displacement xbr

The case of symmetrical mounting κk = κc = 0.5 (S systems, Fig. 6) and the asymmetrical
one defined by parameters: κk = κc = lr/lf ≈ 0.638 (NS systems) is considered. For selected
values of the parameter κk, the static deflections of the spring-supported mass under its own
mass are identical in both locations of the connection with the suspension systems, while the
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center of stiffness overlaps the center of mass. The values λ = 1, α = 0.5, ζ = 0.25 and δ = 0.5
have been assumed, while the other parameters of the Spencer model have been obtained using
appropriate equations with known parameters κk and κc. When showing the results, only the
region with the lowest natural mode (actually two lowest modes) are shown – the ones in which
the car body vibration is dominant.

As the parameters for models PS, SA1 and SA2 are chosen in such a way that the natu-
ral frequencies are the same for the identical parameter κk, the dislocation of the resonance
region is avoided. Such a dislocation is only visible between the curves obtained for κk = 0.5
(S systems) and κk = 0.638 (NS systems). The value of the parameter κk influences mostly
the two lowest natural frequencies. The complex natural frequencies (related to ω0) are equal:
η1 = −0.16 ± 0.83i, η2 = −0.29 ± 1.10i for S systems and: η1 = −0.195 ± 0.927i,
η2 = −0.217 ± 0.945i for NS ones.

The location of the resonance regions, as shown in Figs. 6a and 6b is directly related to the
distribution of the natural frequencies of S and NS systems. As the low values correspond to
the natural modes in which the displacement are dominant (and even more xbr), the resonance
frequency of S systems is lower than that in NS ones for characteristics of the displacement xbf
(Fig. 6a). The opposite effect is observed for the displacement xbr (Fig. 6b).

The vibration reduction level is indeed related to the parameter κk (at least within the
analyzed regimes). Using a more stiff front mounting, the comfort of the driver is only slightly
decreased but seems to be important when considering safety of the driver (this is not a subject
of analysis in this study). The systems with SA1 dampers reduce vibration by around 20%
when compared with passive ones, while the semi-active SA2 dampers are proved to be even
more effective, reducing the values of the displacement xbf and xbr twice in the fundamental
resonance.

Figure 7 shows the response of PS, SA1 and SA2 dampers (dimensionless displacements xbf
and xbr, velocities vbf and accelerations abf in function of the dimensionless time τ = ω0t) to
an impulse excitation defined by equation (Shekhar et al., 1999; Łuczko, 2011)

wf (t) =
e

4
a0

3∑

k=1

ωk(t− tk)]
2 exp[−ωk(t− tk)]H(t− tk) (4.4)

where H() is the unit step function. Function (4.4) is supposed to simulate the vehicle crossing
the same obstacle at three different velocities V0 = θVr (where θ = 1/2, 1, 4), which in equations
(4.4) are represented by angular frequencies ω1 = 0.5ω0, ω2 = ω0 and ω3 = 4ω0. The values of tk

Fig. 7. Response of the system to an impulse excitation: (a) xbf , (b) xbr, (c) vbf , (d) abf
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are chosen in such a way that the vibration caused by the previous impulse would vanish before
the next one is applied.
When crossing the obstacle at a low speed (θ = 0.5 and θ = 1), the maximum displacements

(Fig. 7a and Fig. 7b) are to a small extent related with the type of a damper, although the
lowest ones are obtained for SA2 damper. The type of the used damper has a greater effect on
the character of damping of vibration caused by an impulse excitation. For PS and SA1 systems,
reduction of oscillatory vibration can be observed. In the case of SA2 systems, the damping is
much faster and similar in shape to an exponential function. For high values of velocity, when
crossing the obstacle (θ = 4), the displacements are definitely lower. This is however at the cost
of large acceleration values (Fig. 7d), for which the maximum values are practically independent
of the type of the used vibroisolation system. With an increase in driving velocity, the time delay
t0 is decreased while the displacements of both front and back parts of the body are similar.

5. Summary

Based on the analysis of selected results of numerical calculations, several conclusions can be
drawn:

• The algorithms for control of a semi-active on-off damper in which the switching is related
to the actual power, enable improvement the driving comfort, especially within the low-
-frequency excitation range.

• From the tested dampers, definitely the best one is SA2 damper with a nonlinear cha-
racteristic. If the parameters for the damper are optimal, the vibration amplituda can be
reduced twice as much within the range of fundamental resonance.

• Semi-active SA2 system is also effective when subjected to an impulse excitation which
simulates obstacles (bumps) in the road.

• An improper mass distribution (low values of λ) might be an additional cause for an
increased vibration level of the spring-supported mass.

• The introduction of an additional spring and damping elements to the front and back car
suspension in which the center of stiffness overlaps the center of mass, does not cause a
decrease in the indexes describing the driving comfort. It might be, however, beneficial
when considering the safety.

• Semi-active systems are less efficient than passive ones when the driving velocity (excitation
frequency) is high.
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