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SOLUTIONS OF VIBRATION PROBLEMS FOR THIN INFINITE PLATES
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New closed form solutions for harmonic vibrations of infinite Kirchhoff plates subjected to a
constant harmonic ring load, a constant harmonic circular load and an alternating harmonic
circular load are derived. Two different approaches are used to define the closed form solu-
tions. The first approach uses the integration of the harmonic point force and the addition
theorem for Bessel functions, while the second approach applies the Hankel transform to
solve the inhomogeneous partial differential equation of the Kirchhoff plate theory. The new
closed form particular solutions can especially be used in Trefftz like methods and extend
their field of application.
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1. Introduction

The simulation of vibrations and emitted sound of plates is an important step in the development
of new products, since the noise and vibration characteristics have to be considered in an early
design phase. The most common method to simulate vibrations of plates is the Finite Element
Method (FEM) (Bathe, 2006), which is especially well applicable for low frequency vibrations.
In the recent years, several methods which use the concept presented by Trefftz in 1926 (Trefftz,
1926), have been developed to calculate vibrations of plates more efficiently for higher frequen-
cies. Among these methods one can mention the Wave Based Method (Vanmaele et al., 2007;
Klanner and Ellermann, 2015) and the Variational Theory of Complex Rays (VTCR) (Rouch
and Ladevèze, 2003; Riou et al., 2013). In general, the so-called indirect Trefftz methods require
a particular solution of the inhomogeneous partial differential equation to be applied efficiently.
This is the motivation to develop new closed form solutions for the vibrations of Kirchhoff plates
in this paper.

To the authors knowledge, closed form particular solutions for infinite Kirchhoff plates only
exist in literature for undamped plates excited by a concentrated point force, which can be found
in e.g. (Junger and Feit, 1986).
The Kirchhoff plate theory was introduced by Kirchhoff in 1850 (Kirchhoff, 1850) and ne-

glects rotatory inertia and shear deformation. Therefore, it is only applicable if the ratio of the
plate thickness to the lesser of the other two dimensions is smaller than 1 : 20 (Chandrashekha-
ra, 2001) and the ratio of the plate thickness to the bending wave length is smaller than 1 : 6
(Cremer et al., 2005). In many practical problems, these limits are fulfilled and the Kirchhoff
plate model can be used very sufficiently compared to a full 3D model.
The paper is structured in Sections as follows: The particular solution of an infinite Kirchhoff

plate excited by a concentrated point force in the case of a damped plate is derived in Section 2.
In Section 3, other axisymmetric load cases, the constant ring load and the constant circular load,
are considered and two different approaches are shown to determine the closed form solutions.
In Section 4, a non-axisymmetric load is considered, which represents an alternating circular
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load. The vibrations in the case of an undamped plate are derived in Section 5. The responses to
the mentioned excitations are plotted in Section 6 for an aluminum plate. Finally, a conclusion
is given and further research topics are discussed.

2. Point force excitation

In this Section, the governing equation of the Kirchhoff plate theory is stated and the governing
equation in the special case of an axisymmetric vibration is shown. The Hankel transform of
the order zero is briefly presented and the closed form solution for the Kirchhoff plate under
harmonic point force excitation is derived.

2.1. Governing equation for time harmonic problems

The governing equation of the Kirchhhoff plate theory for time harmonic vibrations in Car-
tesian coordinates is given by (Rao, 2007)

∇4w(x, y)− k4bw(x, y) =
q(x, y)

D
(2.1)

where ∇4 = ∂4

∂x4
+2 ∂4

∂x2∂y2
+ ∂

4

∂y4
, the bending wavenumber k4b = ρhω

2/D and the plate bending

stiffness D = Eh3/[12(1− ν2)], E is Young’s modulus, h – plate thickness, ρ – plate density, ν –
Poisson’s ratio, ω – angular frequency and q(x, y) – external force distribution. For axisymmetric
problems, e.g. the point force excitation, the governing equation in polar coordinates

(
d2

dr2
+
1

r

d

dr

)2
w(r)− k4bw(r) =

q(r)

D
(2.2)

depends only on the radius r. Using a complex elastic modulus introduces damping of the plate,
and the plate parameters become complex

E → Ẽ = E(1 + iη) D → D̃ = D(1 + iη) k4b → k̃4b =
k4b
1 + iη

= k4bde
−iΦ (2.3)

with

k4bd =
k4b√
1 + η2

k4bd ∈ R
+ Φ = arctan η 0 < Φ <

π

2
(2.4)

and η > 0 the material loss factor.

2.2. Hankel transform of the order zero

The Hankel transform of the order zero is defined by (Debnath and Bhatta, 2014)

f̃(kr) =

∞∫

0

f(r)rJ0(krr) dr and f(r) =

∞∫

0

f̃(kr)krJ0(krr) dkr (2.5)

with the operational property for the axisymmetric Laplace operator (Debnath and Bhatta,
2014)

(
d2

dr2
+
1

r

d

dr

)
f(r) 7→ −k2r f̃(kr) (2.6)

In the case of axisymmetric vibrations, the governing equation of the Kirchhoff plate (Eq. (2.2))
transforms to

w̃(kr) =
1

D̃

q̃(kr)

k4r − k̃
4
b

(2.7)



Solutions of vibration problems for thin infinite plates... 951

2.3. Point load at the origin of the coordinate system

A point load at the origin of the coordinate system (x = 0, y = 0 or r = 0) is given by

qpoint (x, y) = q0δ(x)δ(y) ⇒ qpoint (r) =
q0δ(r)

2πr
7→ q̃point (kr) =

q0
2π

(2.8)

with q0 being the amplitude of the harmonic point load. The inverse Hankel transform leads to
the solution for the out-of-plane displacement in an integral form

wpoint (r) =
q0

2πD̃

∞∫

0

kr

k4r − k̃
4
b

J0(krr) dkr (2.9)

To obtain a closed form solution, the integral representation of the Bessel function of the first
kind (Watson, 1944)

J0(krr) =
2

π

∞∫

0

sin(krr cosh u) du (2.10)

is used in Eq. (2.9). Interchanging the order of integraton leads to

wpoint (r) =
q0

π2D̃

∞∫

0

( ∞∫

0

kr

k4r − k̃
4
b

sin(krr coshu) dkr
)
du (2.11)

The integral is symmetric with respect to kr and, therefore, can be written as

wpoint (r) =
iq0

2π2D̃

∞∫

0

( ∞∫

−∞

kr

k4r − k̃
4
b

e−ikrr cosh u dkr
)
du (2.12)

since the integral of an odd function over a symmetric interval vanishes. The integral with respect
to kr can be performed using the residue theorem and Jordan’s lemma (Mitrinović and Kečkić,
1984). The integrand in Eq. (2.12) has first order poles, if k4r − k̃

4
b = 0, which leads to the four

poles

kr1 = kbde
−iΦ
4 with Im(kr1) < 0

kr2 = −kbde
−iΦ
4 with Im(kr2) > 0

kr3 = ikbde
−iΦ
4 with Im(kr3) > 0

kr4 = −ikbde
−iΦ
4 with Im(kr4) < 0

(2.13)

with

kbd =
4

√
k4b√
1 + η2

(2.14)

According to the residue theorem and Jordan’s lemma (Mitrinović and Kečkić, 1984)

∞∫

−∞

f(x)eiax dx =





2πi
s+∑

k=1

Res
z=z+

k

[
f(z)eiaz

]
+ πi

m∑

k=1

Res
z=pk

[
f(z)eiaz] for a > 0

−2πi
s−∑

k=1

Res
z=z−

k

[
f(z)eiaz

]
− πi

m∑

k=1

Res
z=pk

[
f(z)eiaz

]
for a < 0

(2.15)
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with z+k poles in the upper half plane, z
−

k poles in the lower half plane, pk poles on the real axis
and Res[·] for the residue at the pole. The residue for simple poles is given by (Mitrinović and
Kečkić, 1984)

Res
z=zk

[
f(z)eiaz

]
= lim
z→zk
(z − zk)f(z)e

iaz (2.16)

In the integral of Eq. (2.12) the function f(z) = z/(z4−k̃4b ) and the parameter a = −r cosh u < 0
and, therefore, according to Eq. (2.15)2, only the poles kr1 and kr4 with the negative imaginary
part contribute to the integral. The residues for these two poles are

Res
z=kr1

[
f(z)eiaz

]
=
e−ir cosh(u)̃kb

4k̃2b
Res
z=kr4

[
f(z)eiaz

]
= −
e−r cosh(u)̃kb

4k̃2b
(2.17)

with

k̃2b = k
2
bde
−iΦ
2 k̃b = kbde

−iΦ
4 (2.18)

Using Heine’s formulas for the integral representation of the Hankel functions (Magnus et al.,
1966)

H
(1)
0 (z) = −

2i

π

∞∫

0

eiz coshu du 0 < arg(z) < π

H
(2)
0 (z) =

2i

π

∞∫

0

e−iz cosh u du − π < arg(z) < 0

(2.19)

leads to the final result

wpoint (r) =
iq0

8D̃k̃2b

(
H
(1)
0 (−rk̃b) +H

(2)
0 (−irk̃b)

)
(2.20)

The result in Eq. (2.20) can be given in different forms using the relations (Abramowitz and
Stegun, 1972)

K0(z) =
1

2
πiH

(1)
0 (iz) −π < arg(z) ¬

1

2
π

K0(z) = −
1

2
πiH

(2)
0 (−iz) −

1

2
π < arg(z) ¬ π

H
(1)
0 (iz) = −H

(2)
0 (−iz) −

1

2
π < arg(z) ¬ 12π

(2.21)

which leads to

wpoint (r) =
q0

4πD̃k̃2b

(
K0(irk̃b)−K0(rk̃b)

)
=
iq0

8D̃k̃2b

(
H
(2)
0 (−irk̃b)−H

(2)
0 (rk̃b)

)
(2.22)

The displacement at r = 0 can be computed with the limiting case r → 0

wpoint (0) = lim
r→0

wpoint (r) = −
iq0

8D̃k̃2b
(2.23)
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2.4. Point load at an arbitrary point of the coordinate system

The out-of-plane displacement wpoint depends only on the distance between the response
point (x, y) and the point of excitation (x, y), which is given by r =

√
(x− x)2 + (y − y)2.

The out-of-plane displacement of the plate subject to a point force at the drive point (x, y) is,
therefore, given by

wpoint (x, y) =
iq0

8D̃k̃2b

(
H
(1)
0

(
−
√
(x− x)2 + (y − y)2k̃b

)
+H

(2)
0

(
−i
√
(x− x)2 + (y − y)2k̃b

))

(2.24)

Using a coordinate transformation to polar coordinates with

x = r cosϕ y = r sinϕ x = r cosϕ y = r sinϕ (2.25)

leads to

wpoint (r, ϕ) =
iq0

8D̃k̃2b

(
H
(1)
0

(
−
√
r2 + r2 − 2rr cos(ϕ− ϕ)k̃b

)

+H
(2)
0

(
− i
√
r2 + r2 − 2rr cos(ϕ − ϕ)k̃b

)) (2.26)

3. Other axisymmetric loadings

In this Section, the solutions for a constant ring load and a constant circular load, shown in
Figs. 1a and 1b, are derived. Two different solution techniques are shown. The first technique
uses the integration of the point force response given in Eq. (2.26), which was also used in
(Matrinček, 1994) for the dynamic response of pavement structures. The second approach uses
the Hankel transform defined in Eqs. (2.5) to obtain the results.

Fig. 1. Other axisymmetric load cases: (a) constant ring load, (b) constant circular load

3.1. Constant ring load

The constant ring load in Fig. 1a is given by

qring(r) =
q0
2πr

δ(r − r0) (3.1)
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with δ(·) being the Dirac delta function, r0 – radius of the ring load and q0 – total external force.
According to the theory of linear partial differential equations, the response to an arbitrary load
can be found by integration of the point force solution (harmonic Green’s function). This leads
to

wring(r, ϕ) =

∞∫

0

( 2π∫

0

qring(r)wpoint (r, ϕ, r, ϕ)r dϕ
)
dr

=
iq0

16πD̃k̃2b

∞∫

0

( 2π∫

0

δ(r − r0)

r

(
H
(1)
0 (−ak̃b) +H

(2)
0 (−iak̃b)

)
r dϕ

)
dr

(3.2)

with a =
√
r2 + r2 − 2rr cos(ϕ− ϕ). The integration with respect to ϕ can be carried out using

the addition theorem for Bessel functions (Magnus et al., 1966)

H
(n)
0 (γz) = J0(γρ)H

(n)
0 (γρ) + 2

∞∑

m=1

Jm(γρ)H
(n)
m (γρ) cos(mψ)

n = 1, 2
ρ > ρ

(3.3)

with z =
√
ρ2 + ρ2 − 2ρρ cosψ. Using that the integral

2π∫

0

cos(m(ϕ− ϕ)) dϕ = 0 for m = 1, 2, . . . (3.4)

leads to

wring(r)=





iq0

8D̃k̃2b

∞∫

0

δ(r − r0)
(
J0(−k̃br)H

(1)
0 (−k̃br) + J0(−ik̃br)H

(2)
0 (−ik̃br)

)
dr r > r

iq0

8D̃k̃2b

∞∫

0

δ(r − r0)
(
J0(−k̃br)H

(1)
0 (−k̃br) + J0(−ik̃br)H

(2)
0 (−ik̃br)

)
dr r < r

(3.5)

Using the integral property of the dirac delta function gives the final result

wring(r) =





iq0

8D̃k̃2b

(
J0(−k̃br0)H

(1)
0 (−k̃br) + J0(−ik̃br0)H

(2)
0 (−ik̃br)

)
r > r0

iq0

8D̃k̃2b

(
J0(−k̃br)H

(1)
0 (−k̃br0) + J0(−ik̃br)H

(2)
0 (−ik̃br0)

)
r < r0

(3.6)

The function depends only on r, and it is obvious that the function is continuous at r = r0.

Another possibility to get the result is the Hankel transform. The Hankel transform of the
constant ring load is given by

qring(r) =
q0
2πr

δ(r − r0) 7→ q̃ring(kr) =
q0
2π
J0(krr0) (3.7)

and combined with the transformed governing equation (Eq. (2.7)), the result in an integral
form is given by

wring(r) =
q0

2πD̃

∞∫

0

kr

k4r − k̃
4
b

J0(krr0)J0(krr) dkr (3.8)
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The result of this integral can be found by the general formula for integrals involving products
of two Bessel functions (Lin, 2014)

∞∫

0

xµ−ν+2ℓ+1

x2 + a2
Jµ(px)Jν(qx) dx = (−1)

ℓaµ−ν+2ℓKµ(pa)Iν(qa) ℓ ∈ N0 (3.9)

with the restrictions

−(ℓ+ 1) < Re(µ) < Re(ν)− 2ℓ+ 2 and p > q and −
π

2
< arg(a) <

π

2
(3.10)

Choosing µ = 0, ν = 0 and ℓ = 0 and the partial fraction decomposition

kr

k4r − k̃
4
b

=
1

2k̃2b

(
kr

k2r + (−k̃
2
b )
−

kr

k2r + k̃
2
b

)
(3.11)

leads to the final result

wring(r) =






q0

4πD̃k̃2b

(
K0(ik̃br)I0(ik̃br0)−K0(k̃br)I0(k̃br0)

)
r > r0

q0

4πD̃k̃2b

(
K0(ik̃br0)I0(ik̃br)−K0(k̃br0)I0(k̃br)

)
r < r0

(3.12)

Using the relations in Eqs. (2.21) and the relation (Abramowitz and Stegun, 1972)

I0(z) = J0(iz) − π < arg(z) ¬
1

2
π (3.13)

the results in Eqs. (3.6) become equivalent to Eqs. (3.12).

3.2. Constant circular load

The constant circular load in Fig. 1b is given by

qcirc(r) =
q0
r20π

H(r0 − r) (3.14)

where H(·) is the Heaviside step function, r0 – radius of the circular load and q0 – total external
force. The integration of the point load response leads to

wcirc(r, ϕ) =

∞∫

0

( 2π∫

0

qcirc(r)wpoint (r, ϕ, r, ϕ)r dϕ
)
dr

=
iq0

8πr20D̃k̃
2
b

∞∫

0

( 2π∫

0

H(r0 − r)
(
H
(1)
0 (−ak̃b) +H

(2)
0 (−iak̃b)

)
r dϕ

)
dr

(3.15)

The integration with respect to ϕ is equivalent to integration from Eq. (3.2) to Eqs. (3.5). Using
the property of the Heaviside step function and distinguishing between the case r > r0 and
r < r0 leads to

wcirc(r)=






iq0

4r20D̃k̃
2
b

r0∫

0

(
J0(−k̃br)H

(1)
0 (−k̃br) + J0(−ik̃br)H

(2)
0 (−ik̃br)

)
r dr r > r0

iq0

4r20D̃k̃
2
b

( r∫

0

(
J0(−k̃br)H

(1)
0 (−k̃br) + J0(−ik̃br)H

(2)
0 (−ik̃br)

)
r dr

+

r0∫

r

(
J0(−k̃br)H

(1)
0 (−k̃br) + J0(−ik̃br)H

(2)
0 (−ik̃br)

)
r dr

)
r < r0

(3.16)
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The recurrence formulas for Bessel and Hankel functions are given by (Watson, 1944)

d

dz
(zJ1(z)) = zJ0(z) → zJ1(z) =

∫
zJ0(z) dz

d

dz

(
zH
(n)
1 (z)

)
= zH

(n)
0 (z) → zH

(n)
1 (z) =

∫
zH
(n)
0 (z) dz n = 1, 2

(3.17)

which allows the evaluation of the integrals in Eqs. (3.16). The final results are given by

wcirc(r)=






−iq0

4r0D̃k̃
2
b

(
1

k̃b
J1(−k̃br0)H

(1)
0 (−k̃br) +

1

ik̃b
J1(−ik̃br0)H

(2)
0 (−ik̃br)

)
r > r0

−iq0

4r20D̃k̃
2
b

(
4

iπk̃2b
+
r0

k̃b
J0(−k̃br)H

(1)
1 (−k̃br0) +

r0

ik̃b
J0(−ik̃br)H

(2)
1 (−ik̃br0)

)
r < r0

(3.18)

In the computation of Eq. (3.18)2, the formulas for Wronskian determinants of Bessel functions
(Magnus et al., 1966)

J1(z)H
(1)
0 (z)− J0(z)H

(1)
1 (z) =

2

iπz

J1(z)H
(2)
0 (z)− J0(z)H

(2)
1 (z) = −

2

iπz

(3.19)

are used.
The response of the plate to a constant circular load can also be derived using the Hankel

transform. Inserting the Hankel transform of a constant circular load

qcirc(r) =
q0
r20π

H(r0 − r) 7→ q̃circ(kr) =
q0

r0πkr
J1(krr0) (3.20)

in transformed governing equation (Eq. (2.7)) leads to

wcirc(r) =
q0

r0πD̃

∞∫

0

1

k4r − k̃
4
b

J1(krr0)J0(krr) dkr (3.21)

The integral in Eq. (3.21) can be evaluated using the general formula from Eq. (3.9). The partial
fraction decomposition

1

k4r − k̃
4
b

=
1

2k̃2b

(
1

k2r + (−k̃
2
b )
−

1

k2r + k̃
2
b

)
(3.22)

and the parameters µ = 0, ν = 1 and l = 0 lead to the result for r > r0. The result for r < r0
can be found by expanding the partial fraction decomposition in Eq. (3.22) to

1

2k̃2b

(
1

k2r + (−k̃
2
b )
−

1

k2r + k̃
2
b

)
=
1

2k̃4b

(
− 2 +

k2r

k2r + (−k̃
2
b )
+

k2r

k2r + k̃
2
b

)
(3.23)

The integrals involving the rational functions can be evaluated using Eq. (3.9) with the para-
meters µ = 1, ν = 0 and l = 0, while the integral with the constant factor is a discontinuous
Weber-Schafheitlin integral (Watson, 1944)

∞∫

0

J0(at)J1(bt) dt =





0 b < a

1

b
b > a

(3.24)
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The final results are

wcirc(r))=





−q0

2r0πD̃k̃2b

(
1

k̃b
I1(k̃br0)K0(k̃br)−

1

ik̃b
I1(ik̃br0)K0(ik̃br)

)
r > r0

−q0

2r20πD̃k̃
2
b

(
2

k̃2b
−
r0

k̃b
I0(k̃br)K1(k̃br0) +

r0

ik̃b
I0(ik̃br)K1(ik̃br0)

)
r < r0

(3.25)

Using the relations between the Bessel functions, the results become equivalent to the results in
Eqs. (3.18).

4. Non-axisymmetric loading

A closed-form solution for the out-of-plane displacement of a plate can also be calculated for
certain types of non-axisymmetric loading by the integration of the point force response. Espe-
cially, the loading shown in Fig. 2 has a practical value, since it appears when a circular cylinder
is mounted to a plate and loaded with a harmonic horizontal force (Korenev, 2002).

Fig. 2. Alternating circular load

The load shown in Fig. 2 is given in the polar coordinates by

qnonaxi (r, ϕ) =
q0r

r0
H(r0 − r) cosϕ. (4.1)

Integrating the point load response leads to

wnonaxi (r, ϕ) =

∞∫

0

( 2π∫

0

qnonaxi (r, ϕ)wpoint (r, ϕ, r, ϕ)r dϕ
)
dr

=
iq0

8r0D̃k̃2b

∞∫

0

( 2π∫

0

H(r0 − r)
(
H
(1)
0 (−ak̃b) +H

(2)
0 (−iak̃b)

)
r2 cosϕ dϕ

)
dr

(4.2)

The integration with respect to ϕ can be carried out using the addition theorem for Bessel
functions, given in Eq. (3.3) and the integral

2π∫

0

cosϕ cos(n(ϕ− ϕ)) dϕ =

{
π cosϕ n = 1

0 n ∈ N0|n 6= 1
(4.3)
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Using the property of the Heaviside step function and distinguishing between the case r > r0
and r < r0, the integrals with respect to r are given by

wnonaxi (r, ϕ)=





iq0π cosϕ

4r0D̃k̃2b

r0∫

0

(
J1(−k̃br)H

(1)
1 (−k̃br) + J1(−ik̃br)H

(2)
1 (−ik̃br)

)
r2 dr r > r0

iq0π cosϕ

4r0D̃k̃2b

( r∫

0

(
J1(−k̃br)H

(1)
1 (−k̃br) + J1(−ik̃br)H

(2)
1 (−ik̃br)

)
r2 dr

+

r0∫

r

(
J1(−k̃br)H

(1)
1 (−k̃br) + J1(−ik̃br)H

(2)
1 (−ik̃br)

)
r2 dr

)
r < r0

(4.4)

Using the recurrence formulas for Bessel and Hankel functions (Watson, 1944)

d

dz

(
z2J2(z)

)
= z2J1(z) → z2J2(z) =

∫
z2J1(z) dz

d

dz

(
z2H

(n)
2 (z)

)
= z2H

(n)
1 (z) → z2H

(n)
2 (z) =

∫
z2H

(n)
1 (z) dz n = 1, 2

(4.5)

and the formulas for Wronskian determinants of the Bessel functions given in Eqs. (3.19), the
integration with respect to r leads to the final result

wnonaxi (r) =






−iq0πr0 cosϕ

4D̃k̃2b

( 1
k̃b
J2(−k̃br0)H

(1)
1 (−k̃br)

+
1

ik̃b
J2(−ik̃br0)H

(2)
1 (−ik̃br)

)
r > r0

−iq0π cosϕ

4D̃k̃2b

( 4r
ir0k̃2bπ

+
r0

k̃b
J1(−k̃br)H

(1)
2 (−k̃br0)

+
r0

ik̃b
J1(−ik̃br)H

(2)
2 (−ik̃br0)

)
r < r0

(4.6)

5. Limit absorption principle – the undamped plate

The limit absorption principle states that a purely elastic solid is an idealization of a weakly
absorbing material and, therefore, the solution of the undamped plate can be found by the
limiting case η → 0 and Φ → 0 (Filippi, 2010). Replacing D̃ → D and k̃b → kb in Eqs. (2.20),
(3.6), (3.18) and (4.6) gives the resulting displacement of the undamped plate. The solution for
the point force excitation in Eq. (2.20) becomes identical to the solutions, which can be found
in the literature, e.g. (Vanmaele et al., 2007) for the undamped plate.

6. Numerical example

In this Section, the harmonic response of an infinite aluminium plate with a Young’s modulus
E = 7·1010 N/m2, Poisson’s ratio ν = 0.3, density ρ = 2790 kg/m3, material loss factor η = 0.001
and thickness h = 0.002m is shown. For all load cases, the excitation frequency is f = 50Hz.
The real and imaginary part of the out-of-plane displacement w of the plate excited by a

harmonic point force (q0 = 1N), harmonic constant ring load (q0 = 1N, r0 = 2.5m), harmonic
constant circular load (q0 = 1N, r0 = 2.5m) and a harmonic alternating circular load (q0 = 1N,
r0 = 2.5m) is shown in Figs. 3-6. The point load solution shows the highest displacement
amplitude at the center of the excitation (r = 0).



Solutions of vibration problems for thin infinite plates... 959

Fig. 3. Plate response to a harmonic point load: (a) real part of w(r), (b) imaginary part of w(r)

Fig. 4. Plate response to a harmonic ring load: (a) real part of w(r), (b) imaginary part of w(r)

Fig. 5. Plate response to a harmonic circular load: (a) real part of w(r), (b) imaginary part of w(r)
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Fig. 6. Plate response to a harmonic alternating circular load: (a) real part of w(r, ϕ),
(b) imaginary part of w(r, ϕ)

7. Conclusion and future research topics

New closed-form solutions for the harmonic vibrations of infinite Kirchhoff plates have been
developed for different load cases. The response to a harmonic point load has been reviewed and
two different techniques, the Hankel transform and the integration of the point load solution,
have been used to calculate the response to a harmonic ring load, harmonic circular load and
a harmonic alternating circular load. The new particular solutions can be used to extend the
applicability of indirect Trefftz methods for the analysis of forced Kirchhoff plate vibrations.
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