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In this article, the bending, buckling, free and forced vibration behavior of a nonlocal nano-
composite microplate using the third order shear deformation theory (TSDT) is presented.
The magneto-electro-elastic (MEE) properties are dependent on various volume fractions of
CoFe2O4-BaTiO3. According to Maxwell’s equations and Hamilton’s principle, the governing
differential equations are derived. These equations are discretized by using Navier’s method
for an MEE nanocomposite Reddy plate. The numerical results show the influences of elastic
foundation parameters such as aspect ratio, length to thickness ratio, electric and magnetic
fields and various volume fractions of CoFe2O4-BaTiO3 on deflection, critical buckling lo-
ad and natural frequency. The natural frequency and critical buckling load increases with
the increasing volume fraction of CoFe2O4-BaTiO3, also the amplitude vibration decreases
with an increase in the volume fraction. This model can be used for various nanocomposite
structures. Also, a series of new experiments are recommended for future work.
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1. Introduction

In the recent years, the use of nano-technology is a subject of the main discussion in the world
of engineering sciences. Nano-technology is science in which the design and application of na-
nostructures relates different properties at the nanoscale. The size of nanoparticles and their
dispersion in a matrix composite is one of the ways to achieve desired properties of nano-
composites. According to the nanometer-scale, the reinforcement particles in nanocomposites,
intermolecular forces between the matrix and reinforcing is much greater than in ordinary com-
posites, which improves properties of the nanocomposites. The reinforcing phase in terms of the
material can be used as polymeric, metal and ceramic, which, according to different properties
of each, have different applications. Because of their magnetoelectric coupling effects, magneto-
electric-elastic (MEE) materials have been widely employed in many technological fields, such as
sensor and actuator applications, robotics, medical instruments, structural health monitoring,
energy harvesting. Many researchers have carried out static, buckling, and free vibration analysis
of nanocomposites, see Sih and Yu (2005) who analyzed the volume fraction effect of a MEE
composite on enhancement and impediment of crack growth. Their results showed that with the
increasing electric field to normal stress ratio and the volume fraction effect of the MEE compo-
site, the crack growth increased and decreased, respectively. Ke and Wang (2014) examined free
vibration of size-dependent magneto-electro-elastic nanobeams based on the nonlocal elasticity
theory. By using the Hamilton principle, the governing equations and boundary conditions were
derived and discretized by using the differential quadrature method (DQM) to determine natural
frequencies. Their results showed that with the increasing magnetic and electric potential, the
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natural frequencies of nanobeams increased. Shokrani et al. (2016) employed the generalized dif-
ferential quadrature method (GDQM) to the buckling analysis of double orthotropic nanoplates
(DONP) embedded in elastic media under biaxial, uniaxial and shear loadings. Their results
showed that for higher values of the non-local parameter, the shear buckling was not depen-
dent on the van der Waals and Winkler moduli. Lang and Xuewu (2013) studied the buckling
and vibration of functionally graded magneto-electro-thermo-elastic circular cylindrical shells.
Based on using the third order shear theory (TSDT), they employed Hamilton’s principle to ob-
tain equations of motion and numerical solutions to find the natural frequencies. Ghorbanpour
Arani et al. (2012) investigated the effect of the CNT volume fraction on the magneto-thermo-
electro-mechanical behavior of a smart nanocomposite cylinder. Their results indicated that the
influence of internal pressure on the radial stress was larger than thermal, magnetic and elec-
tric fields. Also, their results are very useful for the optimization of nano-composite structures.
Xin and Hu (2015) analyzed free vibration of multilayered magneto-electro-elastic plates ba-
sed on the state space approach (SSA) and the discrete singular convolution (DSC) algorithm.
The results showed that the piezoelectric effect had a tendency to increase the stiffness of the
plate, and vice versa for the magnetostrictive effect. Karimi et al. (2015a) investigated surface
effects and non-local two variable refined plate theories that were combined on the shear/biaxial
buckling and vibration of rectangular nanoplates. Their results showed that by increasing the
non-local parameter, the effects of surface on the buckling and vibration increased. Shooshtari
and Razavi (2015) studied nonlinear free vibration behavior of a symmetrically laminated MEE
doubly-curved thin shell resting on an elastic foundation. By introducing a force function and
using the Galerkin method, the nonlinear partial differential equations of motion were reduced
to a single nonlinear ordinary differential equation. That equation was solved analytically by
the Lindstedt-Poincaré perturbation method. Their results showed that the shear constant coef-
ficient of the foundation had much greater effect on the natural frequency when compared with
the spring constant coefficient, and both of those coefficients increased the fundamental natural
frequency. Ebrahimi and Nasirzadeh (2016) analyzed free vibration of thick nanobeams based on
Eringen nonlocal elasticity theory and Timoshenko beam theory. Chen et al. (2014) studied free
vibration of multilayered MEE plates under combined clamped/free lateral boundary conditions.
Using semi-analytical solution, they obtained the natural frequency. Their results illustrated the
effect of stacking sequences and magneto-electric coupling on natural frequencies and mode sha-
pes. Karimi et al. (2015c) analyzed size-dependent free vibration characteristics of rectangular
nanoplates considering surface stress effects. Numerical results demonstrated that the obtained
natural frequency by considering the surface effects was lower than that without considering
the surface properties. Razavi and Shooshtari (2015) employed nonlinear free vibration of sym-
metric MEE laminated rectangular plates with simply supported boundary conditions. Their
results for the nonlinear natural frequency ratio were compared with the available results for
isotropic, laminated layers and piezo-layers and laminated MEE plates. Their results depicted
that the foundation parameters, negative electric potential and positive magnetic potential in-
creased the equivalent stiffness of the system. Using Bert’s model, Khan et al. (2014) studied
free and forced vibration characteristics of bimodular composite laminated circular cylindrical
shells. The results indicated that the relative difference of positive and negative half cycle frequ-
encies was considerably less for single layer orthotropic shells, and it was significant for cross-ply
shells with the axisymmetric mode of vibration. Du et al. (2014) illustrated nonlinear forced
vibration analysis of infinitely long functionally graded cylindrical shells using the Lagrangian
theory and the multiple scale method. Their results found that the power-law exponent had
not any influence on the qualitative behavior of FG cylindrical shells, but it would change the
amplitude in a complex nonlinear way. Hasani Baferani et al. (2011) presented free vibration
analysis of FG thick rectangular plates resting on an elastic foundation. They obtained gover-
ning equations of motion using the third order shear deformation plate theory and Hamilton’s
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principle. Their results showed that the Pasternak elastic foundation drastically changed the
natural frequency. Also some boundary conditions and in-plane displacements had significant
effects on the natural frequency of FG thick plates. Arefi (2015) analyzed free vibration of a
FG solid and annular circular plates with two functionally graded piezoelectric layers at the top
and bottom subjected to an electric field. Sobhy (2013) investigated buckling and free vibration
of exponentially graded sandwich plates resting on elastic foundations under various boundary
conditions. The governing equations of plates were derived by using various shear deformation
plate theories. They showed influence of the inhomogeneity parameter, aspect ratio, thickness
ratio and foundation parameters on natural frequencies and critical buckling loads. Zidour et
al. (2014) illustrated buckling of chiral single-walled carbon nanotubes by using the nonlocal
Timoshenko beam theory. Their results showed influence of a nonlocal small-scale coefficient
and the vibration mode number on the nonlocal critical buckling loads. Karimi et al. (2015b)
studied influence of the nonlocal parameter, van der Waals, Winkler, shear modulus on shear
vibration and buckling of double-layer orthotropic nanoplates resting on an elastic foundation.
In this article, bending, buckling, free and forced vibration of a magneto-electro-elastic

(MEE) microplate based on the third order shear deformation theory (TSDT) is presented.
According to Maxwell’s equations and Hamilton’s principle, the governing differential equation
is obtained. These equations discretized by using Navier’s method for a MEE microplate with
all edges simply supported boundary enabled determination of the deflection, critical buckling
load, natural frequency, response of the system as well as the electric and magnetic intensity
of the microplate. The numerical results show the influence of elastic foundation parameters,
aspect ratio l/b, length to thickness ratio l/h, volume fraction, normal pressure on the deflection,
critical buckling load, natural frequency, response of the system and the electric and magnetic
intensity.

2. Nonlocal theory of the MEE

The non-local modulus of elasticity was presented by Eringen (1983). This model states that
the stress of a point in the micro and nano dimension is dependent on the strain in all parts
of the model. The fundamental equations of a homogeneous and isotropic non-local elastic solid
are given by Eringen (2002)

σnlij (x) =

∫

V

α(|x − x′|, τ)σ′ij dV (x
′) ∀x ∈ V (2.1)

For the MEE solid, the nonlocal fundamental equations for magnetic induction and electric
displacement can be obtained as follows

Dnlij (x) =

∫

V

α(|x− x′|, τ)D′ij dV (x
′) ∀x ∈ V

Bnlij (x) =

∫

V

α(|x− x′|, τ)B′ij dV (x
′) ∀x ∈ V

(2.2)

where σnlij , σ
′

ij, D
nl
ij , D

′

ij, B
nl
ij and B

′

ij are the nonlocal and local stress tensor, components of
the nonlocal and local electric displacements, components of the nonlocal and local magnetic
inductions, respectively. α(|x−x′|, τ) is the nonlocal modulus, |x−x′| is the Euclidean distance,
τ = e0a/l is defined as the small scale parameter.
According to Eringen (1983, 2002), the nonlocal elasticity theory can be simplified to partial

differential equations. Thus we have

[1−(e0a)
2∇2]σnlij = σ

′

ij [1−(e0a)
2∇2]Dnlij = D

′

ij [1−(e0a)
2∇2]Bnlij = B

′

ij (2.3)
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3. Constitutive equations of the MEE nanocomposite microplate

Consider an MEE nanocomposite microplate with length l, width b and thickness h, resting on
an elastic foundation as shown in Fig. 1. A Cartesian coordinate system (x, y, z) is considered
such that the z direction denotes thickness of the nanocomposite microplate.

Fig. 1. Schematic of an MEE nanocomposite microplate on the elastic foundation

Based on the third-order shear deformation theory (TSDT) for a nanocomposite plate, the
displacements of an arbitrary point in the beam along the x, y and z axes are denoted by
u1(x, y, z, t), u2(x, y, z, t) and u3(x, y, z, t), respectively. They are written as follows

u1(x, y, z, t) = u(x, y, t) + z
[

ψx(x, y, t)−
4

3

( z

h

)2
[ψx(x, y, t) + w(x, y, t),x]

]

u2(x, y, z, t) = v(x, y, t) + z
[

ψy(x, y, t)−
4

3

( z

h

)2
[ψy(x, y, t) + w(x, y, t),y ]

]

u3(x, y, z, t) = w(x, y, t)

(3.1)

where u, v, w are the mid-plane displacements of the MEE rectangular nanocomposite microplate
along the (x, y, z) coordinate directions, respectively, ψx, ψy denote rotations of the plate cross-
section and t is time.

The linear constitutive equations for the MEE nanocomposite microplate in the plane stress
state are expressed in the following form (Mohammadimehr et al., 2016a,b, 2017; Ghorbanpour
Arani et al., 2016)
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where σ11, σ22 and ε11, ε22 are the normal stresses and strains, respectively. τ12, τ13, τ23 and
γ12, γ13, γ23 denote the shear stresses and strains, respectively. Cij, eij , fij and gij denote
elastic, piezoelectric, piezomagnetic and magnetoelectric constants, respectively; hij and µij
are dielectric and magnetic permeability coefficients, respectively. Eij and Hij are the electric
magnetic field intensity, respectively.
The electric and magnetic fields are considered in terms of electric and magnetic potentials

φ and ϕ, respectively, which are defined as follows

Ei = −φ,i Hi = −ϕ,i i = 1, 2, 3 (3.3)

4. The governing equations of motion for the MEE nanocomposite microplate

The governing differential equations of motion for the MEE nanocomposite microplate are de-
rived using Hamilton’s principle which is given by (Mohammadimehr and Mostafavifar, 2016)

t
∫

0

(δT − δU − δW ) dt = 0 (4.1)

where δT , δU and δW are the variations of kinetic energy and strain energy, the work done by
external applied forces, respectively.
Variations of the kinetic energy for a sandwich plate can be described as follows (Ghorban-

pour and Haghparast, 2017)

δT =

∫

V

ρi
∂ui
∂t

δ
(∂ui
∂t

)

dV =

∫

A

h

2
∫

−h

2

ρi(u̇1δu̇1 + u̇2δu̇2 + u̇3δu̇3) dz dA (4.2)

where

Ii =

h
∫

−h

ρzi dz (i = 1, 2, 3, 4, 6) C1 =
4

3h2

Variations of the strain energy for the MEE nanocomposite microplate can be expressed as
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δU =

∫

V

(σijδεij −DiδEi −BiHi) dV

=

∫

V

[(σ11δε11 + σ22δε22 + σ33δε33 + τ12δγ12 + τ13δγ13 + τ23δγ23)

− (DxδEx +DyδEy +DyδEy)− (BxδHx +ByδHy +ByδHy)] dV

(4.3)

Variations of the work can be considered as follows

δW = −

∫

P (x, y)δw dx+

∫

(kww − kG∇
2w)δw dx (4.4)

where Kw and KG are the transverse and shear coefficients of elastic medium, respectively.
By substituting Eqs. (4.2)-(4.4) into Eq. (4.1), the equilibrium equations of the MEE nano-

composite microplate resting on an elastic foundation can be obtained in the following form

δu : N1,x +N6,y = I0ü+ I1ψ̈x −C1I3
(

ψ̈x +
∂ẅ

∂x

)

δv : N2,y +N6,x = I0v̈ + I1ψ̈y − C1I3
(

ψ̈y +
∂ẅ

∂y

)

δψx : M1,x +M6,y −Q1 −
4

3h2
(P1,x + P6,y) +

4λ

h2
R1

= I1ü+ I2ψ̈x − C1
(

I3ü+ 2I4ψ̈x + I4
∂ẅ

∂x

)

+ C21I6
(

ψ̈x +
∂ẅ

∂x

)
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(4.5)

and

∂Dz
∂z
= 0

∂Bz
∂z
= 0 (4.6)

whereNi,Mi (i = 1, 2, 6) denote the resultant forces and moments, respectively. Ri, Pi are higher
order resultant shear forces and moments, respectively, and Qi are transverse shear forces which
are all defined by the following expressions
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(4.7)

By substituting Eqs. (3.3) into Eqs. (4.6), the electric and magnetic potential are obtained which
electric and magnetic boundary conditions assumed as follows
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where

λ1 =
e31 −

g33f31
µ33

h33 −
g2
33

µ33

λ2 =
f31 − g33λ1

µ33
∆1 = ψx,x+ψy,y ∆2 = w,xx+w,yy

By substituting Eqs. (4.7) into Eqs. (4.5) and (4.6), the governing equations of motion for the
MEE nanocomposite microplate based on TSDT are obtained as follows

δu : A11u,xx + (A12 +A66)v,xy +A66u,yy = I0ü− e
2
0a
2I0(ü,xx + ü,yy) + (I1 − C1I3)ψ̈x

−(I1 − C1I3)e
2
0a
2(ψ̈x,xx + ψ̈x,yy)− C1I3ẅ,x + C1I3e

2
0a
2(ẅ,xxx + ẅ,xyy)

(4.9)

δv : A22v,yy + (A12 +A66)u,xy +A66v,xx = I0v̈ − e
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(

F11 +B12 −
4H12
3h2
−
4L11
3h2

)

ψy,xy +
(4K11
3h2
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2(ψ̈x,xx + ψ̈x,yy) + (C

2
1I6 − C1I4)ẅ,x

+(C1I4 − C
2
1I6)e

2
0a
2ẅ,xxx + (C1I4 − C

2
1I6)e

2
0a
2ẅ,xyy

(4.11)

δψy :
(

B22 −
4H22
3h2

)

ψy,yy +
(

F11 −
4L11
3h2

)

ψy,xx +
(4T22
3h2
− T11

)

ψy

+
(

F11 +B12 −
4H12
3h2
−
4L11
3h2

)

ψx,xy +
(4K22
3h2
−D11

)

w,yyy

+
(4L12
3h2
+
4K12
3h2
−D12 − F12

)

w,xxy +
(4T22
3h2
− T11

)

w,y

= (I1 − C1I3)v̈ − (I1 − C1I3)e
2
0a
2(v̈,xx + v̈,yy) + (I2 − 2C1I4 + C

2
1I6)ψ̈y

+(2C1I4 + C
2
1I6 − I2)e

2
0a
2(ψ̈y,xx + ψ̈y,yy) + (C

2
1I6 − C1I4)ẅ,y

+(C1I4 − C
2
1I6)e

2
0a
2ẅ,yxx + (C1I4 − C

2
1I6)e

2
0a
2ẅ,yyy

(4.12)

δw :
(

T11 −
4T22
h2

)

ψx,x +
(

T11 −
4T22
h2

)

ψy,y +
4H11
3h2

ψx,xxx +
4H22
3h2

ψy,yyy

+
(4H12
3h2
+
8L11
3h2

)

(ψx,xyy + ψy,xxy) +
(

T11 −
4T22
h2
+ e20a

2Kw −KG
)

(w,xx + w,yy)

+
(

e20a
2KG −

4K11
3h2

)

w,xxxx +
(

e20a
2KG −

4K22
3h2

)

w,yyyy −
(8K12
3h2
+
8L12
3h2

)

w,xxyy

−Kww + P (x, y) = C1I3ü,x − C1I3e
2
0a
2(ü,xxx + ü,xyy) + C1I3v̈,x

−C1I3e
2
0a
2(v̈,xxx + v̈,xyy) + (C1I4 + C

2
1I6)ψ̈x,x − (C1I4 + C

2
1I6)e

2
0a
2(ψ̈x,xxx + ψ̈x,xyy)

+(C1I4 + C
2
1I6)ψ̈y,y − (C1I4 + C

2
1I6)e

2
0a
2(ψ̈y,yxx + ψ̈y,yyy)− (C

2
1I6 + e

2
0a
2)ẅ,xx

−(C21I6 + e
2
0a
2)ẅ,yy + e

2
0a
2C1I6(ẅ,xxxx + ẅ,yyyy) + 2e

2
0a
2C1I6ẅ,xxyy + I0ẅ

(4.13)
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where the above coefficients are defined in Appendix A.

Substituting Eqs. (4.8) into Eq. (3.3), the electric and magnetic field is written as

Ez = λ1
(

z −
4z3

3h2

)

(ψx,x + ψx,x)−
4z3

3h2
λ1(w,xx + w,yy)

Hz = λ2
(

z −
4z3

3h2

)

(ψx,x + ψx,x)−
4z3

3h2
λ2(w,xx +w,yy)

(4.14)

5. Navier’s type solution for the MEE nanocomposite microplate

Analytical solutions for a simply supported rectangular MEE nanocomposite microplate are
obtained using Navier’s solution technique. Using Navier’s solution, the displacements of the
microplate can be written as follows (Mohammadimehr et al., 2016a)

u(x, y, t) =
∞
∑

m=1

∞
∑

n=1

Umn cos(αx) sin(βy)e
iωt

v(x, y, t) =
∞
∑

m=1

∞
∑

n=1

Vmn sin(αx) cos(βy)e
iωt

ψx(x, y, t) =
∞
∑

m=1

∞
∑

n=1

Ψxmn cos(αx) sin(βy)e
iωt

ψy(x, y, t) =
∞
∑

m=1

∞
∑

n=1

Ψymn sin(αx) cos(βy)e
iωt

w(x, y, t) =
∞
∑

m=1

∞
∑

n=1

Wmn sin(αx) sin(βy)e
iωt

(5.1)

where α and β are equal to mπ/l, nπ/b, respectively.

5.1. Free vibration analysis of the nanocomposite microplate

The matrix form of free vibration equations of the microplate is written as

(S− ω2M)U = 0 (5.2)

where the non-zero elements of the mass and stiffness matrix are given in Appendix B.

5.2. Buckling analysis of the nanocomposite microplate

The matrix form of buckling equations for the nanocomposite microplate can be written as
follows















S11 S12 S13 S14 S15
S21 S22 S23 S24 S25
S31 S32 S33 S34 S35
S41 S42 S43 S44 S45
S51 S52 S53 S54 S55 −N0(α

2 + kβ2)









































Umn
Vmn
Ψxmn
Ψymn
Wmn



























=



























0
0
0
0
0



























C =











S11 S12 S13 S14
S21 S22 S23 S24
S31 S32 S33 S34
S41 S42 S43 S44











−1

k =
Nxx
Nyy

(5.3)
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Using Eq. (5.3), we obtain an expression for the critical buckling load N0 of the MEE
nanocomposite microplate

N0 =
1

α2 + kβ2

(

S55 −
{

S51 S52 S53 S54
}

C
{

S15 S25 S35 S45
}T
)

(5.4)

5.3. Forced vibration of the nanocomposite microplate

The load P (x, y, t) can be exoressed in the form of series

p(x, y, t) =
∞
∑

m=1

∞
∑

n=1

P0 sin(Ωt) sin(αx) sin(βy) (5.5)

whereΩ is the frequency of forced vibration. The equation of motion for the MEE nanocomposite
microplate will then include a variable, time-dependent, transverse load p(x, y, t).
The matrix form of the response system equations for the MEE microplate is obtained as

follows

{

Um Vm Ψxmn Ψymn Wmn
}T
=

1

ω2n −Ω
2
M−1

[

0 0 0 0 P0
]T

(5.6)

5.4. Dimensionless parameter of the nanocomposite microplate

The dimensionless deflection, natural frequency and buckling load of the MEE nanocomposite
microplate is written as follows

W =
Cij maxh

3w

P0l4
ω =

√

ρl4ω

Cij maxh2
N =

l2N0
Cij maxh3

(5.7)

6. Numerical results and discussions

The piezoelectric and piezomagentic properties of the BaTiO3 (inclusion)-CoFe2O4 (matrix)
nanocomposite microplate with different volume fractions Vf of the inclusions can be found in
Sih and Sog (2002), Song and Sih (2002). They are listed in Table 1.
Numerical results for bending, buckling, free and forced vibration are presented for the MEE

nanocomposite microplate resting on a two-parameter elastic foundations with all edges simply
supported.
To validate the results of this research with the literature, a single-layered MEE square

thick plate, with l = b = 1m, h = 0.3m, simply-supported boundary conditions, and material
properties given by Table 2 is considered. The dimensionless fundamental frequency is calculated

as ω =
√

ρmax/Cij maxlω, where Cij max and ρmax are the maximum values of the stiffness
coefficient and density of the layers, respectively. The results are shown in Table 2 along with
some other published results.
Table 3 indicates the dimensionless biaxial buckling load of simply-supported square nano-

plates. From this Table, it is observed that the presented results are in good agreement with
those reported in the literature.
Table 4 presents the dimensionless center deflections of isotropic square plates under uni-

form loading. They are calculated with various side-to-thickness ratios up to a/h = 10000, and
compared to earlier studies.
The natural frequencies of the simply supported MEE nanocomposite microplate are obta-

ined using Eq. (5.2). From Fig. 2a, it is seen that the volume fraction plays an important role
for the MEE nanocomposite microplate in terms of the natural frequency, and its effects can
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Table 1. Properties of the BaTiO3, CoFe2O4 and BaTiO3-CoFe2O4 nanocomposite microplate
with different volume fractions

Piezoelectric
(BaTiO3)

Piezomagnetic
(CoFe2O4)

Vf (volume fraction for CoFe2O4 in
Properties BaTiO3-CoFe2O4 nanocomposite)

0.1 0.3 0.5 0.7 0.9

C11 [Gpa] 166 286 178.0 202 226 250.0 274

C12 [Gpa] 77 173 87.2 105.7 124 142.7 161

C22 [Gpa] 166 286 172.8 194.2 216 237.3 259

C44 [Gpa] 43 45.3 43.2 43.7 44 44.6 45

e31 [c/m
2] 43 45.3 −3.96 −3.08 −2.2 −1.32 −4.4

e33 [c/m
2] 44.5 56.5 16.74 13.02 9.3 5.58 1.86

e15 [c/m
2] −4.4 0 10.44 8.12 5.8 3.48 1.16

h11 [×10
−10C2/(Nm2)] 0 580.3 100.9 78.6 56.4 34.2 11.9

h33 [×10
−10C2/(Nm2)] −4.4 0 113.5 88.5 63.5 38.5 13.4

f31 [N/(Am)] 0 580.3 58.03 174.1 290.2 406.2 522.3

f33 [N/(Am)] 11.6 0 69.97 209.9 350.0 489.8 629.7

f15 [N/(Am)] 0 550 55.00 165.0 275.0 385.0 495.0

µ11 [×10
−6NS2/C2] 11.6 0 63.5 180.5 297.0 414.5 531.5

µ33 [×10
−6NS2/C2] 0 550 24.7 541.0 83.5 112.9 142.3

ρ [kg/m3] 126 0.93 5750 5650 5550 5450 5350

Table 2. Dimensionless fundamental frequencies of MEE plates

Material
Method Piezoelectric Piezomagnetic

BaTiO3 CoFe2O4

Wu and Lu (2009) 1.2523 1.0212

Shooshtari and Razavi (2015) 1.2426 1.1023

Present study 1.2952 1.1130

Table 3. Comparison of dimensionless biaxial buckling load (Ncr = N0a/D, D = Eh
3/[12(1 −

υ2)] for square nanoplates with all edges simply-supported (a = 10 nm, a/h = 2)

Method
e0a [nm]
0 1

Malekzadeh and Shojaee (2013) 8.5249 7.1039

Wang and Wang (2011) 8.4543 7.1533

Karimi et al. (2015) 8.6052 7.2204

Present study 8.5232 7.1138

not be ignored for microplate. It is shown that by increasing the volume fraction, the dimen-
sionless natural frequency increases. The reason is that a greater volume fraction makes the
microplate stiffer. Figure 2b depicts the effects of the Pasternak shear constant on the natural
frequency. From this figure, it can be found that by increasing this parameter, the stiffness of
the nanocomposite microplate increases and this result is similar to the dimensionless natural
frequency. The effect of volume fraction on the deflection is shown in Fig. 3a. It is shown that an
increase in the volume fraction will decrease the dimensionless deflection. The critical buckling
loads of the MEE nanocomposite microplate are obtained using Eq. (5.4). Figure 3b depicts the
variation of critical buckling load versus volume fraction. From this figure, it can be seen that
with an increase in the volume fraction, the critical buckling load for all the length to width
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Table 4. Comparison of dimensionless center deflection W
(

a
2 ,
b
2

)

D/[(P0a
4), D = Eh3/[12(1 −

υ2)] for simply-supported square isotropic plates under uniform loads

Method
a/h

10 100 1000 10000

Nguyen et al. (2016) 0.4272 0.4064 0.4062 0.4062

Nguyen-Xuan et al. (2008), MITC4 0.4273 0.4064 0.4062 0.4062

Nguyen-Xuan et al. (2008), MISC1 0.4273 0.4065 0.4063 0.4063

Taylor and Auricchio (1993) 0.4273 0.4064 0.4062 0.4062

Present study 0.4266 0.4055 0.4053 0.4053

Fig. 2. (a) The effect of volume fraction on the dimensionless natural frequency: l = 4µm, b = 4µm,
h = 0.04µm, Kw = 0, KG = 0. (b) The effect of the Pasternak shear constant on the dimensionless

natural frequency: l = 400µm, h = 80µm, Vf = 0.5, Kw = 0, e0a = 1nm

Fig. 3. (a) The effect of volume fraction on the dimensionless deflection: l = 400µm, b = 400µm,
h = 80µm, Kw = 0, KG = 0, P = 100N/m

2, e0a = 2nm. (b) The effect of volume fraction on the
dimensionless critical buckling load: l = 400µm, h = 80µm, Kw = 0, KG = 0, e0a = 1nm

ratios l/b will increase. The influence of the length to thickness ratio l/h is shown in Fig. 4a.
This figure shows that by increasing the length to thickness ratio l/h, the dimensionless critical
buckling load decreases. The response system of the MEE nanocomposite microplate is obtained
using Eq. (5.6). Figure 4b indicates the response system of the MEE nanocomposite microplate
and different values of the volume fraction. It is seen from the results that by increasing the
excitation frequency to the natural frequency ratio Ω/ω, the amplitude of the nanocomposite



864 M. Mohammadimehr, R. Rostami

microplate reinforced by CoFe2O4-BaTiO3 increases. Also, by increasing the volume fraction,
the deflection to thickness ratio w/h decreases. Figure 5 depicts the effects of volume fraction
on the maximum deflection to thickness ratio wmax/h. From this figure, it can be found that by
increasing the volume fraction, the maximum deflection to thickness ratio wmax/h decreases.

Fig. 4. (a) The effect of the length to thickness ratio l/h on the critical buckling load: l = 400µm,
Vf = 0.5, Kw = 0, KG = 0, e0a = 1nm. (b) The effect of volume fraction on the response system:

l = 400µm, b = 400µm, h = 20µm, Kw = 0, KG = 0, P0 = 1N/m
2, e0a = 1nm

Fig. 5. The effect of volume fraction on the maximum deflection to thickness ratio Wmax/h: l = 4µm,
b = 4µm, h = 0.1µm, Kw = 0, KG = 0, P0 = 1N/m

2, e0a = 1nm

Figure 6a shows that by increasing the spring constant of the Winkler type, the intensity
of electric field decreases. Figure 6b presents the influence of the Pasternak shear constant on
the magnetic field, respectively. The results show that by increasing the elastic constant, the
intensity of magnetic and electric field decreases.

7. Conclusions

A theoretical analysis on bending, buckling, free and forced vibration characteristics of an MEE
nanocomposite microplate are carried out in the present work. The Hamilton principle, higher
order shear deformation theory and Maxwell’s equations are considered to derive the equations
of motion and distribution of electrical potential, magnetic field along the thickness direction of
the MEE nanocomposite microplate. Some conclusions of this research can be listed as follows:

• For the MEE nanocomposite microplate, the natural frequency and critical buckling load
increases with the increasing volume fraction of CoFe2O4O4-BaTiO3, because the nano-
composite microplate becomes stiffer in such a case.
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Fig. 6. (a) The effect of the Winkler spring constant on the intensity of electric field: l = 40µm,
b = 40µm, h = 1µm, KG = 0, P = 1N/m

2, e0a = 1nm. (b) The effect of the Pasternak shear constant
on the intensity of magnetic field : l = 40µm, b = 40µm, h = 1µm, Kw = 0, P = 1N/m

2, e0a = 1nm

• The natural frequency and critical buckling load decreases, and also the maximum deflec-
tion, whereas the intensity of magnetic and electric fields increases with the decreasing
Winkler and Pasternak shear constants of the MEE nanocomposite microplate.

• For the MEE nanocomposite microplate, the amplitude of vibration decreases with the
increasing volume fraction.

Appendix A

A11 = C11h A12 = C12h A22 = C22h A66 = C66h

B11 =
h3

15
(C11 + e31λ1 + f31λ2) B12 =

h3

15
(C12 + e31λ1 + f31λ2)

B22 =
h3

15
(C22 + e31λ1 + f31λ2) D11 =

h3

60
(C11 + e31λ1 + f31λ2)

D12 =
h3

60
(C12 + e31λ1 + f31λ2) D22 =

h3

60
(C22 + e31λ1 + f31λ2)

F11 = C66
h3

15
F12 = C66

h3

30
H11 =

(h5

80
−

h5

336

)

(C11 + e31λ1 + f31λ2)

H12 =
(h5

80
−

h5

336

)

(C12 + e31λ1 + f31λ2) H22 =
(h5

80
−

h5

336

)

(C22 + e31λ1 + f31λ2)

K11 =
h5

336
(C11 + e31λ1 + f31λ2) K12 =

h5

336
(C12 + e31λ1 + f31λ2)

K22 =
h5

336
(C22 + e31λ1 + f31λ2) L11 =

(h5

80
−

h5

336

)

C66 L12 =
h5

168
C66

T11 =
2h

3
C44 T22 =

(h3

12
−
h3

20

)

C44

Appendix B

S11 = −A11α
2 −A66β

2 S12 = −(A12 +A66)αβ

S21 = −(A12 +A66)αβ S22 = −A22β
2 −A66α

2

S33 =
(

B11 −
4H11
3h2

)

(−α2)−
(

F11 −
4L11
3h2

)

β2 +
4T22
3h2
− T11
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S34 =
(

B12 + F11 −
4H12
3h2
−
4L11
3h2

)

(−αβ)

S35 =
(4K11
3h2
−D11

)

(−α3)−
(4L12
3h2
+
4K12
3h2
−D12 − F12

)

αβ2 +
(4T22
3h2
− T11

)

α

S43 = −
(

B12 + F11 −
4H12
3h2
−
4L11
3h2

)

αβ

S44 = −
(

B22 −
4H22
3h2

)

β2 −
(

F11 −
4L11
3h2

)

α2 +
4T22
3h2
− T11

S45 = −
(4K22
3h2
−D22

)

β3 −
(4L12
3h2
+
4K12
3h2
−D12 − F12

)

α2β +
(4T22
3h2
− T11

)

β

S53 =
(

T11 −
4T22
h2

)

(−α)−
4H11
3h2

α3 +
(4H12
3h2
+
8L11
3h2

)

αβ2

S54 =
(

T11 −
4T22
h2

)

(−β)−
4H22
3h2

β3 +
(4H12
3h2
+
8L11
3h2

)

α2β

S55 = −
(

T11 −
4T22
h2
+ e20a

2Kw −KG
)

(α2 + β2) +
(

e20a
2KG −

4K11
3h2

)

α4

+
(

e20a
2KG −

4K22
3h2

)

β4 −
(8K12
3h2
+
8L12
3h2

)

α2β2 −Kw

m11 = −I0 − e
2
0a
2I0(α

2 + β2) m13 = (−I1 − C1I3)− e
2
0a
2(I1 − C1I3)(α

2 + β2)

m15 = C1I3α+ C1I3e
2
0a
2(α3 + αβ2) m22 = −I0 − I0e

2
0a
2(α2 + β2)

m24 = −(I1 − C1I3)− e
2
0a
2(I1 − C1I3)(α

2 + β2) m25 = C1I3β + e
2
0a
2C1I3(α

2β + β3)

m31 = −(I1 − C1I3) + (C1I3 − I1)e
2
0a
2(α2 + β2)

m33 = −(I2 − 2C1I4 + C
2
1I6) + (2C1I4 − C

2
1I6 − I2)e

2
0a
2(α2 + β2)

m35 = −(C
2
1I6 − C1I4)α+ (C1I4 − C

2
1I6)e

2
0a
2(α3 + αβ2)

m42 = −(I1 − C1I3) + (C1I3 − I1)e
2
0a
2(α2 + β2)

m44 = −(I2 − 2C1I4 + C
2
1I6) + (2C1I4 − C

2
1I6 − I2)e

2
0a
2(β2 + α2)

m45 = −(C
2
1I6 − C1I4)β + (C1I4 −C

2
1I6)e

2
0a
2(β3 + α2β)

m51 = C1I3α+ C1I3e
2
0a
2(α3 + αβ2) m52 = C1I3β + C1I3e

2
0a
2(β3 + α2β)

m53 = (C1I4 + C
2
1I6)α+ (C1I4 + C

2
1I6)e

2
0a
2α3 + (C1I4 + C

2
1I6)e

2
0a
2αβ2

m54 = (C1I4 + C
2
1I6)β + (C1I4 + C

2
1I6)e

2
0a
2β3 + (C1I4 + C

2
1I6)e

2
0a
2α2β

m55 = −(C
2
1I6 + e

2
0a
2)(α2 + β2)− C21I6e

2
0a
2(α4 + β4)− 2C21I6e

2
0a
2α2β2 − I0
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