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Optimization algorithms use various mathematical and logical methods to find optimal po-
ints. Given the complexity of models and design levels, this paper proposes a heuristic opti-
mization model for surface-to-air missile path planning in order to achieve the maximum
range and optimal height based on 3DOF simulation. The proposed optimization model in-
volves design variables based on the pitch programming and initial pitch angle (boost angle).
In this optimization model, we used genetic and particle swarm optimization (PSO) algori-
thms. Simulation results indicated that the genetic algorithm was closer to reality but took
longer computation time. PSO algorithm offered acceptable results and shorter computation
time, so it was found to be more efficient in the surface-to-air missile path planning.
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1. Introduction

System optimization means minimizing or maximizing system functions to improve its efficiency.
Several approaches have been proposed for designing acceptable answers under time limitation.
These approaches involve some algorithms which do not guarantee an optimal answer but offer
the best combination of quality and time based on evidences and records. These algorithms
are called heuristic algorithms (Puchinger and Raidl, 2005). Normally, the air defense missile
guidance system consists of three phases: boost phase, midcourse and terminal phase. The
midcourse is the longest phase of the flight and aims to direct the missile towards the target
and to move it through an optimal path in order to save energy and prevent it from being seen
by the enemy. This paper aims to design the midcourse of a surface-to-air missile using genetic
and PSO algorithms in order to achieve the maximum range for the missile. To do so, we have
to determine the initial boost angle and pitch angle over the path in the vertical sheet. This is
normally a difficult job and entails real-time trial and error, which in turn imposes heavy cost,
long time and real-time modeling. Path planning using heuristic algorithms helps to achieve the
maximum height and range.

In 2001, a study was conducted under the title of “designing guidable interceptor missile using
genetic algorithm” with a view to minimizing the contact error, interception time and takeoff
weight (Anderson et al., 2001). In 2004, a research was conducted under the title of “finding
path for tactical missiles using genetic algorithm”, in which the application of genetic algorithm
in path planning was investigated. The objectives were to increase speed, range and flight time
(Cribbs, 2004). In 2006, a research was conducted under the title of “path optimization using
genetic algorithm simulation”, in which path data used in optimization process were produced
by simulation of the equation of motion. This paper examines a moving hypersonic missile using
a path optimization technique (Farooq and Limebeer, 2002). The results indicated that the
genetic algorithm was an efficient method in path planning. In 2007, a study was conducted
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under the title of “path planning, optimization and guidance of boost vehicles in terminal phase
of flight”. That PhD thesis proposed a method for path planning, optimization and guidance
using 3DOF simulation, evaluated the paths planned for the terminal phase, and used them
for the development of the guidance program (Chartres, 2007). Zhao and Fan (2009) dealt
with optimal path planning for an anti-ship missile using MAKLINK graph method. In this
method, genetic algorithm was used to find optimal points with an emphasis on the points
which satisfied all problem constraints. Shu et al. (2010) optimized path height for cruise missile
using the improved PSO algorithm and simulated the annealing algorithm. Peibei and Jun (2010)
compared the Voronoi algorithm, grid method and visual graph for multi missile path planning.
Wang et al. (2011) proposed a real-time path planning for UAV (Unmanned Air Vehicle) based
on PSO algorithm improved by modification of inertia weight and self-adaption. Huang et al.
(2012) proposed a method for cruise missile path planning based on the voronoi diagram and
biogeography-based optimization. Liu et al. (2015) proposed an algorithm for path planning
based on a series of geometrical constraints and rules using multi-attribute fuzzy optimization
(MAFO), which produced successful results for real-time functions.

Some of the above-mentioned papers focused only on the optimization method and solved
the problems using heuristic methods to increase convergence speed, reduce the number of as-
sessments, reduce optimization time, reduce computation volume, and combine the optimization
methods. They have also compared their methods with other optimization methods. Others fo-
cused on optimization results and interpreted them based on bird dynamics and the objective
function by changing design variables and comparing the results with empirical methods. This
paper deals with surface-to-air missile path planning based on pitch programming in order to
achieve the maximum range and optimal height. In this optimization model, we used genetic
and PSO algorithms and compared them in a specific problem.

2. Exploration algorithm

Generally, heuristic algorithms can be divided into three groups:

e Algorithms which focus on structural features of the problem to define a producer algorithm
or local search.

e Algorithms which focus on heuristic guidance of a producer algorithm or local search so
that the algorithm can overcome sensitive conditions (e.g. optimal local escape).

e Algorithms which focus on a heuristic framework or concept using mathematical program-
ming (usually by precise methods).

The first group may perform the job very well (sometimes in optimal level) but is trapped in
low quality answers. These algorithms were improved by new approaches, including algorithms
which explicitly or implicitly managed the relationship between search diversity (where there are
symptoms that the search is going towards bad regions of search space) and search intensification
(with a view to find the best answer in the studied region). Among such algorithms, we can
mention simulated annealing, particle swarm optimization, and colony optimization and neural
network. The most famous and efficient algorithms are those which provide problem solving
models using genetic evolution patterns. These algorithms develop an effective search method
in large spaces which finally lead to finding the optimal answers. In this part, we first introduce
the heuristic algorithms and then explain how to find the answer (Puchinger and Raidl, 2005).

2.1. Genetic algorithm

The idea of evolutionary algorithms was coined by Richenberg in 1960. According to Darwin’s
Theory of Evolution, those natural traits which adapt more to natural laws have more chance of
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survival. Based on the natural selection law, those species of a population which possess the best
traits continue their generation and those which lack such traits are gradually destroyed over
time. Therefore, natural selection may be considered as a competition for preserving superior
traits. Genetic algorithms are evolutionary algorithms inspired by biological sciences such as
genetics, mutation, natural selection and combination.

Important parameters in a genetic algorithm are encoding, population size, initial population,
chromosome rating (fitness function scale), parent selection mechanism, crossover rate, genetic
operators, replacement, and algorithm stoppage parameters (Holland, 1975).

Evolution begins from the initial population and is repeated in the next generations. Figure 1
illustrates the steps of a genetic algorithm. The important point in a genetic algorithm is to select
the most appropriate members of each generation, not the best ones (Puchinger and Raidl, 2005;

Jarvis and Goodacre, 2005).
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Fig. 1. Genetic algorithm

2.2. Particle swarm optimization algorithm

Birds show certain social behaviors. To better understand this technique, we will explain a
scenario in the next paragraphs.

A group of birds are randomly seeking food in a specific area. In this area, only a piece of
food exists and the birds are unaware of its exact location. However, they know their distance
from the food in any moment. In such circumstances, a good strategy to find the exact location
of food is to follow the bird that is closest to the food.

In fact, each bird in PSO algorithm is a solution to the problem. Every answer has a fitness
value which is obtained from the fitness function of the problem. This technique aims to find the
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location with the best fitness value in the problem space. The fitness value directly affects the
direction and speed of bird movement (problem answers) towards food location (optimal answer).
This algorithm starts to work with a number of initial answers and searches for the optimal
answer by moving the answers during frequent repetitions. In each repetition, the location of
best fitness value for each particle (pBest) and the location of the best particle in the current
population (gBest) are specified (Fan and Shi, 2001). Figure 2 illustrates the steps of PSO

algorithm.
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Fig. 2. Particle swarm optimization algorithm

3. 3DOF simulation

Designing and testing guidance and control systems of aerospace vehicles requires path simu-
lation based on the system model. The advances in computer science, the increased processing
power, and the efforts to model subsystems and other associated items have led to the improved
planning process. On the other hand, special attention has been paid to the application of si-
mulation in multithreaded optimization, and efforts have been made to perform simulation with
high accuracy and speed. Generally, simulation of flight dynamics is divided into five parts:

1. Simplification

2. Selection of reference coordinates
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3. Extraction of subsystem equations and modeling
4. Simulation of motion equations in a computer program

5. Authentication of the simulation

The simplification refers to the assumptions used to simplify the study of vehicle dynamics.
Since the mass center path of the vehicle is more important than its rotation, 3DOF simulation
greatly contributes to the estimation of vehicle performance and investigation of the path. In
contrast to 6DOF simulation, 3DOF simulation does not use Euler laws and does not need to
compute body rates, so there is no need to aerodynamic and propulsion moments. One of the
subjects in each simulation is the selection and conversion of coordinates. In many parts of the
simulation, we need to convert coordinates of the parameters so that we can use their values in
other coordinates (Zipfel, 2007).

Body coordinates (Fig. 3) are one of the most important coordinates because they make many
measurements and computations. For example, accelerations are measured by accelerometers
installed in body coordinates.

Missile body-fixed

Z

Fig. 3. Body coordinates

In missiles, all X3 and Y} directions are the main axes due to rotational symmetry, so geo-
metrical signs are used to locate unit vectors. As one can see, the origin of coordinates is on the
boost point of the ground, the axis z is in the boost direction, the axis z is perpendicular to the
ground (towards the ground), and the axis y makes the coordinate (Zipfel, 2007), see Fig. 4.

If Missile DATCOM (MD) software is used in simulation to compute aerodynamic coeffi-
cients, it is necessary to pay attention to the body coordinate and the positive directions of its
axis in the software (Fig. 5).

3.1. Gravity model

In any simulation, a gravity model must be selected with the required accuracy. Distribution
of non-spherical mass of the Earth affects the size and direction of gravity on the missile, but
these components are so small that they are omitted in surface-to-air missile programs. According
to equation (3.1), gravity acceleration depends on vehicle height in each moment and decreases
with the increased height (Tewari, 2007)

Fe )2 (3.1)

g:go(Re—l—H

where ¢ is gravity acceleration, H is height, R. is ground radius (6378140 m), and gravity
acceleration at sea level is 9.80665 m /s?.
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Fig. 4. Ground coordinates

Fig. 5. MD software coordinates

3.2. Standard atmosphere model

Investigation of aerospace vehicle flight has two parts: atmosphere flight mechanics and
space flight mechanics. The standard atmosphere is modeled in the form of frequent layers with
different temperature rates based on height T'(h). The objective is to provide and develop a
21-layer standard atmosphere model for the ground to be used in simulation of atmosphere
paths and in determination of dimensionless aerodynamic parameters for aerodynamic force
modeling. To do so, two standard atmosphere models of 1976 and 1962 are used. These two
models have negligible difference until the height of 0 < A < 86, but the difference becomes
noticeable in the exosphere layer (Tewari, 2007).

3.3. Point mass 3DOF equations

The most important step before modeling is the selection of inertia reference coordinates.
For example, in aerospace vehicles flying near the Earth (such as the satellites rotating in lower
orbits), circular or elliptical inertia reference is used. This may be accompanied with circular
or elliptical models. The flat ground model is used for airplanes and tactical missiles. First,
using Newton’s second law, we write transmission equations for an aerospace vehicle exposed to
aerodynamic forces and gravity
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. 1
vxbody = (M) (T + anero + Fxg'ravitybody) - (qubody - T/beody)

. 1
beody - (M)(Fyaero + Fygravitybody) - (Tvxbody - pvzbody) (32)

. 1
UZbody = (M) (FZaero + FZgravitybody) - (pvybody - qvﬂibody)

where M is vehicle mass and Vipay = [Ug, v Vbody > Vzbo dy] is body mass center speed of
the vehicle. T describes the force produced by thrust. Fie., = [F F, F,, .| and

Taero’ ~ Yaero’ © Zaero
Fravity = [waavitybody sy gravitypog, Zwavitybody] denote the aerodynamic force and gravity force,
respectively. p, ¢ and r denote the angular velocity about Xp, Yp and Zp directions in the body
coordinates. The left side of the above equations can be easily computed in body coordinates,
through which vehicle acceleration components in body coordinates will be determined. By in-
tegration of the above equations based on initial zero conditions, speed components in body

coordinate will be determined (Handbook MIL, 1995).

3.4. Aerodynamic forces and torques

Atmosphere path of aerospace vehicles is under the influence of aerodynamic forces and
moments. Aerodynamic forces are developed by the interaction between particles and vehicle
body during movement in atmosphere. An influential factor in vehicle aerodynamics is the
general configuration of the vehicle. On the other hand, the constituent parts of these forces
and torques include aerodynamic factors. Identification of importance and accuracy of these
factors has a determining role in the design, control and planning the path and in the analysis of
vehicle stability. Assuming that wind speed is zero and angular speed of the missile is negligible,
aerodynamic forces and moments relate only to dimensions, geometry, speed and parameters of
atmosphere.
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Fig. 6. Aerodynamic forces on missile
According to Fig. 6, the aerodynamic forces are determined by

1
ane'ro = §pv2SCA F

1 1
Yaero = 5/0‘/2503/ FZae'ro = 5[)‘/250]\/' (33)

where § is surface, p is density, C's, Cy and Cy are coefficients of axial, lateral and normal
forces, respectively, and V' is mass center speed of the vehicle in the body coordinates (Tewari,

2007).
4. Numerical results

To achieve optimal planning, a code has been codified in MATLAB environment for genetic and
PSO algorithms. In this program which is connected to MATLAB Simulink, first the parame-
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ters of each algorithm are adjusted by the user. The cost function is optimized according to
the adjusted parameters and simulation results (which exist in the algorithm). In this specific
case, the optimization problem includes the cost function in the form of equation (4.1) for the

achievement of optimal height and the desired maximum

f=(H—-H)’+(R* - Ry)?

(4.1)

where H and R are height and range requested by the designer, H; and R, are height and range
of the vehicle in each moment of flight. Tables 1 and 2 contain the parameters of genetic and
PSO algorithms.

Table 1. Parameters of genetic algorithm

Parameter

‘ Value ‘

Generation number

100

Population number

50

Mutation rate

0.1

Selection rate

0.5

Table 2. Parameters of PSO algorithm

‘ Parameter ‘ Value ‘
Particle number 100
Local optimal coefficient 2
Comprehensive optimal coefficient 2
Speed contraction coefficient 0.5

Table 3 represents the system parameters needed for 3DOF simulation of a surface-to-air
missile.

Table 3. System parameters needed for simulation

‘ Parameter ‘ Value ‘
Total mass in boost time 237.777 kg
Total mass of booster 45 kg
Main engine trust 35585.766 N
Booster trust 60453 N
Main engine burn time 2.9s
Booster burn time 2s
Pressure behind the nozzle 70000 Pa

To guide the vehicle, we used pitch programming in the simulation problem. For this purpose,
we designed a boost angle and angular rate schedule and used them as the simulation input.
The preset pitch rate command is generated by

0

a(t - tl)
0={ t,— 1,

a

aeb(t7t3)

for t<ty

fOI‘ tl <
for to <t < t3

for t>t3

(4.2)
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where 6 isthe pitch rate command used as pitch programming in the simulation problem, a and
b schedule the angular rate, ¢ denotes the simulation time, ¢1 is defines the engine start time,
to and t3 are 0.1s and 0.3 s after starting main engine, respectively.

Geometrical parameters of the vehicle, aecrodynamic coefficients tables and angular schedule
were recalled by the input file at the beginning of the program, and the related parameters were
initialized.

To evaluate the vehicle performance, we had to determine the range that the vehicle would
achieve if it reached the intended height. To do so, we planned the path in two scenarios: 1) the
ability to achieve flight height of 10000 m, and 2) reaching the height of 6000 m as the most
common altitude in the path planning strategies. These two scenarios were investigated to reach
maximum range as well as achieving altitudes in the two case studies. Optimization results of
the algorithms will be represented in the following Sections.

According to the boost conditions, optimization algorithms modified speed, acceleration and
height. These modifications affected aerodynamic coefficients and dynamic pressure. For this
reason, the force coefficients are calculated for seven particular Mach numbers ranging from 0.3
to 3, at five angles of attack a for each Much number in the range of 0° to +15°. The outputs
of Missile DATCOM are shown in Figs. 7 and 8. These results are set as a lookup table in
SIMULINK and the interpolated based Mach number, altitude and angle of attack in the flight
simulation process.

Fig. 7. Axial force coefficient with respect to Mach number and angle of attack

The average execution time of both algorithms is measured and given in Table 4, using
a specific computer, characterized by Intel(R) Core(TM) i3 CPU M370 at 240GH. Given the
performance of optimization algorithms in this specific problem, we found that the genetic
algorithm had a relatively good performance and its optimal solutions were closer to reality.
However, it had higher computation cost.

Table 4. Average execution time of PSO and GA in the path planning problem

. Average execution time [s]
Algorithm First scenario | Second scenario
PSO 510.2672 305.7908
GA 785.2714 486.6852

Figures 9 and 10 illustrate some of these modifications for both scenarios.
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Fig. 8. Normal force coefficient with respect to Mach number and angle of attack
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Fig. 9. Functional changes of the vehicle in the first scenario

As you can see in Figs. 9 and 10, vehicle performance in reaching the specified height is
similar in both scenarios. Therefore, the changes have similar functional parameters but varied
in numerical values. Tables 5 and 6 summarize the optimization results.

5. Conclusion

In this paper, we optimized a surface-to-air missile path using genetic and PSO algorithms in
order to achieve the maximum range and optimal height based on 3DOF simulation. In this
optimization model, design variables are based on the pitch programming, initial pitch angle
and pitch variations rate slope. According to 3DOF simulation results, vehicle performance
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Fig. 10. Functional changes of the vehicle in the second scenario

Table 5. Comparison of algorithms for the height of 10000 m

Algorithm
Parameter PSO | GA
Initial boost angle [deg] | 55.3114 | 53.4212
a —0.0492 | —0.0558
b —0.7135 | —0.8228
Operating range [m] 8250 8125

Table 6. Comparison of algorithms for the height of 6000 m

Parameter PsélgoTthné x
Initial boost angle [deg] | 43.8424 | 42.4933
a —0.0784 | —0.0622
b —0.3855 | —0.4295

Operating range [m] 7500 7225

did not differ in the mentioned optimization algorithms. The difference lied only in the type
of algorithm. In this specific case, the genetic algorithm was closer to reality but took longer
computation time. PSO algorithm offered acceptable results and shorter computation time, so
it was found to be more efficient in the surface-to-air missile path planning.
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