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In the paper, a formula for calculation of the jerk of a point moving along a space curve is
derived. Such a formula is needed for control of motion to calculate jerks (second derivatives
of the velocity) by axes of motion. On the basis of this formula, an expression for the
maximum admissible velocity on the space curve to satisfy limitation by the jerk is given as
well. Such a requirement also arises in the motion control.
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1. Introduction

In the multi axis motion control, a motion command may contain four kinematics parameters:
position, velocity, acceleration and jerk. Such a command must be issued for each axis x, y and
z controlled by a servo on each control cycle. While calculation of the velocity and acceleration
is trivial, calculation of jerk (that is mainly used for analysis of motion) is a new demand. In
a number of papers devoted to the motion control, a tangential jerk along the trajectory is
considered while the problem of jerk caused by a high curvature on the transition curve between
two line segments is a new one. For a particular case of planar motion, the jerk vector was
considered by Shot (1978). In this special case, the jerk can be resolved into tangential and
normal components. As will be shown below, in the case of 3D space motion, the jerk vector has
three components although the acceleration vector still can be decomposed into tangential and
normal.
Consider a space curve in the 3D space defined by a vector function γ(σ) =

{ϕx(σ), ϕy(σ), ϕz(σ)}. In further considerations, any special nature of the parameter σ
(σ – is not time or arc length s) and any special limit of the parameter variation are not
supposed. We suppose here that γ(σ) is a continuous mapping σ → R3, σ ∈ [a, b] with three
times differentiable coordinate functions ϕx(σ), ϕy(σ), ϕz(σ) that define geometrical properties
of the curve.
As γ′(σ) = {ϕ′x(σ), ϕ′y(σ), ϕ′z(σ)} then the unit tangent vector can be defined as τ (σ) =

{ϕ′x(σ)/‖γ ′(σ)‖, ϕ′y(σ)/‖γ ′(σ)‖, ϕ′z(σ)/‖γ ′(σ)‖}.
The second derivative a(σ) = γ ′′(σ) = {ϕ′′x(σ), ϕ′′y(σ), ϕ′′z (σ)} with a normal compo-

nent an(σ) = a(σ) − [a(σ) · τ (σ)]τ (σ). Then, the unit normal vector can be defined as
n = an(σ)/‖an(σ)‖.
The binormal unit vector b(σ) can be defined as τ (σ) × n(σ). Thus, we know the Frenet-

-Serret frame τ (σ), n(σ) and b(σ) for each parameter value σ.
Consider a point moving along a curve defined by its radius-vector r(t). For each control cycle

(at time t) from the profiler calculations we know the position increment along the curve s(t),
velocity along the curve ds/dt = v(t), acceleration along the curve d2s/dt2 = a(t) and jerk
along the curve d3s/dt3 = J(t), where s is a distance along the curve. The value of the curve
parameter σ is not known but with the use of numerical methods, the mapping s → σ can be
done with any required precision.
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2. Vector of jerks for the position increment s(t)

The velocity and acceleration vectors of the point moving along the space curve are defined by

v(t) =
dr

dt
= τ
(ds
dt

)

a(t) =
dv

dt
= τ
(d2s
dt2

)
+ n
(ds
dt

)2 1
ρ(s)
= τ
(d2s
dt2

)
+ n
(ds
dt

)2
K1(s)

(2.1)

where K1(s) and ρ(s) are the curvature and radius of the curvature at point s.
The vector of the third derivative (jerk) can be calculated as da(t)/dt

J(t) =
da

dt
=
dτ

ds

ds

dt

d2s

dt2
+ τ
(d3s
dt3

)
+
dn

ds

(ds
dt

)3
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d
[(
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)2
K1(s)

]
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(2.2)

At first, we consider

n
d
[(
ds
dt

)2
K1(s)

]

dt
= n
[
2
ds

dt

d2s

dt2
K1(s) +

(ds
dt

)2dK1(s)
ds

ds

dt

]
(2.3)

By the Frenet-Serret formulas

dτ

ds
= K1n

dn

ds
= −K1τ +K2b (2.4)

The curvatureK1 and torsion K2 for an arbitrary curve parameter σ (which is not necessarily
the arc length s) at the parameter point σ are calculated by

K1(σ) =
‖γ ′(σ) × γ ′′(σ)‖
‖γ ′(σ)‖3

K2(σ) =
[γ ′(σ),γ ′′(σ),γ ′′′(σ)]

‖γ ′(σ)× γ′′(σ)‖2 =
[γ ′(σ)× γ ′′(σ)] · γ′′′(σ)
‖γ ′(σ)× γ′′(σ)‖2

(2.5)

where γ′(σ), γ ′′(σ), γ ′′′(σ) are known curve derivatives, and the curve parameter σ can be found
from the numerical mapping s→ σ (if σ 6= s) that must be done for each point s. We calculate
curvature and torsion at the parameter point σ that corresponds to the increment s along the
curve. Point s is a point where the profiler calculations have just determined ds/dt, d2s/dt2,
d3s/dt3. So, at the point s, we can use K1(σ) and K2(σ) instead of K1(s) and K2(s). Below we
use designations K1 and K2.
From (2.2)-(2.4), we get

J(t) = K1n
ds
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(2.6)

Since we do not know the function K1(s) then calculation of its derivative at the point s
requires special consideration. K1(s) = K1[s(σ)] = K1σ(σ), and by differentiating both sides we
get

dK1(s)

ds
=
dK1σ(σ)

ds
=
dK1σ(σ)

dσ

dσ

ds
=
dK1σ(σ)

dσ

/ ds
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=
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1

‖γ ′(σ)‖ (2.7)
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where instead of the unknown dσ/ds we used the derivative ds/dσ = ‖γ ′(σ)‖ of the inverse
function s(σ), that is a curve length function

dK1σ(σ)

dσ
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d‖γ

′(σ)×γ′′(σ)‖
‖γ′(σ)‖3

dσ
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′(σ)‖3
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) 1
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(2.8)

Below we assume that for any vector p the derivative of its Euclidean norm can be calculated
as

‖p‖′ = 1
2
(p′p+ pp′)

1√
pp
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pp′
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So, finally we get

dK1σ(σ)

dσ
=
[γ ′(σ)× γ′′(σ)] [γ ′(σ)× γ ′′′(σ)]
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γ
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Another derivation of (2.10) was given by Angeles (2003, pp. 371-372).

In some cases (cubic spline with iterative adaptation of the parameter σ or PH-curve proposed
by Farouki (2010)) we can use the curve parameter close or equal to natural σ = s. In such cases,
the curvature K1 and its derivative dK1/ds are defined as

K1 = ‖γ ′′(s)‖ =
√
[ϕ′′x(σ)]

2 + [ϕ′′y(σ)]
2 + [ϕ′′z(σ)]

2
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1
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γ
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In (2.6), we have come to the vector

J(t) = τ (σ)C1 + n(σ)C2 + b(σ)C3 (2.12)

The vectors τ (σ), n(σ) and b(σ) are defined above, and the scalar coefficients C1, C2, C3 are
also known from (2.6)
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3. Applications of the formula

In the case of uniform motion with ds/dt = V , d2s/dt2 = 0 and d3s/dt3 = 0 we get

C1 = −
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ρ

(ds
dt

)3
= −K21V 3 C2 =

(ds
dt

)3 dK1(s)
ds

= V 3
dK1(σ)

dσ

1
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ρ
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)3
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3

(3.1)

In the case of plane 2D motion with K2 = 0

C1 =
d3s

dt3
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ρ

(ds
dt

)3
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‖γ ′(σ)‖ C3 = 0
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Formulas (3.1) can be used for the estimation of the maximum velocity V admissible on the
curve to satisfy condition ‖J‖ ¬ Jmax. While generating the trajectory, instead of K1(s) and
K2(s) we know K1(σ) and K2(σ) for any parameter value σ. So, in the case of uniform motion
with ds/dt = V and designation K̃1 = [dK1(σ)/dσ]/‖γ ′(σ)‖ we get
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2
1 +K

2
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2
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3
√
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(3.3)

and the maximum velocity admissible at all trajectory points must satisfy

V ¬
3
√
Jmax

6
√
maxΨ(σ)

(3.4)

In most applications, the point σ∗ that produces Ψ(σ∗) = maxΨ(σ) belongs to a small neigh-
borhood of the point σp such that γ(σp) can be called the peak of the curve.
In the case of 2D uniform motion, ds/dt = V , K2(σ) = 0, and we get

‖J(σ)‖ = V 3
√
K41 (σ) + K̃

2
1 (3.5)

Fig. 1. (a) Velocity vector modulus. (b) Jerk vector modulus

In Fig. 1a, we can see a velocity decrease from 5 · 105 down to 218560.65 to satisfy the
condition ‖J(σ)‖ ¬ 109. It happens on the transition curve between two lines constructed as a
3D septic polynomial. In Fig. 1b, we can see that the jerk comes exactly to the limiting value
(time is measured in seconds, velocity in count/s, jerk in count/s3). The calculations have been
performed by (3.3) and (3.4).
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