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In this paper, a multi-spring model is used for modelling of the crack in a micro/nanobeam
under axial compressive load based on a modified couple stress theory. This model inc-
ludes an equivalent rotational spring to transmit the bending moment and an equivalent
longitudinal spring to transmit the axial force through the cracked section, which leads to
promotion of the modelling of discontinuities due to the presence of the crack. Moreover,
this study considers coupled effects between the bending moment and axial force on the
discontinuities at the cracked section. Therefore, four flexibility constants appear in the con-
tinuity conditions. In this paper, these four constants are obtained as a function of crack
depth, separately. This modelling is employed to solve the buckling problem of cracked
micro/nanobeams using a close-form method, Euler-Bernoulli theory and simply suppor-
ted boundary conditions. Finally, the effects of flexibility constants, crack depth and crack
location on the critical buckling load are studied.
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1. Introduction

It is clear that presence of cracks or any other defects into any structure leads to a decrease of its
capabilities. The issue of cracking in the structures is interested in both macro and small scale
dimensions. Thus, presentation of an accurate and appropriate model to capture crack conditions
is very important. In many studies, cracks have been modeled by means of different types of
springs. The type of the spring model depends on problem type, such as the type of loading and
geometry. In fact, kinds of displacements at the cracked section determine what modelling should
be selected. For example, a longitudinal spring model is used when the axial displacement is
dominant (Hsu et al., 2011), a rotational spring model is applicable for a wide range of problems
in which the angle changes between the crack surfaces are important (Akbarzadeh Khorshidi
et al., 2017; Akbarzadeh Khorshidi and Shariati, 2017b; Hasheminejad et al., 2011; Ke et al.,
2009; Loya etal, 2006; Shaat et al., 2016; Torabi and Nafar Dastegerdi, 2012; Wang and Wang,
2013; Yang and Cheng, 2008). Structures under torsion incorporate a torsional spring to describe
discontinuity at the cracked section (Loya et al., 2014). Rice and Levy (1972) stated that the
presence of a crack leads to a local reduction in bending and extensional stiffness along the crack
line. Therefore, it is more accurate to use a model which considers these two local reductions.
Akbarzadeh Khorshidi and Shariati (2017a) presented buckling analysis of cracked nanobeams
based on a modified couple stress theory and using a two-spring model at the cracked section.
The authors used the mentioned model according to the historical background expressed by Rice
and Levy (1972) and the discontinuity relations presented by Loya et al. (2009).

In majority of recent studies on static and dynamic behavior of micro/nanobeams in the
presence of a micro or nano-scale crack, the flexibility constant which introduces the crack
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severity is considered as a hypothetical input. However, there are studies which formulate the
severity of the crack as a function of the crack depth, the material length scale parameter and
other mechanical characteristics of the beam (Shaat et al., 2016; Akbarzadeh Khorshidi et al.,
2017). These papers use energy stored in the spring and compare it with the strain energy release
rate at the crack surfaces.
In the present study, the two-spring model is employed to describe discontinuities at the

cracked section and, consequently, four flexibility constants appear, which gives the severity of
the crack. Each flexibility constant is presented as a function of crack depth (as an unknown
parameter) and other parameters (given values). Therefore, the continuity relations are formu-
lated against the crack depth. The macroscopic fracture mechanics is used for micro/nano-scale
beams based on atomistic simulation models and continuum models (Joshi et al., 2010; Tsai et
al., 2016; Hu et al., 2017). Then, a modified couple stress based solution is proposed for buckling
analysis of the cracked beams.

2. Modelling

Consider an Euler-Bernoulli beam with length L, width b, thickness h and a crack with depth a
is located at distance Lc from the left side of the beam (Fig. 1a). In the present modelling, the
cracked beam is modelled as two separate segments connected by two massless elastic longitu-
dinal and rotational springs (Fig. 1b). Therefore, the total strain energy of the cracked beam is
equal to the strain energy of these two segments plus the strain energy stored in the springs.
With this explanation, the released potential energy due to the presence of the crack is equal
to the strain energy stored by the springs. The continuity conditions governed between the two
beam segments are defined as follows (Akbarzadeh Khorshidi and Shariati, 2017a; Loya et al.,
2009)

w1 = w2 N1 = N2 M1 =M2 x = Lc

∆θ = KMMM +KMNN ∆u = KNNN +KNMM
(2.1)

where∆θ is the difference in the rotation angles between two crack surfaces (or the angle rotated
by the rotational spring) and ∆u is the longitudinal displacement occurred at the cracked section
(or amount of longitudinal spring compression). N and M are, respectively, the axial force and
the bending moment. Also, KMM , KMN , KNN and KNM are four coefficients to represent the
coupled effects between the axial force and bending moment in discontinuity relations.

Fig. 1. (a) A schematic of the cracked beam and (b) the springs model for a cracked section

Therefore, the strain energy of springs Usprings is stated as

Usprings =
1

2
M∆θ +

1

2
N∆u =

1

2
M(KMMM +KMNN) +

1

2
N(KNMM +KNNN) (2.2)
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Based on generalized Irwin’s (Irwin, 1960) relation, the potential energy-release rate G is
introduced as (Rice and Levy, 1972)

G =
(1− ν2)a
E

(πσ2bY
2
b + 2

√
πσtσbYtYb + σ

2
t Y
2
t ) (2.3)

where E is Young’s modulus, ν is Poisson’s ratio, σ and Y , respectively, reflect the stress and a
dimensionless function of the crack depth to thickness ratio a = a/h. Indices t and b represent
the status of the parameters in tension and bending, respectively.
When a cracked beam is subjected to compression, it senses a local compliance at the crac-

ked section, and the zones around the crack tend to open the crack lips. Based on the stress
concentration at the crack tip, a uniform stress field distributes along the beam thickness (see
Akbarzadeh Khorshidi and Shariati, 2017b). Therefore, the crack lips suffer stretching and ben-
ding (Fig. 2). The bending stress and tensile stress (thickness average stress) defined in Eq. (2.3)
are shown as

σb =
Mh

2I
=
6M

bh2
σt =

N

A
=
N

bh
(2.4)

where I in Eq. (2.4)1 represents the moment of inertia and, for a rectangular cross section, is
equal to bh3/12. Also, A in Eq. (2.4)2 denotes the cross section area and, for the mentioned
cross section, is equal to bh.

Fig. 2. The stress field due to the applied load and moment along the thickness

The strain energy due to the presence of the crack is obtained as

Uc =

a
∫

0

G dAc = b

a
∫

0

G da (2.5)

Substituting Eqs. (2.3) and (2.4) into Eq. (2.5), we have

Uc =
(1− ν2)
Eb

(36πM2

h2

a
∫

0

aY 2b da+
12
√
πMN

h

a
∫

0

aYtYb da+N
2

a
∫

0

aY 2t da
)

(2.6)

where a = a/h introduces the crack depth to thickness ratio. The dimensionless function Yt is
defined as (Gross and Srawley, 1965)

Yt = 1.99 − 0.41a + 18.70a2 − 38.48a3 + 53.85a4 (2.7)

Also, the dimensionless function Yb is defined as (Ke et al., 2009)

Yb = 1.15 − 1.662a + 21.667a2 − 192.451a3 + 909.375a4 − 2124.310a5

+ 2395.830a6 − 1031.750a7
(2.8)
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We consider that Uspring represented in Eq. (2.2) is equal to Uc obtained in Eq. (2.6), so, the
flexibility constants KMM , KMN , KNN and KNM are separately achieved as follows

KMM =
72π(1 − ν2)
Ebh2

a
∫

0

aY 2b da KMN = KNM =
12
√
π(1− ν2)
Ebh

a
∫

0

aYbYt da

KNN =
2(1− ν2)
Eb

a
∫

0

aY 2t da

(2.9)

As we know, the stress resultants introduced in Eqs. (2.1) and (2.2) (the bending momentM
and the axial force N) are defined as

N =

∫

A

σxx dA M =M1 +M2 =

∫

A

zσxx A+

∫

A

mxy dA (2.10)

where M1 is the conventional bending moment and M2 is the couple moment that comes from
the modified couple stress theory proposed by Yang et al. (2002). The displacement field for the
Euler-Bernoulli beam is

u1 = u(x)− z
dw

dx
u2 = 0 u3 = w(x) (2.11)

where u and w are the axial and lateral displacements of the midplane, respectively. Therefore,
the nonzero strains and stresses are shown as

εxx =
du1
dx
=
du

dx
− z
d2w

dx2
σxx = Eεxx = E

(du

dx
− z
d2w

dx2

)

(2.12)

Also, the nonzero terms of the symmetric curvature tensor χ and the deviatoric part of the
couple stress tensor m are defined as (Akbarzadeh Khorshidi and Shariati, 2017a; Yang et al.,
2002)

χxy = −
1

2

d2w

dx2
mxy = −ℓ2µ

d2w

dx2
(2.13)

These tensors consider the couple stress effects in the modified couple stress theory, and ℓ is
a material length scale parameter to capture the size effect (Yang et al., 2002). µ = E/(2 + 2ν)
is the shear modulus.
Now, substituting Eqs. (2.12) into Eq. (2.10), we have

N = EA
du

dx
M = −(EI + ℓ2GA)

dw2

dx2
(2.14)

where Deff = EI + ℓ
2GA is the effective beam stiffness obtained based on the modified couple

stress theory. According to Eq. (2.14), we can rewrite Eq. (2.1) as

w1 = w2
du1
dx
=
du2
dx

d2w1
dx2
=
d2w2
dx2

x = Lc

dw2
dx
−
dw1
dx
= KMM

d2w

dx2
+KMN

du

dx
u2 − u1 = KNN

du

dx
+KNM

d2w

dx2

(2.15)

where

KMM = DeffKMM KMN = EAKMN

KNM = DeffKNM KNN = EAKNN
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Thus, we have

KMM = 36π(1 − ν)h
[1 + ν

6
+
( ℓ

h

)2]
a
∫

0

aY 2b da

KMN = 12
√
π(1− ν2)

a
∫

0

aYbYt da

KNM = 6
√
π(1− ν)h2

[1 + ν

6
+
( ℓ

h

)2]
a
∫

0

aYbYt da

KNN = 2(1 − ν2)h
a
∫

0

aY 2t da

(2.16)

Using Eqs. (2.7) and (2.8), and integrating from Eqs. (2.16), the flexibility constants are
obtained as functions of the crack depth to thickness ratio, and they are represented as follows

KMM = 36π(1 − ν)h
[1 + ν

6
+
( ℓ

h

)2]

a2(0.6612 − 1.2742a + 13.1490a2 − 102.9316a3

+ 533.4547a4 − 2321.1924a5 + 11126.9823a6 − 50267.9855a7 + 175186.4492a8

− 4399132.5842a9 + 772269.2856a10 − 927343.5821a11 + 723108.2196a12

− 329586.3470a13 + 66531.7539a14)

KMN = 12
√
π(1− ν2)a2(1.1442 − 1.2596a + 16.3259a2 − 93.4384a3 + 403.2692a4

− 1303.1856a5 + 3902.0329a6 − 9790.7006a7 + 17593.8331a8 − 20534.4869a9

+ 14059.7654a10 − 4273.8259a11)

KNM = 6
√
π(1− ν)h2

[1 + ν

6
+
( ℓ

h

)2]

a2(1.1442 − 1.2596a + 16.3259a2

− 93.4384a3 + 403.2692a4 − 1303.1856a5 + 3902.0329a6 − 9790.7006a7

+ 17593.8331a8 − 20534.4869a9 + 14059.7654a10 − 4273.8259a11)

KNN = 2(1 − ν2)ha2(1.9800 − 0.5439a + 18.6485a2 − 33.6968a3 + 99.2611a4

− 211.9012a5 + 436.8375a6 − 460.4773a7 + 289.9822a8)

(2.17)

3. Solutions

According to the Euler-Bernoulli beam theory, the governing equations for buckling of a cracked
micro/nanobeam are derived as (Akbarzadeh Khorshidi and Shariati, 2017b)

(EI + ℓ2GA)
d4wi
dx4i
+ P
d2wi
dx2i
= 0

{

i = 1 0 ¬ x ¬ Lc
i = 2 Lc ¬ x ¬ L

d2ui
dx2i
= 0

{

i = 1 0 ¬ x ¬ Lc
i = 2 Lc ¬ x ¬ L

(3.1)

Here the subscript i = 1, 2 refers to the left and right segments of the cracked beam. The
boundary conditions of a simply supported beam are expressed as

u1(0) = w1(0) = 0 u2(L) = w2(L) = 0

d2w1
dx2

∣

∣

∣

∣

∣

x=0

= 0
d2w2
dx2

∣

∣

∣

∣

∣

x=L

= 0
(3.2)
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The general solution to Eqs. (3.1) can be obtained as

wi(x) = Ai sin(αx) +Bi cos(αx) + Cix+Di i = 1, 2

ui(x) = Fix+Hi i = 1, 2
(3.3)

where α =
√

P/Deff , Ai, Bi, Ci, Di, Fi and Hi are unknown constants to be determined from

the boundary and continuity conditions.
Applying continuity conditions (2.15) and boundary conditions (3.2) into Eqs. (3.3), the

unknown constants are derived as

A1 =
(

1−
tan(αL)

tan(αLc)

)

A2 B1 = D1 = 0 C1 = 2α
tan(αL)

sin(αLc)

L− Lc
L
A2

B2 = − tan(αL)A2 C2 = −2α
tan(αL)

sin(αLc)

Lc
L
A2 D2 = 2αLc

tan(αL)

sin(αLc)
A2

F1 = F2 H1 = 0 H2 = −LF2

F2 =
A2α

KMN

(

KMMα[sin(αLc)− tan(αL) cos(αLc)]−
tan(αL)

sin(αLc)

)

(3.4)

also

α =
L+KNN
KMNKNM

KMMα
(

sin2(αLc)− 12 tan(αL) sin(2αLc)
)

− tan(αL)

sin2(αLc)− 12 tan(αL) sin(2αLc)
(3.5)

The critical buckling load can be obtained by solving Eq. (3.5). For example, when we have
an intact beam (a = 0→ KMM = KMN = KNN = KNM = 0), according to Eq. (3.5) we have

tan(αL) = 0 → α =
nπ

L
n=1−→ Pcr = Deff

(π

L

)2
(3.6)

This is quite similar to the results obtained by Mohammad-Abadi and Daneshmehr (2014)
for modified couple stress based intact microbeams.
Using Eq. (3.5), the critical buckling load corresponding to each crack depth and crack

location can be determined. Also, the present model (four flexibility constants) can be compared
with the common model (only one constant) by removing the other constants. Moreover, the
coupled effects between the bending moment and axial force can be evaluated by neglecting the
crossover flexibility constants (KMN and KNM ).
Thus, the following equation can be used when only one flexibility constantKMM is employed

KMMLα
(

sin2(αLc)−
1

2
tan(αL) sin(2αLc)

)

− tan(αL) = 0 (3.7)

Also, the following equation can be used when the crossover flexibility constants are removed

(L+KNN )KMMα
(

sin2(αLc)−
1

2
tan(αL) sin(2αLc)

)

− tan(αL) = 0 (3.8)

4. Results

To illustrate the flexibility constants effects on the buckling behavior of cracked mi-
cro/nanobeams, some numerical examples of the obtained solution are presented in this Sec-
tion. Also, the effects of the crack depth and crack location on the critical buckling load are
investigated. First, the obtained results are validated with (Ke et al., 2009; Wang and Quek,
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2005) for macro-scale cracked beams (ℓ = 0). This comparison can be observed in Table 1, so
that P = Pcr/Pcr0 is the nondimensional critical buckling load (where Pcr0 denotes the critical
buckling load of an intact beam). In (Ke et al., 2009; Wang and Quek, 2005), only one flexibility
constant KMM (one equivalent rotational spring model) was employed, so, the present results
have two separate columns for the one-spring model where we have only KMM and the two-
spring model where all flexibility constants appear. In Table 1, each crack depth corresponds
to the crack severity, for example, a/h = 0.1 corresponds to KMM = 0.01 (this parameter is
introduced with symbol Θ in (Ke et al., 2009)).

Table 1. Nondimensional critical buckling load P of a cracked beam (Lc = 0.5L, ν = 0.33,
E = 70GPa and L = 10 h)

a/h
Present Ke et al. Wang & Quek

Two springs One spring (2009) (2005)

0.1000 0.9802 0.9801 0.9809 0.9830

0.1425 0.9614 0.9611 0.9622 0.9630

0.1757 0.9432 0.9426 0.9442 0.9450

0.2038 0.9257 0.9245 0.9266 0.9250

0.2280 0.9092 0.9071 0.9096 0.9070

Now, Table 2 and Figs. 3-6 present the critical buckling load for cracked micro/nanobeams
based on the modified couple stress theory and the two-spring model. All results are obtained as
a parametric study where ν = 0.33, L/h = 10 and ℓ/h = 0.5. The present study is applicable for
both micro and nano-scale problems (this issue is dependent on the scale of the material length
scale parameter).

Table 2 presents nondimensional critical buckling loads for different crack depths. In this
table, three types of nondimensional critical buckling loads are shown, where each load denotes
a special case of the flexibility field. P 1 is the nondimensional critical buckling load for the
one-spring model where we have only KMM (conventional model), P 2 is for the two-spring
model, but the crossover flexibility constants are vanished (the coupled effects between the
axial force and bending moment are neglected) and P 3 is for the two-spring model where all
four flexibility constants are considered. The results of Table 2 indicate that there are some
differences between P 3 and P 1, and this discrepancy increases when the crack depth is increased.
Also, comparison between P 2 and P 1 reveals that the use of two springs without consideration
of the crossover constants has no considerable impact on the obtained results. Figure 3 approves
Table 2, graphically. It is found that the two-spring model presents a greater buckling capacity
of cracked beams than the conventional model. Therefore, it is found that the local flexibility
at the cracked section (crack severity) caused by a particular crack depth is different for the
one-spring model P 1 and the two-spring model P 3.

Table 2. Nondimensional critical buckling load P of cracked micro/nanobeams (Lc = 0.5L)

a/h P 1 P 2 P 3

0 1 1 1

0.1 0.9584 0.9584 0.9586

0.2 0.8545 0.8545 0.8567

0.3 0.7130 0.7130 0.7232

0.4 0.5489 0.5489 0.5772

0.5 0.3901 0.3901 0.4504
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Fig. 3. Comparison of the two-spring model and the conventional model in terms of crack depth

The effect of crack location is shown in Fig. 4 for different crack depths. This figure indicates
that the crack has the greatest sensitivity when it is located in middle of the beam (Lc = 0.5L).
When the crack approaches the two ends, its effect is continuously decreased. This fact is directly
related to deformation of various points of the beam and, finally, the opening of the crack tip.

Fig. 4. The effect of crack location on the nondimensional critical buckling load with
different crack depths
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Also, variations of the nondimensional critical buckling load versus crack depth are demon-
strated in Fig. 5 in different crack locations. It is observed that not only the increasing of the
crack depth leads to a decrease in the buckling resistance of the beam, but also makes the effect
of crack location more considerable.

Fig. 5. The effect of crack depth on the nondimensional critical buckling load with
different crack locations

5. Conclusion

The flexibility constants of the cracked section are investigated using a multi-spring model (ro-
tational and longitudinal spring) to describe local flexibilities and discontinuities at the cracked
section of micro/nanobeams. This model not only promotes the discontinuities but also considers
the coupled effects between the bending moment and axial force on the discontinuities due to
the presence of the crack. Then, the buckling problem is solved for cracked micro/nanobeams
and the influence of crack depth and crack location is studied. Also, different configurations of
the flexibility constants are compared together. The results show that the flexibility constant
related with the bending moment (KMM) has the greatest impact on the local flexibility due to
the crack (crack severity). But, this crack severity changes by adding more flexibility constants.
It is found that the coupled effects between the bending moment and axial force (crossover con-
stants) are considerable, and the making use of the multi-spring model without consideration
of the crossover constants will not be useful. Therefore, the use of four constants (multi-spring
model) instead of only one (conventional model) estimates the buckling capacity better, and this
difference increases with an increase in the crack depth.
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