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In the paper, the numerical analysis of thermal processes proceeding in a 2D soft biological
tissue subjected to laser irradiation is presented. The transient heat transfer is described
by the bioheat transfer equation in Pennes formulation. The internal heat source resulting
from the laser-tissue interaction based on the solution of the diffusion equation is taken
into account. Thermophysical and optical parameters of the tissue are assumed as directed
intervals numbers. At the stage of numerical realization. the interval finite difference method
has been applied. In the final part of the paper, the results obtained are shown.
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1. Introduction

One of the common problems in mathematical modelling of biological systems is the significant
variation in the parameters that may result from, among others, individual characteristics. For
some parameters, imprecisions in the estimation of their values may be a result of different
measurement methods or specific features of tissues. The measurement is not often possible in
a living organism. This may cause the values of individual parameters found in the literature
to differ significantly from one another. It is also worth noting that tissue parameters may have
different values depending on their degree of thermal damage. For example, the value of the
scattering coefficient of tissue during the tissue damage process increases several times, what
could be observed as “whitening” of the tissue (Jasiński, 2015).

One of the most widely used mathematical tools to take into account uncertainties of para-
meters are sensitivity analysis methods. By using them, very different problems were analysed,
also in the field of heat transfer in the living organism (Jasiński, 2014; Kałuża et al., 2017;
Mochnacki and Ciesielski, 2016). The approach using interval or fuzzy numbers is slightly less
frequently used, although one can find works in which thermal processes in the human skin
or eye are under consideration (Jankowska and Sypniewska-Kaminska, 2012; Mochnacki and
Piasecka-Belkhayat, 2013; Piasecka-Belkhayat and Jasiński, 2011). The other initial-boundary
value problems for partial differential equations were also considered in many fields of science
(Gajda et al., 2000; Di Lizia et al., 2014; Nakao, 2017).

One can distinguish between two types of interval arithmetic: directed and classical (Dawood,
2011; Hansen and Walster, 2004; Markov, 1995; Popova, 1994). Classical interval arithmetic was
proposed in the 60s of the last century by Moore (1966). The two kinds of arithmetic differ
mainly in the definition of an interval and the set of arithmetic operations. A classical interval
x = [a, b] is defined as a set of real numbers that are between the lower bound a and upper
bound b like x = {x ∈ R| a ¬ x ¬ b} while a directed interval is defined by only a pair of
real numbers as x = [a, b] where a, b ∈ R. Because of that, during successive calculations based
on the classical interval arithmetic and many computational methods, including methods based
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on finite differences applied, the widths of intervals increase what leads to the so-called range
overestimation problem (Hansen and Walster, 2004; Markov, 1995; Nakao, 2017). Using the
directed interval arithmetic, it is possible to obtain the point (degenerated) interval [0, 0] = 0 by
subtraction of two identical intervals a−a = [0, 0] and the point interval [1, 1] = 1 as the result of
the division a/a = 1, which is impossible when applying the classical interval arithmetic. From a
practical point of view, it is the most important one and causes the directed interval arithmetic
to be popular in numerical applications (Dawood, 2011; Piasecka-Belkhayat and Korczak, 2016,
2017).
Modelling of laser-biological tissue interactions requires appropriate mathematical descrip-

tion. It is known that the scattering dominates over the absorption in soft tissues for wavelengths
between 650 and 1,300 nm (so-called biological window). Because of this, usually the radiative
transport equation is taken into account (Dombrovsky and Baillis, 2010). There are several mo-
difications in the discrete ordinates method or statistical Monte Carlo methods which are used
to solve this equation (Banerjee and Sharma, 2010; Welch, 2011). In some cases, it is possible to
approximate the light transport using the diffusion equation (Dombrovsky et al., 2013; Fasano
et al., 2010; Jacques and Pogue, 2008).
Modelling of the laser energy deposition is the first step in the modelling of physical processes

proceeding in biological tissues subjected to a laser beam. Next, the temperature distribution
must be calculated by making use of the bioheat transfer equation. The Pennes equation is
the earliest one known but is probably still the most popular and widely used (Abraham and
Sparrow, 2007; Majchrzak and Mochnacki, 2017; Paruch, 2014). The newest achievements in
this field are based on the porous media theory (GDPL equation, generalized dual-phase lag
equation) which takes into account the heterogeneous structure of biological tissue (Jasiński et
al., 2016; Majchrzak and Mochnacki, 2017; Majchrzak et al., 2015).
The last step in the analysis of the tissue heating process is to estimate the degree of its

destruction (Abraham and Sparrow, 2007; Henriques, 1947; Jasiński, 2018). The Arrhenius in-
jury integral is the most frequently applied tool for this purpose, although other models (e.g.
thermal dose) are also used (Mochnacki and Piasecka-Belkhayat, 2013). The Arrhenius scheme
assumes the exponential dependence between temperature and the degree of tissue destruction.
Furthermore, it refers only to the irreversible tissue damage, however, there are models which
allow one to take into account the withdrawal of tissue injury in the case of temporary, small
local increasing of temperature (Jasiński, 2014, 2018).
The purpose of this paper is to analyse the phenomena occurring in the laser-treated soft

tissue wherein thermophysical and optical parameters are defined and treated as directed interval
numbers. The analysis is based on the bioheat transfer equation in the Pennes formulation,
whereas, to describe the light distribution in tissue the steady-state diffuse approximation is
used. The degree of tissue destruction is also estimated by the use of the Arrhenius scheme. At
the stage of numerical realisation, the interval finite difference method is used (Majchrzak and
Mochnacki, 2016, 2017; Mochnacki and Suchy, 1995).

2. Formulation of the problem

A transient heat transfer in biological tissue is described by the Pennes equation. The interval
form of this equation can be expressed in the form (Abraham and Sparrow, 2007; Jankowska
and Sypniewska-Kaminska, 2012; Jasiński, 2014; Paruch, 2014)

x ∈ Ω : c
∂T

∂t
= λ∇2T +Qperf +Qmet +Qlas (2.1)

where λ [Wm−1K−1] is the interval thermal conductivity, c [Jm−3K−1] is the interval volumetric
specific heat, Qperf , Qmet and Qlas [Wm

−3] are the interval internal heat sources containing
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information connected with the perfusion, metabolism and laser irradiation, respectively, while
T = T (x, t) [K] is the interval temperature.
In this paper, the 2D domain of homogeneous biological tissue of a rectangular shape Ω

subjected to the laser action is considered (Fig. 1).

Fig. 1. The domain considered

Equation (2.1) is supplemented by the Robin condition assumed on the external boundary of
tissue Γ0, which is subjected to laser irradiation while on the remaining parts of the boundary Γc
the no-flux condition is accepted

x ∈ Γ0 : q(x, t) = α(T − Tamb)

x ∈ Γc : q(x, t) = 0
(2.2)

where α [Wm−2K−1] is the convective heat transfer coefficient and Tamb is temperature of the
surroundings. The initial distribution of temperature is also known

x ∈ Ω, t = 0 : T (x, t) = Tp (2.3)

In the current work, the metabolic heat source Qmet [Wm
−3] is assumed as a constant interval

parameter while the perfusion heat source is described by the formula

Qperf (x, t) = cBw[TB − T (x, t)] (2.4)

where w [s−1] is the interval perfusion coefficient, cB [Jm
−3K−1] is the volumetric specific heat of

blood and TB corresponds to the arterial temperature (Abraham and Sparrow, 2007; Mochnacki
and Piasecka, 2013).
The source function Qlas connected with the laser heating is defined as follows (Jasiński et

al., 2016)

Qlas(x, t) = µaφ(x)p(t) (2.5)

where µa [m
−1] is the interval absorption coefficient, φ(x) [Wm−2] is the interval total light

fluence rate and p(t) is the function equal to 1 when the laser is on and equal to 0 when the
laser is off.
The total interval light fluence rate φ is the sum of the interval collimated part φc and diffuse

part φd (Banerjee and Sharma, 2010; Dombrovsky et al., 2013)

φ(x) = φc(x) + φd(x) (2.6)

The collimated fluence rate is given as (Jasiński et al., 2016)

φc(x) = φ0 exp
(

−
2x22
r2

)

exp(−µ′tx1) (2.7)
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where φ0 [Wm
−2] is the surface irradiance of laser, r is the radius of the laser beam and µ′t [m

−1]
is the interval attenuation coefficient defined as (Banerjee and Sharma, 2010)

µ′t = µa + µ
′

s = µa + (1− g)µs (2.8)

where µs and µ
′

s [m
−1] are the interval scattering coefficient and the effective scattering coeffi-

cient, respectively, while g is the anisotropy factor.

To determine the interval diffuse fluence rate φd, the steady-state optical diffusion equation
should be solved (Dombrovsky et al., 2013; Welch, 2011)

x ∈ Ω : D∇2φd(x)− µaφd(x) + µ
′

sφc(x) = 0 (2.9)

where

D =
1

3[µa + (1− g)µs]
=
1

3µ′t
(2.10)

is the interval diffusion coefficient.

Equation (2.9) is supplemented by the boundary conditions on the boundaries Γ0 and Γc

x ∈ Γ0, Γc : −Dn · ∇φd(x) =
φd(x)

2
(2.11)

where n is the outward unit normal vector.

Damage of biological tissue resulting from temperature elevation is modelled by the Arrhenius
injury integral, and its interval version considered in this paper is defined as (Abraham and
Sparrow, 2007; Fasano et al., 2010; Henriques, 1947; Mochnacki and Piasecka-Belkhayat, 2013)

Ψ(x, tF ) =

tF
∫

0

P exp
[

−
E

RT (x, t)

]

dt (2.12)

where R [Jmole−1K−1] is the universal gas constant, E [Jmole−1] is the activation energy and
P [s−1] is the pre-exponential factor while [0, tF ] is the considered time interval. The criterion
for tissue necrosis is Ψ(x) ­ 1.

3. Method of solution

In this paper, both analyzed equations: the Pennes equation and the steady-state optical dif-
fusion equation have been solved using the interval finite difference method (Mochnacki and
Piasecka-Belkhayat, 2013). The information about the directed interval arithmetic are presen-
ted in (Dawood, 2011; Piasecka-Belkhayat, 2011; Popova, 2011).

In order to determine the function Qlas at the internal node (i, j) (cf. equation (2.5)),
steady-state optical diffusion equation (2.9) is solved. The uniform differential grid of dimension
2n× 2n with spacing h/2 is used here (Fig. 2). Using such a differential grid, it is easier to take
into account boundary conditions (2.11), because a part of the nodes is located exactly on the
boundary Γ0 and Γc. In addition, one can distinguish common grid nodes for the temperature
and diffuse fluence rate.

The following differential quotients are used

(∂2φd
∂x21

)

i,j
=
φdi+1,j − 2φdi,j + φdi−1,j

(h/2)2

(∂2φd
∂x22

)

i,j
=
φdi,j+1 − 2φdi,j + φdi,j−1

(h/2)2
(3.1)
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Fig. 2. Five-point stencil and differential grid

and then the approximate form of equation for the internal node (i, j) (i = 1, 2, . . . , 2n − 1,
j = 1, 2, . . . , 2n− 1) is as follows

φdi,j = C1Φdi,j + C2φci,j (3.2)

where (superscripts “−” and “+” denote the beginning and the end of the interval, respectively)

Φdi,j = φdi−1,j + φdi+1,j + φdi,j+1 + φdi,j−1

= φ−di−1,j + φ
−

di+1,j + φ
−

di,j+1 + φ
−

di,j−1, φ
+
di−1,j + φ

+
di+1,j + φ

+
di,j+1 + φ

+
di,j−1]

(3.3)

while

C1 =
4D

16D + h2µa
=

4[D−,D+]

16[D−,D+] + h2[µ−a , µ
+
a ]
=

[4D−, 4D+]

[16D− + h2µ−a , 16D+ + h2µ
+
a ]

=
[ 4D−

16D− + h2µ−a
,

4D+

16D+ + h2µ+a

]

C2 =
µ′sh
2

16D + µah
2
=

h2[µ
′
−

s , µ
′+
s ]

16[D−,D+] + h2[µ−a , µ
+
a ]
=

[h2µ′s, h
2µ
′+
s ]

[16D− + h2µ−a , 16D+ + h2µ
+
a ]

=
[ h2µ

′
−

s

16D− + h2µ−a
,

h2µ
′+
s

16D+ + h2µ+a

]

(3.4)

while for boundary nodes (cf. equation (2.11))

D
φd1,j − φd0,j
h/2

=
1

2
φd0,j → φd0,j = C3φd1,j

−D
φdn,j − φdn−1,j

h/2
=
1

2
φdn,j → φdn,j = C3φdn−1,j

D
φdi,j − φdi,0
h/2

=
1

2
φdi,0 → φdi,0 = C3φdi,1

−D
φdi,n − φdi,n−1

h/2
=
1

2
φdi,n → φdi,n = C3φdi,n−1

(3.5)

where

C3 =
4D

4D + h
=

4[D−,D+]

4[D−,D+] + h2
=

[4D−, 4D+]

[4D− + h2, 4D+ + h2]
=
[ 4D−

4D− + h2
,
4D+

4D+ + h2

]

(3.6)
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It should be pointed out that the system of equations (3.2) is solved using the iterative method.

The differential quotients approximating the derivatives appearing in the Pennes equation
(2.1) are defined in a similar, as previously, manner

(∂2T

∂x21

)

i,j
=
T i+1,j − 2T i,j + T i−1,j

h2

(∂2T

∂x22

)

i,j
=
T i,j+1 − 2T i,j + T i,j−1

h2

∂T

∂t
=
T
f
i,j − T

f−1
i,j

∆t

(3.7)

where ∆t denotes the time step while f − 1 and f are the subsequent time levels.
By introducing this formulas into (2.1), and after some mathematical operations for the

internal nodes (i = 1, 2, . . . , n, j = 1, 2, . . . , n), one obtains

T
f
i,j = A2T

f−1
i,j +A1Υ

f−1
i,j +A3 (3.8)

where

Υ
f−1
i,j = T

f−1
i+1,j + T

f−1
i−1,j + T

f−1
i,j+1 + T

f−1
i,j−1 =

[

(T f−1i+1,j)
− + (T f−1i−1,j)

− + (T f−1i,j+1)
− + (T f−1i,j−1)

−,

(T f−1i+1,j)
+ + (T f−1i−1,j)

+ + (T f−1i,j+1)
+ + (T f−1i,j−1)

+
]

(3.9)

while

A1 =
λ∆t

ch2
=
∆t[λ−, λ+]

h2[c−, c+]
=
[∆tλ−,∆tλ+]

[h2c−, h2c+]
=
[∆tλ−

h2c−
,
∆tλ+

h2c+

]

A2 = 1−A1 −
wcB∆t

c
= [1−A−1 , 1−A

+
1 ]−
cB∆t[w

−, w+]

[c−, c+]
= [1−A−1 , 1−A

+
1 ]

−
[cB∆tw

−

c−
,
cB∆tw

+

c+

]

=
[

1−A−1 −
cB∆tw

−

c−
, 1 −A+1 −

cB∆tw
+

c+

]

A3 =
∆t

c
(wcBTB +Qmet +Qlas) =

∆t

[c−, c+]
(cBTB [w

−, w+] + [Q−met, Q
−

met] + [Q
−

las, Q
−

las])

=
[∆t(cBTBw

− +Q−met +Q
−

las)

c−
,
∆t(cBTBw

+ +Q+met +Q
+
las)

c+

]

(3.10)

The “boundary” nodes are located at the distance 0.5h from the boundary of the domain. This
approach gives a better approximation of the Neumann and Robin boundary conditions, but
the final form of the interval FDM equation for the boundary nodes are obtained in similar way.
More details of this approach can be found in (Jasiński et al., 2016; Majchrzak and Mochnacki,
2016, 2017).
On the basis of equation (3.8), the temperature at the node (i, j) for the time level can be

found on the assumption that the stability condition for an explicit differential scheme is fulfilled
(Mochnacki and Suchy, 1995).

4. Results of computations

At the stage of numerical computations, a 2D homogeneous tissue domain of size 4×4 cm during
laser irradiation (Fig. 1) has been considered. The uniform differential grid with 40 × 40 nodes
is introduced (Fig. 2). As has been already mentioned, the values of the effective scattering
coefficient are different for the native and thermally-damaged (denaturated) tissue, so the two
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simulations have been conducted (for µ′s = µ
′

s nat and µ
′

s = µ
′

s den). The optical (µa, µ
′

s) and
thermophysical (λ, c, w,Qmet) parameters of the tissue are assumed as the directed interval
numbers in form (Dombrovsky et al., 2013; Popova, 2011)

p = [p− 0.025p, p + 0.025p] (4.1)

where p denotes the parameter.

The following data have been assuming in calculations: λ = 0.609Wm−1K−1,
c = 4.18MJm−3K−1, w = 0.00125 s−1, µa = 40m

−1, µ′s nat = 1000m
−1, µ′s den = 4000m

−1,
Qmet = 245Wm−3, cB = 3.9962MJm−3K−1, TB = 37◦C, P = 3.1 · 1098 s−1,
E = 6.27 · 105 Jmole−1, R = 8.314 Jmole−1K−1, φ0 = 3 · 10

5Wcm−2, d = 2mm, texp = 25 s,
α = 10Wm−2K−1, Tamb = 20

◦C, Tp = 37
◦C, ∆t = 1 s.

Fig. 3. Distribution of the interval collimated fluence rate φc (x2 = 0)

Fig. 4. Distribution of the interval diffuse fluence rate φd (x2 = 0)

Figures 3-5 are associated with the light fluence distribution in the domain considered.
Figure 3 presents the distribution of the interval collimated fluence rate φc calculated on the
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basis of equation (2.7) while in Fig. 4 the distribution of the interval diffuse fluence rate φd
resulting from steady-state optical diffusion equation (2.9) is presented. The distribution of the
interval diffuse fluence rate φd is also presented in Fig. 5. It is visible that the area of scattering
is larger in the case of calculation with µ′s nat although the values of φd are lower than in the
case of calculation with µ′s den.

Fig. 5. Distribution of the interval diffuse fluence rate φd [kWm
−2]

The next figure is associated with the tissue temperature. In Fig. 6, the interval tissue
temperature history at the node N0(0, 0) (Fig. 1) obtained for the effective scattering coefficient
of native and denaturated tissue is presented. As can be seen, wider temperature intervals are
obtained in the case of denaturated tissue.

Fig. 6. History of interval tissue temperature at the node N0



Modelling of biological tissue damage process... 257

Fig. 7. History of the interval Arrhenius integral at the node N0

Fig. 8. Distributions of the interval Arrhenius injury integral for native tissue (µ′s = µ
′

snat)



258 A. Korczak, M. Jasiński

In Fig. 7, the history of the interval Arrhenius integral at the node N0 is shown. As expected,
due to the wider intervals obtained in the calculations with µ′s den, wider intervals for the interval
Arrhenius integral are also obtained for this variant of calculations. It is visible that tissue
destruction occurs first in the case of native tissue – the injury integral reaches the necrosis
criterion (Ψ ­ 1) in the time interval [14,15] s while for calculation with µ′s den this criterion is
reached in the time interval [17,21] s.

The results associated with the tissue destruction are also presented in Figs. 8 and 9. In both
figures, the interval injury integral distributions for selected time steps are presented. The white
zone in these figures refers to the values of the injury integral below 0.01 (thermally untouched
tissue), the grey zone refers to the values 0.01 < Ψ < 1, so it is a partial damage area, and
the black zone illustrates the area in which the Arrhenius integral achieved the criterion of
tissue necrosis. In both cases, the coagulation zones obtained for the lower and upper bounds
of intervals are slightly different, however, in the case of destructed tissue the differences are
bigger.

Fig. 9. Distributions of the interval Arrhenius injury integral for denaturated tissue (µ′
s
= µ′

s den
)

5. Discussion

As has been mentioned before, the reason for the application of the directed interval arithmetic
was to take into account the inaccuracies of estimation of biological tissue parameters and their
effect on thermal damage to the tissue. It can be seen that the results associated with the tissue
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damage are quite reasonable for the assumed width of interval parameters. The differences
between the ranges of coagulation zones (Figs. 8 and 9) obtained for both assumed values of the
interval effective scattering coefficient µ′s nat and µ

′

s den are clearly visible. On the other hand,
the differences between the lower and upper bounds of the interval Arrhenius integral for both
cases of µ′s are not very big.

Of course, thermal damage can also expand after the impulse causing the temperature ele-
vation ceases, what happens also in the analysed cases for t > texp, and the thermal injury is
fully formed in less than 40 s.

Application of the Arrhenius integral also allows one to estimate the time after which the
given point of the domain considered is thermally damaged, i.e. the value Ψ reaches the necrosis
criterion. The results of this type are shown in Fig. 7. These results allow one to estimate the
time of tissue damage in a few second intervals – at the node N0 for the calculation with µ

′

s nat

[14,15] s while for the calculation with µ′s den [17,21] s. Such width of intervals can be accepted
as useful information from a practical point of view.

It should be pointed out that, in some cases, it is justified to assume a more restrictive
necrosis criterion, i.e. Ψ(x) ­ 4.6 which corresponds to 99% of dead cells (e.g. laser cancer
therapy). This criterion is also fulfilled at the node N0 for the assumed width of the parameter
intervals – for calculation with µ′s nat [15,17] s, for calculation with µ

′

s den [19,25] s. These width
of intervals are a still reasonable outcome.

One should also note that an increase in the intervals for optical and thermophysical para-
meters leads to an increase in temperature intervals, which are the basic value in calculations of
the interval Arrhenius integral. This, in turn, may lead to a situation in which the lower bound
of the interval injury integral for a selected point of the domain considered would be below the
threshold of necrosis, whereas the upper bound would exceed this threshold.

6. Conclusions

In the paper, the analysis of the thermal damage of biological tissue subjected to laser impulse
has been presented, whereas, the optical and thermophysical parameters of tissue have been
treated as the directed interval numbers. That concerned two optical parameters: absorption
coefficient µa, effective scattering coefficient of tissue µ

′

s, and four thermophysical parameters:
thermal conductivity λ, volumetric specific heat c, perfusion coefficient w and metabolic heat
source Qmet. The combined effect of those parameters has been considered, although it is known
that not all of these parameters (or actual changes in parameters values) have the same influence
on the temperature level and, as a result, on the estimated value of tissue damage. It has been
described in numerous works related to e.g. sensitivity analysis (Majchrzak and Mochnacki,
2017; Mochnacki and Ciesielski, 2016). Of course, interval analysis for the individual parameters
of tissue is also possible to perform.

The directed interval arithmetic has already been effectively applied to the modelling of
bioheat transfer problems. Most of the works were based on the Pennes equation, although it is
possible to use a different bioheat transfer equation (Mochnacki and Piasecka-Belkhayat, 2013).
Of particular interest here is the use of the GDPL equation based on the theory of porous
bodies which binds the process of heat transfer with the inner tissue structure (Majchrzak and
Mochnacki, 2017; Majchrzak et al., 2015).

The modelling of the tissue thermal damage process also includes a number of other pro-
blems, e.g. methods of taking into account changes in parameter values caused by the degree of
tissue damage (Jasiński, 2015, 2018). Further work related to the application of directed inter-
val arithmetic in this area could concern these issues or the problems related with the use of
interval numbers in other algorithms related to thermal damage (Jasiński, 2015; Mochnacki and
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Piasecka, 2013). Because the interval arithmetic is a method developed by mathematicians in
order to put bounds on rounding errors and measurement errors in mathematical computation,
it could also be a useful approach to the modelling of various problems of bioheat transfer.
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