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1. Introduction

Available analytical solutions to structural problems of general shells are limited in
scope and in general do not apply to arbitrary shapes, load conditions, irregular stiffening
and support conditions, cut outs, and many ether aspects of practical design. In the case
of a simultaneous action of inelastic material propertics and large deformations in free-

form shells the situation is particularly difficult and successful analytical approaches’even
~ for simple geometries and loadings can hardly be expected. The finite element method
has consequently come to the fore as an approach to structural analysis of shells because
of its facility to deal with these complications. A comprehensive review of the history of
the {inite element developments for shell analysis can be found in [1]. This history evolved
from very simple, flat elements to extremely complicated double curved elements and
covered essentially the whole range of different approximations applied to the classical
and nonclassical shell equations considered at the element level.

Unfortunately it is still fair to say that the final finite element formulation for nonlinear
thin shell analysis is far from being settled. From the engineering point of view the pre-
vailing problem is the lack of elements which can show both good accuracy and efficiency.
The apparantly letter deeply curved elements quickly because so complicated that its
attendant high computational cost have pretty well precluded the acceptance and general
use of these elements. Their use seems to be particularly ruled out in the case of extensive
nonlinearities of the problem which requires the element striffnesses to be recalculated
a large number of times. It is therefore understandable that the researches in the field
of nonlinear shell analysis turned back to more simple elements. In this way, as concluded
in [2], the history of the development of general shell finite elements has come full circle.

The simplest possible geometrical representation of a doubly curved shell surface is
a facet approximation by flat elements. The extremely simple and efficient formulation
that can be achieved by flat elements make them very well suited for nonlinear applications,
in particular when used in the framework of the updated Lagrangian description of motion.
The wide range of numerical examples studied in [3 - 11] indicate that flat finite elements
may be very useful in the analysis of nonlinear shell problems. However, this approach
has also its well-known deficiences to mention only
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(a) the exclusion of the coupling of stretching and bending within the elements, (b) the
difficulty of treating junctions where all elements are co-planar and (c) the presence of
,,discontinuity” bending moments, which do not appear in the continuosly-curved
actual structure, at the element juncture lines. Fortunately, many of these can be
dealt with through various devices and additional computational effort.

‘The use of planar elements, in which the membrane and plate bending striffness are
derived from displacement patterns of different forms cannot insure complete compa-
tibility of the assemblage which is needed for convergence of the sequence of finite element
solutions to a true solution. (The second criterion necessary for convergence claims the
folloving: the displacement functions have to be of such a form that if nodal generalized
displacements are compatible with a constant strain condition such constant strain will
in fact be obtained. Note that this criterion incorporates in fact the commonly quoted
requirement of rigid body displacements as these are a particular case of constant strain
displacement. In our approach the second criterion will always be satisfied).

The effect of the kinematic incompatibility can be expected to diminish with decreasing
mesh size. In the present development an extensive study of this phenomenon has been
made showing the essentially monotonic convergence to the true solution for a wide range
of shell ‘geometries and external loading patterns.

Formulating a nonlinear shell problem, one of the basic decisions implied by efficiency
considerations is the selection of a frame of reference. For large displacement analysis
of thin shells the total Lagrangian formulation has been adopted by most authors. As it
is demonstrated in the following, however, the updated Lagrangian description offers
remarkable simplifications in the formulation and this approach is used in this paper.

In the present study both the geometrical and material nonlinearities are taken into
account. The former make it possible to solve the linearized and nonlinearized (solved
by means of the step-by-step procedure) structural stability problems. The latter lead
to the inelastic analysis performed basing upon an elasto-viscoplastic material model as
proposed in [12] and subsequently discussed in [13 - 17]. This approach seems to have
-some significant advantages over the classical rate-independent elastic-plastic formulation,
First it produces and additional numerical effect which stabilizes the iteration procedures
used in the program. Second, it allows more rational generalizations towards the inclusion
of the dynamic effects into the solution process. And third, it is in a certain sense more
general approach as the classical elastoplastic solutions can be recovered in the limit as
stationary non-viscous solutions of the viscous problem.

The presentation is necessarily brief and no explicit forms of the stiffness matrices
are given. More details on both the theoretical and numerical parts of the study are available
in [10, 11].

2. Coordinate systems

The geometry of the shell is replaced by an assembly of flat elements of triangular
and/or quadrilateral shape (the latter elements being composed of four flat triangles
not necessarily forming one plane), of Sec. 3. To describe the geometry and stiffness pro-
perties of the idealized structure we use the following coordinate systems, Fig. 1:
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{xy z} global coordinates

[f; i-;zéj]locul coordinates

X ¥ Z} local coordinates for
triangular element

{SE § %] local coordinates tor
’ quadrilateral element

Fig. 1

I
(a) global cartesian coordinate system {xyz},

{(b) at each nodal point: moving (e.g. stepwise updated) surface coordinate system
{£, &, &5 ) where &5 — axis is always taken normal to the current shell surface while the
&, — and &, — axes have the tangential directions at the particular nodal point,

(c) for each triangular element: local cartesian coordinates {xyz},

(d) for each triangular sub-element of a quadrilateral eclement: local cartesian coordinates
(FdaZa), @ =1,2,3,4, .

(¢) for each quadrilateral element: local cartesian coordinates {x)z} with the axes X
and J lying in an ,,averaged” plane ,,tangential” to the element. This plane is formed
by minimizing the sum of the squares of the normal distances from the plane to
the exterior nodes of the quadrilateral.

The common reference frame to which all element matrices are transformed prior
to the assembly of stiffnesses is herein called base coordinates. There are two different

possibilities to choose the base coordinates. We describe them brifly in Sec. 3.

3. Finite elements

The detailed description of the nonlinear formulation for shell elements used in the
present analysis can be found in [11] and will be summarized below. Since shell behaviour
is characterized by both membrane action and bending action it is essential to recognize
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both of these in evaluating the element stiffness properties. Two finite elements are available
in the program both being based on a flat triangular shell element as described in [10]:

(a) plane triangular element with eighteen degrees of freedom™ composed of:

(al) linear displacement membrane element with six d.o.f. (three corner nodes
with two in-plane displacement components at each of them),

(a2) fully compatible Kirchhoff plate element with twelve d.o.f. (one transverse
displacement and two plate-type rotations at each of the corners and at the
mid-point of the triangle). The element is in fact a super-element composed
of three triangular elements allowing the C!' — transverse displacement (full
compatibility!) to vary as cubic polynominal within each triangular sub-
element. In other words the transverse displacement approximation for the
element is formed from the polynomial spline of the degree 3 and smoot-
hness 1. We note also that the above properties imply the linear curvature
variation within each sub-triangle.

Since the three mid-point plate-type d.o.f. are local to the element they are condensed
(by means of the inverse Gauss elimination) prior to the assembly procedure. This results
in the total number of fifteen d.o.f. for the triangular shell element (two membrane-type
and three plate-type d.o.f. at each exterior, corner nodes),

(b) non-plane quadrilateral element with forty one d.o.f. composed of four triangular

elements each of them based upon,

(b1) quadratic displacement membrane element with twelve d.o.f. (three corner
and three mid-side nodes with two in-plane displacement components at each
of them),

(b2) plate element described above, cf. (a2),

The external (with regard to the quadrilateral) boundaries of the four triangular ele-
ments are additionally constrained to deform linearly. These comstraints eliminate the
exterior mid-side nodes of the element, thereby reducing the connectivity (band width)
which must be considered in the direct solution of the nodal point equilibrium. equations.
In this way the total number of d.o.f. is reduced to thirty three (forty one less two d.o.f.
at each of the four mid-side nodes). Moreover, since there exist in the quadrilateral element
thirteen d.o.f, which are local to the element, the corresponding static condensation reduces
finally the global number of d.o.f. to twenty.

In this way we consistently end up with two finite element: triangular (three nodes)
and-quadrilateral (four nodes) with five d.o.f. at each node.

As we already mentioned in Sec. 2 the generalized displacements have to be transformed
from local to a common frame of reference so that the assembly procedure could be ef-
fectively performed. It is here assumed that the rotatiaral d.o.f. are always referred to
the surface coordinates &, and &,. For the translational d.o.f. it is left to the user to choose
between two common coordinate systems: the global system {xyz} or the surface system
{£, £, &5} In this way we can practically perform the assembly calculation either in a ,,mi-

D The term ,,degrees of freedom will be further refered to as d.o.f.
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xed” coordinate system (the rotational d.o.f. in the {&, &, &5} coordinates, the translational
d.of. in the {x, y, z} coordinates) or in the surface coordinate system alone (all the d.o.f,
referred to the {£; &,&3} coordinates).

4. Incremental description of motion and the solution procedure

1t is generally accepted that the incremental approach is the most effective way of
handling nonlinear structural problems. In the case of elastic structures it is only an alter-
native to other solution algorithms while for the inelastic structures the step-by-step ap-
proach is¢n general unavoidable because of the incremental nature of the material response.
The solution algorithm accepted in the present paper relies entirely on the stepwise linearized
solutions which enable us to trace the characteristic load -— displacement curves describing
the nonlinear behaviour of the shell structures analysed. At each solution step an iteration
algorithm over the residual out-of-balance forces is planned to be additionally implemented
to improve the solution by restoring exact equilibrium. The solution algorithm is controlled
by parameters that are input to the computer program.

|

Fig. 2

A typical triangular element with the nodes 1 -2 -3 will be referred to the local car-
tesian coordinates {xyz}, Fig. 2. The x-axis is taken to coincide with the middle line of
the 1 -2 side of the triangle, the y-axis lies in the element middle plane and is directed
towards the node 3 while the z-axis is chosen so that the {xyz} — system be right-handed.
The unit vectors of the system are built a new at each incremental step basing upon new
nodal coordinates and in accordance with the above definition.

We assume that the solution for the kinematic and static variables for all time steps
from a time ¢, to the current time 4, inclusive, is known, and that the solution for time
t+¢ is required next. According to the concept of the updated Lagrangian description
we take the configuration ‘C at time ¢ as a reference sfate to describe the incremental

" motion *C 24 C, Fig. 3. Referning to this configuration we introduce in the plane of
the element the second Piola-Kirchhoff stress tensor Sy4 4, A4 = 1,2 which describes
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Fig. 3

the current stress at time ¢, and the Green strain tensor E 4, 4, A = 1,2 which describe
the current strain in the element. The stresses S, are assumed to be equilibrated by the
given external forces p, k = 1, 2, 3 acting upon the shell.

The incremental changes of the load are denoted by Apy; they give rise to incremental
stresses A4S, incremental strains AE,, and incremental displacements AU4, AW, the
latter referred to the x, ¥, Z directions, respectively. The new total stresses S, + 4S54 are
assumed to be in the equilibrium with the new total external forces py+ 4py.

The incremental strain displacement relationship is taken in the form

‘

1 1 —
AEsy = —2—(AUA,A‘FA”A.A)‘F’Z‘AW.AAW,A—ZAW.AA, 0y)

which means that the only geometric nonlinear effect included in the formulation is the
influence of the transverse displacement upon the membrane strains. It is broadly
known that the results obtained within this approximation are sufficiently accurate for
majority of mildly nonlinear practical problems. _

We introduce next the shape functions for the triangular plate element as

AuAZxI = @ZZXLSAI‘&ASI)XU (2)
AWyyy = Pas4uf?, ) )

where the vector AU collects the generalized nodal displacements for the element con-

sidered. Its conjugate internal nodal force vector U, , satisfies the virtual work equation
of the.form '

{ SAAéEAAdV = Uﬂ)fsé"(@x 1 4
v
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where ¥ is the element volume, du™ is an arbitrary (virtual) variation of the displacement)
vector and 8E, is the corresponding variation of E,, taken for Auy = AW = 0, e.g. at
the beginning of the step considered (in the configuration ‘C)

dEqq = % (Ouy 4+ 6u,1,;1)-—§6w_a,1. | (5)
For the configuration **4!C we write the similar virtual work quation as
[ (San+ 48,0 8EsadV = (UD+ AUDYE, s 6ulD, (6)
v :
where now 8E,, is the variation of E,, taken in the new configuration ‘+4C, e.g.
0Esy = % (Ottg, 4+ Otig, )+ —12.— (OW, 4,4 W, 4 0W, ) —ZOW, 44 -

By using eqs. (4) - (7) we imme_diafely get
A U(N)T (SII(N) = f {SAA —%- (6W, 4 W,A -+ W'A (5‘1{./1)‘*“
1 i _
-+ ASAA [—5 ((SHA,A + (SHA' A)+ 2 ((SW,AW,A +W'A 6W,A)_26W.AA:|}(ZV

" Noting the symmetry of S,4 and A4S, and neglecting the third-order terms eq. (8) can
be conveniently written as

AUMT 5™ = (4 ﬁ},”)+A5;,”)) oug®, | 9
where f runs over the sequence 1, 2, ..., 15; the summations with respect to is implicitly
assumed on the right -hand side of eq. (9),

AT = ([ 5,488,824 av) 4o, _ (10)
14
in the nonlinear contribution to the nodal incremental forces while
48 - [ 45, [_;j («Jse,,AJrcbg,A)-zés{eM] av, (an
V .
describes the corresponding linear contribution. Defining the resultant forces by
2 hi2 B2
No= [ Sadz, N,= [ S,dz, Ny= [ S,dz, ° (12)
“ni2 “h2 Zhj2
~ and the resultant moments by '
hi2 hj2 . hi2
M.= [ S.zdz, M,= [ S,2dz, M, = [ S,z (13)

) [ 77 —hj2
egs. (10), (11) can be transformed to the form )

Aﬁ%’m = (f (V@)15x2N2x2(Vés)§x15dA) Au(fs’)xu - (14)
A

AT, = Af Buy sxs ANsy1 — By s s AMs 1)dA (15)
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where A is the triangle area and

Nxx ny]
Niyz = , (16)
o= 3,
ANy = {AN AN, AN,,}, a7
AMaxl = {AMxxAMy.vAMxy}a (18)
ol Dy
V5= " 7 |, (19)
o8 0
Prx Byy Dyxt Py
Bitysya = : : : , (20)
D% D5 B+
Ly BY, 20
Byysxs = [ :.'15 ;\1:),’ ;‘15},]' @2n
Q. Dy 201,

The incremental forces and moments in eq. (15) are defined by replacing in the definitions
(12), (13) the stress components S,4 by the corresponding incremental stress components
AS4y.

Due to the arbitrariness of the variations du®™ eq. (9) yields the increment of the in-
ternal nodal generalized force vector as ,

AUN = Aﬁ(N)+A[:](N), _ (22)

In order to maintain the equilibrium at a given node of the discetization mesh the sum
AR of the internal generalized incremental forces coming from all the neighbouring
elements must be equal to the external load 4R®*" acting upon this node, e.g.

AR(lnt) — AR(CH), (23)

where this equality is meant to represent the incremental equilibrium of all the nodes of
the discretized shell. Expressing the vector AR¢™ in terms of the components of the
elemental vector AU™ in which in turn we use the relationships (14), (15) and appropriate
incremental constitutive law, we end up with the relation of the form

ARUD(Ar) = AR, | (24)

where Ar is the vector of the generalized displacements of the whole assemblage of the

shell finite elements. The explicit form of eq. (24) is regarded as the fundamental rela-

tionship for the static incremental analysis of shells. Such an explicit evaluation of all

the matrices used above is disregarded hete; the reader is referred to [10, 11] for the details.
The elemental geometric stiffness matrix is defined as

K215 = [ VONV)TiA @5)
A

The geometric stiffness matrix was implemental in the program in a slightly modified
version. This so-called inconsistent formulation corresponds to the fact that the shape
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functions @ used in the derivation of &‘® was different (simpler) than that used to obtain
the constitutive stiffness matrix to be discussed below. As stated in [18], for instance,
such an approximation leads to practically acceptable results allowing the significant
computer time savings as compared to the consistent geometric stiffness evaluation.

We note that in order to calculate the force vector AU (or the geometric stiffness
matrix k) the state of stress at the beginning of step is the essential information required.
In contrast, the evaluation of the vector AU™M requires the material properties of the element
to the known.

Let us start with the assumption of the linear elastic behaviour of the shell material, e.q.

A48, 1w 0 AE.,,
a8 E y 1 0 AE
7= 122 1—y " (26)
4S8, 00 7 AE,,
which more compactly reads -
ASBxl = D3x3AE3x1 (27)

where E is the Young modulus and » the Poisson ratio.
We write next eq. (1) as

AEle = AE3x1+AE:3x1) (28)
where AE and AE are the corresponding linear and nonlinear (with respect to the incremen-
tal displacements) parts of the incremental strain.

The vector AE is defined as
AE;,, = [B$3x15—53g;sx15]4"¥§)x1 ’ 29
with the matrices B,,, By given in egs. (20), (21). Without recalling explicitly the definition

of the nonlinear part we note only that the appropriate expression is independent of the
coordinate z, cf.eq. (1). By using eqs. (26) - (29) we arrive at

AS = DAL = D[(B,—3BF) Aut™ + AL)] (30)
or, performing the linearization, at
AS = D[(B}—zB}) Aut™]. 31)

The generalization of the above approach to include the inelastic analysis capability

~ is achieved here by specifying an inelastic constitutive law to be used instead of the elastic'

law given by eq. (26). The analysis will be based upon the elasto-viscoplastic constitutive

assumptions first proposed in [12] and later explored numerically by many authors, [13 - 17].
The elastic-viscoplastic material is defined by the following constitutive relation

AS = D(AE—AE®P) (32)

where the only new quantity (as compared to eq. (26)) is the viscoplastic strain increment
AE®P derived from

AECD = yAKDF) % (33)

3 Mech. Teoret. i Stos. 1/83
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Here, y is a material viscosity coefficient which has dimension (time)™*, At is the time
increment, f(S) is a yield function entering the yicld condition as

_ f(8) < 3, . (34
where , is a current yield point stress determined in the uniaxial tension test,

F(S) = —f(%;fg— (35)

[o]
and (@(F)) is a discontinuous function of F which ensures that no viscoplastic flow occurs
below the yield condition, e.q.

O(F) if F30,
@(F»:{ 0 if F<0.

According to the above assumptions inelastic deformations will develop only when a thre-

shold value for the state of stress corresponding to a yield surface is exceeded, and the

viscoplastic strain increment is the function of the amount by which the stress exceeds

this yield surface. The viscoplastic strain increment depends also on the material viscosity.

In other words, the viscoplastic flow commences when the stress path penetrates the static

yield condition and continues until stresses relax back to the current loading surface.
We assume further for simplicity

(36)

D(F) = F, ) 37
For the Huber-Mises yield condition under the plane stress condition we have
1
J0S) = 5 [(Sux=15,)" + S35, +653,1, (38)

which, by (33), (35) leads to

1 o
[(S-\‘x“‘syy)z+S£x+Sfy+6S§y]—Eg 285 —Syy

AESD, = ydtl 2 2= 8w | (39)
o} V552, + 552 —35,.5,,+365Z, 6S,, :
The square root in the denominator on the right-hand side of (39) is introduced to nor-

. aof
malize the vector —=—.
oS
For hardening materials the yield limit @, changes in the course of the deformation
process. We postulate the hardening law as a function of the total viscoplastic strains
in the general form

To = Go(E“P). BCY
Which has to be specified for a given material. We note that in inviscid plasticity calcula-
tions the explicit relation of the above type is not used directly?> — the actual value of
the yield stress @, is determined from the actual stress state by using the yield condition (34).

In viscoplasticity, however, the yield condition is not a real constraint imposed on- the
constitutive relation as in"general

()~ # 0. : \ (41)

2 Eq. (40) enters the constitutive relation, though.
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Dcnoting the intensities of the incremental stresses and inelastic strains by

AS; = V(482 +(45,,)* = 45, 4S,,+3(48,,)?, (42)

/IE<”1’>=__|/3[(AE<”") + (AESPY L ABSP ABEH  (AEEPY2. - (43)

(the latter- definition takes into account the inelastic incompressibility of the material),
and assuming that o, = @o(E(;), we define the hardening modulus
as . -

A8,
/]E(vl’) ’

(i)

h =

_ (44)
Using egs. (31) and (32) we arrive at
AS = D[BL —zBD) Au™ — ALCM], (45)

Performing the integrations (12), (13), for the value of AS given by eq. (45) we get incre-
mental membrane forces

! AN3><1 = hD%xB . HAU;I;’)XL—AN* (46)
and the incremental bending moments
’ 3
MMy = = Dy B M9, — AN, @)
where the ,,initial” generalized forces AN* and AM are defined by
B2
AN* = D [ ARz, (48)
¥
) hi2 :
AM* = D [ AE®zdz. (49)
—~ N2

Similarly as before, cf.eq. (15) the expression for AU, can now be obtained in the
form

AUR = f[B,,,(ﬁDB,’,,Au(”) AN"‘)—!—BI,(—h—DBTA o _ AM*))] dd =

y: (50)
. = kO Au®™ ~ AU®*

where k(@ is the elastic elemental stiffness matrix used in the linear version of the program,

[10] and based now on the current configuration at the beginning of the load step, and

AU forms a vector of the ,,additional” incremental nodal forces and moments defined
by

AU = [ [B, AN*~B,AM*]dA. BN
A

The last two expressions suggest an iterative ,,initial force” protedure to be performed
at each incremental step.

The application of the direct assembly procedure leads to the fundamental matrix
equation describing the large displacement inelastic shell problem in the form

[K© +K@JAr = AR+ AR* (52)

3%
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in which the matrices K¢, K@ and the vectors Ar, AR* are the global counterparts of the
elemental matrices £¢©, k¢ and the vector Aut™, AU®* while ARC*" is the external
load vector, ef. eq. (23). Because in the case of inelastic material properties there is no
linear stress distribution across the thickness of the shell (and, in fact, no functional ap-
proximation for such a stress distribution can be rationally assumed a priori), the shell
clement is considered as composed of layers. To effectively find the inelastic elemental
nodal forces we proceed as follows: ' '

1. From eq. (39) the incremental inelastic strain is calculated for the given stress .S in
all layers at each nodal point. _

2. Using the trapezoidal rule the across-thickness integrations are performed according
to egs. (48), (49) resulting in the initial membrane forces AN* and bending moments
AM*,

3. Eq. (41) is used to find the initial nodal generalized forces AU™*. Numerical area

integration is carrried out at this stage by simlpy assuming '

3
AU = ~;’—A 2 (B, AN —B, AM}) (53)
=1
where the index ,,i”, i = 1, 2, 3, refers to the nodal values of the triangular element.
4, Eq. (52) is obtained as a result of the direct assembly procedure. It is then solved for
Ar, and this calculation is followed by:
— evaluation of the new incremental stresses by eq. (45),
— evaluation of the new total stresses according to the known stress accumulation
procedure,
— evaluation of the new ,,initial load” vector
— solution of eq. (52) for the improved value of the incremental displacement 4r,
The iteration process is continued until convergence is achieved up to a desired ac-
curacy. In the present study the convergence is monitored by using alternatively the con-
ditions: '

”AR(R)* _AR*(I(—I)”

TARRE=T] < tol(R)
l14¢% — Axt=1)|| . |
Ac=00] < tO?(I)

where k stands for the k-th iteration.

5. Linearlzed stability analysis

For one-parameter (broportional) loadings the fundamental matrix equation describing
the static problem of elastic thin shells can be presented in a convenient, approximate
form as, cf.eq. (52)

[K© + JK@(o,)] dr = AR (54)
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where K@ (g*) signifies symbolically dependence of the initial stress matrix on the stress
state a* which corresponds linearly to a reference external load R(*" while A is the scalar
load multiplier. The approximation in eq. (54) consists essentially in using the initial
coordinates for setting up the stiffness matrices K and K, which is rigourously valid
for small deformation problems only.

The purpose of the linearized analysis of the shell stability is to check the uniqueness
of the solution Ar of eq. (54) for each given value of the parameter A. The ponits of such
a non-uniqueness are called bifurcation (or branching) points on the primary equilibrium
path in the load-displacement space 2—Ar. According to the definition at the bifurcation
point A = 4, the relations hold

[K(c)+ },”K(u)(oak)]Ar1 — Zchggm),_

[K© 4+ 2, K0)]dr, = 4, RED (55)
which, when substracted from each other, yield
[K©+ 1, K@ (6)]v =0, (56)
with
v =dr,—A4r,. (57

Eq. (56) represents a generalized eigenvalue problem which yields as its solution the N
-different critical load parameters® 2%, 12., ... and the corresponding buckling modes
vy, Va,.... In most practical situations only the first pair (4%, v,) is important which
greatly simplifies the computations.
In the present program the eigenvalue problem (56) is solved by using the so-callled
_subspace iteration method.

6. Computer studies

I. Linear analysis of a rectangular plate with complex boundary conditions, Fig. 4.
The plate is subjected to uniformly distributed pressure load. Two finite element
idealizations are shown in Fig, 4. In Tabl. 1. The present numerical results are com-
pared against the analytical results reported in [19].

I1. Linear analysis of a clamped, axisymmetric sphere under the point load applied
at the apex, Fig. 5. The part of the shell considared in the analysis and its finite
element idealization are shown in Fig. 5. The results are discussed in Tabl. 2.

ITI. Geometrically nonlinear analysis of a quadratic plate clamped at the boundaries,
Fig. 6.
The plate is subjected to uniformly distributed pressure load. The loading was
assumed to act perpendicularly deforming surface of the plate. Fig. 6 and 7 illustrate
the computed variation of the vertical displacement at the center point of the plate

» The so-called multiple bifurcation points are excluded here to simplicity is the total number of
degrees of freedom in the discretized shell,
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v, the applied load and the éomputed variations of the normal stresses on both
the upper and lower surfaces at the center point v, the applied load, respectively.
The agreement of the results with those discussed in [20] is excellent.

Geometrically nonlinear analysis of a circular cylindrical shell, Fig. 8.

The shell is subjected to a point load applied centrally on the convex side. The lon-
gitudinal boundaries are hinged and immoveable, whereas the curved edges are

|
|
|
!
|
i

thickness 0Am

load 0981 kN/m
young modulus 206.01 MPa
poisson ratio 1/6

f«—B6m ——

n 36 X
1 1- i # ™ T
2 o] I ,_A_|
3 13 39 |,
L | .5 T —_T
5 7 J
b Y
Fig. 4
Table 1
w [m] M, [kN] M,kN]
N .
0.002477 3.777 3.063
a a 16 .
X = — = —
2772 o _
Node 13 (16 el) | - 1 0,002688 3.947 3,136
Node 39 (60 el)
0.002667 3.600 2.649
N
16 0.003972 6.511
a
= -, =0
X 5 y . .
Node 11 (16 el) 60 0.004356 6.875
Node 36 (60 el)
0.004330 7.250
N .
q 0.001070 4.707
b 6 '
x=ay=—
¥y 5 N -
Node 23 (16 e) | o | 0.001121 5.049
Node 74(60 el) _
A 0.001222 5.366
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completely free. The analysis was continued up to the point at which singularity
of the total stiffness matrix appeared. One-quarter of the panel was discretized
by a 6x6 finite element mesh. The comparison of the present results with those
discussed in [21], [22] is shown in Fig. 8. Good agreement of the results is observed.

V. Geometrically nonlinear analysis of another cylindrical shell, Fig. 9.

VIL

™ T T T 13/
h=3.175mm j/
E=3102.75 N/mm? /
V=03
;;--Zx‘lO']“ . eZ o
E O, . /
E 5l 212

z 3 2=/

e == / /5
= g A &
@ Sy 23~ 3
@ 4 ~.

a 74 ¢ N
-3
~ta0 Re2samm o
—— present solution
—— [23]
—— [24]
| | | | ]
0 -2 -4 -6 -8 -10
N ZA[mm]
Fig. 9

The circular cylindrical shell portrayed in Fig. 9. is clamped along all four boun-
daries and subjected to uniform inward radijal loading. One-quarter of the shell was
discretized by an uniform 8 x 8 finite element mesh and 32 equal load steps were
applied. Fig. 9 shows a very good agreement of the present. results as compared
against those given in [23], [24]. Almost the same results were obtained in the present

~ study by using an uniform 6 x 6 mesh and 40 load increments.
VL

Geometrically nonlinear analysis of a spherical shell, Fig. 10.

The shell is subjected to a concentrated load at the apex; all edges are hinged and
immoveable. One-quarter of the shell was discretized by a 6 x 6 finite element mesh
and 40 load increments were used. As a matter of fact the problem was considered
under the apex displacement control rather than under the force control. This made
it possible to get through the limit point on the load-displacement diagram without
any difficulties. The results were found.fo be sufficiently accurate, cf. Fig. 10 cf. [23],
their further improvement is possible by simply using more load increments.

Limit load analysis of a quadratic plate, under uniform loading, Fig. 11.

The upper and lower limit load estimates are given as, cf. [25]

24M,
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The 5 x 5 finite element mesh was used each element consisting of 11 layers assumed
for the observation of the across-thickness plastic zone development. The results
of the analysis are shown in Fig. 11, 12.
VIIL. Inelastic, large displacement analysis of a spherical cap, Fig. 13.

The shell is hinged at the boundary and subjected to a concentrated force acting
at the appex. The material and geometric data are the same as in Example II, cf.
Fig. 5. The material is assumed to be ideally plastic with 6, = 137.9 N/mm?2. The
displacement control of the process was used. The first five incremental apex displa-
cements were assummed to be equal to —0.0254 mm. which was followed by the

\
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25 steps of —0.127 mm. The present results are shown in Fig. 14 and 15 and compa-
red with those given in [7].

IX. Inelastic, large displacement analysis of a cylindrical panel, Fig. 16.
The shell is subjected to the uniformly distributed loading acting in the negative
z-direction.
The load was assumed to increase from 0 to 0.00315 N/mm? in the 24 equal incre-
ments. The results are given in Fig. 16 cf. [26]. '

X. Linearized stability of elastic quadratic plates, Tabl. 3.
The linearized stability formulation described in Sec. 5 was the base for calculating
the buckling loads for the two differently supported plates. One-quarter of the
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plate was analysed. It is seen that the accuracy of the solution is strongly dependent
on the number of finite elements used in the calculation. This can be partly attri-
buted to the simplified assumptions used in deriving the geometric stiffness matrix.

Table 3
TZE .
O =K ( 6) Mesh Coet‘?cnent ero;oor
impl
simply suported plate 66 4192 L8
[ B! gx9 4.044 1.1
1% Ha
14x14 4L.016 0.4
O_ -
clumped plate Bx6 | 5.947 12.0
5
TTI I ’ 9x%9 5.506 3.7
0;: I~ ti 1hx14 5.374 1.2
SEAZEAN 19x19 | 5.337 05
Q—=
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Pesome

SQDCI)EKTI/IBHBIPI HEJIVHEMHBIN AHAJIU3 TOHKUX OBOJIOUEK IIPOM3BOJIBHOM
DOPMEL

B paBore o0Cy)KEHB! OCHOBHEBIE ACIEKIBI CTATHUECKOIO HENHHEHHOro aHanusa o00JOUeK IpoH3-
BONEHOH (DOPMEI METONOM KOHEUHBIX 3JIEMEHTOB. IIDHMEHEHO OTHOCHTENBHO IPOCIHIE KOHEUHBIE 2JIe-
MEHTBY 0071eryas Takum 06pa3om BBeIeHME FAHHBIX M MHTEPNPETAlMIO TOIYUEHBIX PE3YIBTIATOR, Y UTCHLI
1IpoGuieMel GONMBIINX mepemelieHuil ofOoNoUex M HEYUpPYIHX CBOHCTB MaTepuana. QOOCY(HERBI TOKKE
BOUPOCH! AHANM3A JTHHEAPH3HPOBAHHOM YCTOWUMBOCTH 0GosoueK. PaGora MIUTOCTPHPOBAHHA THCIEH-
HEIMY TIPHMEDAMI. '

Streszczenie

W pracy przedstawiono podstawy statycznej, nieliniowej analizy powlok dowolnego ksztattu metoda
elementOw skoficzonych. Zastosowano wzglednie proste elementy skofnczone, upraszczajagc w ten sposdb
_ wprowadzanie danych wejéciowych oraz interpretacje otrzymywanych wynikéw, Uwzgledniono proble-
. matyke duzych przemieszczenn powiok oraz niesprezyste wiasnosci materialu. Omoéwiono réwniez zagad-
nienie analizy zlinearyzowanej stateczno$ci powlok. Praca zilustrowana jest licznymi przyktadami.



