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1. Introduction

Problems of the elastic instability analysis for thin shell structures are highly complex
due to the nonlinear character of the actual buckling mechanism. In general, the insta-
bility investigation of such structures may include the solution of ths problem of equi-
librium bifurcation, and a nonlincar analysis based on tracing the nonlinear load-displa-
cement path and determining singular points of load-displacement bzhavior see ([l],
[2], [3])- The basic problem in the instability investigation of thin shells, therefore, lies
in a determination of critical loads related to such points (bifurcation, limit point or the
other points of decrease in stiffness). An approach to the resolution of the above-cited
problems can be based on the finite element method.

The different levels of a nonlinearity can be considered for thin shell instability analysis.
It leads to different numerical problems. A hierarchy of nonlincarity was made clear by
MALLETT and MARCAL [4]. The objective of this paper, therefore, is not an extension of
the finite element approach to the analysis of all the above-cited problems, but the attention
is focused on the formulation of matrices appropriate to instability investigation of stif-
fened cylindrical shell, using for this purpose a ribbed curved element. Fundamental
governing relations to be derived are in the class of geometrically nonlinear formulation.
Then, the clement is verified by comparing numerical results for the linear, stable analysis
to the alternative solution for the same problem. The relevant matrices of the finite element
model appropriate to the linear stability analysis are given by the explicit definition [3].
Herein, computational procedures are not developed for the nonlinear analysis. The
explicit numerical procedures to be outlined are in the class of “linear bifurcational sta-
bility” formulation. The fundamental concept of the element model is, that a set of discrete
stiffenings (stringers and rings) is consideraed in the element stiffness connections. The
approach based upon the introduction of the stiffenings from within the finite element
model is restricted to the thin and flexible ribs referred to as the second order stiffenings.
Assuming that the real structure will be stiffencd with large number of such ribs the local
buckling is not taken into account. The number of the element ribs may be chosen arbi-

trarily. The ribs eccentricity is taken into account. Attention is restricted to linearly elastic
material behavior.
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2. Element geometry and displacement functions

A description of the element geometry is given in Fig. 1. The element consists of thin
cylindrical panel and a set of thin flexible ribs. The radius of curvature (R) and thickness
(t) are constant. The element nodes are corner points numered from 1 to 4 as in Fig. 1
Let &, n represent a set of orthogonal curvilinear coordinates for the mid-surface and ¢
the normal coordinate. The coordinates are defined as follows:

(2.1) f=2 A=4 L=2
where
x — length along the axial direction,
s — arc length along the parametric line 7,
z — length along the normal direction.

1t
Fig. 1. Element Geometry

As the chosen nodal displacements we take the mid-surface translations u«, ¢, w in the
£, n,  directions and parameters %‘;, %—, 73;?,‘:7 Therefore, the total number of element
degrees of freedom is 24. The displacement functions representing the element behavior
are assumed in the form: '
U= o+ 0y &+ azn+ oy fn+agsing —a;o(cosn —cos o),
v = —as(l —cosncosBo)+ asEcosn+ oy n+og&n—oyo€sing + oy, cosn+ aesing,
(2.2) w = agcosn+ayoécosn+aysing+ oy E2 oy byt n?+ a5 83
0y 6E20+ g7 8N+ 081+ U0 E30 F a0 2% + otz £ + 02, 397
+ o3 £33 + 25, £33 + assinncos B+ as £siny.
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Similar functions was previously used by CANTIN and CLOUGH [6] to the linear static
analysis of a thin cylindrical shell. The element is nonconforming since the employed
displacement functions (2.2) do not satisfy required convergence conditions. ZIENKIEWICZ
and CHEUNG [7] summarized conditions to be met by displacement function chosen in
the representation of element behavior for the purpose of matrix displacement analyses.
Reference [6] examines the violation of the above-mentioned conditions with the reference
to a thin cylindrical shell element and, through numerical evaluation, conclude that such
functions exhibit convergence for the linear case.

References [8], [9] conduct a similar study. GALLAGHER [1] concludes, that the finite ele-
ment method, when based on variational principles, requires interelement continuity of
derivatives up to one order lower than it appears in the associated functional, or energy.
With a reference to the strain displacement relationships the highest derivative to appear
in the nonlinear terms is the first. Thus, since the linear terms consist of the second order
derivatives, this opens up the possibility of using the same or simplified field for the non-
linear terms as compared to the field used for linear terms. Since functions (2.2) exhibit

convergence for the linear case, thus, there is no objection to application such field in
nonlinear case and stability analysis.

3. Governing nonlinear equations

Define u and p as the mid-surface translation and external force intensity matrices.
B, &, & as the strain matrices referred to cylindrical panel, stringers and rings, respectively,
and o, g;, o; as the stress matrices corrpesponding to ¢, &;, g;, expressed by

u= [uow]", p= [pp,p]J5,

(3.1) e = [&f & €1,]", & = [3c103c12]'r, g = [0&5 3:12]1',

i) 6 = [of 0":20;12]7‘; G = [O'cloo'clz]Ta 6, = [00% ’fiz]'r,
IR ol L S T N i B T N

where

n -—total number of element stringers,
m — total number of element rings,
€i. & — extensional strains in &, # directions,
&9, -— shear strain.
The stress components are shown in Fig. 2.
Let v be the strain energy per unit area of the middle surface, expressed by

m

n
= m
(3.2) v=Vot D Vit DV,
i=1 i=1
where

Vo — cylindrical panel strain energy density,
V; — stringer strain energy density,
V;— ring strain energy density.
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Fig. 2. Stress Components

The governing eguilibrium equations are obtained by applying the Principle of Virtua
Displacements which requires

7

(3.3) [oVoad+ D [ ovida,+ Y [ ov,dd, = Af supdA,
A i=1 A J=l A,

and has to be satisfied for an arbitrary admissible variation du. The formulae for the strain
energy density can be written as follows

1 - : 1 Zia\l der
3.4 Vo = 7[ s"a(l +%) d¢, V,‘ =5 f sJ,-To'j_ (l +-;2—) dg .
¢ ¢

The derived nonlinear strain — displacement relationships constitute a generalization
of those due to NovozHiLov [10]:

4012 )
1 du 1 (ow) .1 a°w

B e ke R
"7 R 2 " 2R*\ ¢k R> (&2
1 o w 1 [ ew)? 1 [o2w b
3.5) & = — b =) === )
( ° R @&y 3 R 2R? ( (-q) 7 R2 (1397“ an
. 1 o +l cu . 1w éw | 2 ( a*w ('771)
P I e e . = T v — g o 2 L\ "’." Thnen o= s .
27 R A TR &y  R* & Oy R\ otgn ok

After restricting our attention to the linearly clastic material behavior, the dependence
of stress upon strain is assumed to be governed by

(3.6) = D(e—¢%, a =Ele;—ed). a;,=E/(e;—¢g),
in which &°, &f. &) contain the initial strains. The rigidity matrices are delined as foliows
A w0 I 0 0
E | 0 0! 0
(37) D =— 2 El b - Ei
I —» 00 li=% J ilo o |
i 2 2(1+»)
where

E, E;, E; — elastic modulus of cylindrical panel and ribs, respectively
».»;,»; — Poisson’s ratios of panel and ribs.
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It is convenient to segregate the nonlinear terms in the expression for strains, thus, the
strain matrices &, &, & can be written as follows

3.8) e=e+et+lk, & = e+e€+ik,
J ¢ J I

in which e, ¢;, ; contain the linear terms of stretching deformations, e, €;, €; contain
the nonlinear terms and k, k;, k; contain the curvature changes. Substituting for u we

obtain from Eq. (2.2)
(3.9) u= Aa, 7
where A contains prescribed functions of the local coordinates and « contains unknown

parameters «;. Substituting this relation into Eq. (3.8) we are able to express the relevant
matrices in the following form

¢= Ba, e = B,a,
4 L

(3.10) ' "e=Ha, ¢ =H,a,
. j J

J

k= Ga, ki= G,-a.
J

J

Note that H, H;, H; depend on « whereas B, B;, B;, G, G;. G; are independent of a.
The relevant variations are

de = Boa de, = B, da
J 1
(3.11) oe = 2Hoa e, = 2H, oa
4 4
ok

Goa ok, = G, da
J

J

ou = Ada

Substituting Eqgs. (3.10) and (3.11) into Eq. (3.3) and integrating over the element we
obtain

(3.12) daT(k,a+P2) = daTP,.

Eq. (3.12) must be satisfied for an arbitrary admissible da. the equality of coefficients, -
therefore, leads to the equilibrium equations

(313) -L:ua-l_};l? - PIH

where k, is the nonlinear stiffness matrix. The matrices P°, and P, depend on the initial
and external loadings, respectively. The above matrices are given explicit definitions in
dissertation [5]. It remains to express the element parameters, a«, in terms of the nodal
displacement. Define u, as the displacement matrix for node ..I':

ow' éw 2w |7
3.14 = ? — —
G.14) u [u U W & &‘5(’)7;] 3

D= | =2 A

Let U denote the matrix containing the nodal displacement matrices ; listed in a prescri-
bed order :

(3.15) U= [uuusu,]".
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Substituting Eq. (3.9) into the foregoing expression leads to the relation defining tran-
sformation matrix C

(3.16) U= Ca,
Performing this transformation on Eq. (3.12) we obtain
3.17 k,U+P? = P,
where '

Ry = (CWHCN, | B)= (C-YPY, P, ={(CYE;.
The system of equations for the complete structure can be obtained in the known manner

(see [11]). Defining r as the system nodal displacement matrix while RY, R, 25 thc initial
and external loading matrices, respectively, we can express the total system equations

(3.18) Ky+R] = R,,

where K, is the total nonlinear stiffness matrix.

4. Generation of tangent stiffness matrix

Herein, the definition of tangent stiffness matrix is obtained by applying the Trefftz
criterion ([12], [13]). A necessary and sufficient condition for the stability of the prebuckled
state is the existence of some nonvanishing but infinitesimally close perturbed configu-
ration in which the energy increment is always non-negative. The critical point may be
characterized by a positive, semidefinite, second variation of the potential energy. Thus.
at the critical load there exist nonzero virtual displacements for which the second variation
in the total potential energy vanishes. The total potential energy may be expressed as
follows

(4.1 = V+Q

where V is the strain energy and £ is the potential energy of the external load. If the exter-
nal loading is considered to be independent of the displacements, 3277 reduced to 42F
and Trefftz criterion may be written as 62V > 0. Thus, the attention is turned -hcre to
the formulation of the second variation of this portion of the potential energy. According
to Egs. (3.2) and (3.3) the second variation of ,,V’’ can be expressed as

n m

(4.2) 02 = [ 0Wedd+ Y, [ovida+ Y [o2v,da,,

A i=1 A, j=1 4;
Expanding the right-hand side od Eg. (4.2) we obtain
(4.3 82V = daTkpda.
where k, is the element tangent stiffness matrix. The expression for k+ takes the form
(4.4) ky = k+k,+k,

where & is the linear stiffness matrix, l_c-c, is refered to as the initial stress matrix and ’-(-,
1s the matrix of large deformations. The matrices are given explicit definitions in disser-
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tation [5]. Applying the transformation (3.16) to Eq. (4.3) we obtain

(4.5) 82V = oUTkpoU.

Therefore, the element tangent stiffness matrix k; takes theiform

(4.6) e pren (O Tk JCE,

the total tangent stiffness matrix for complete structure can be obtained in a known manner
(4.7) Kr = ) alka,.

4

where a, is a Boolean matrix and ,,g” element number. According to Eq. (4.4) the total
tangent stiffness matrix takes the form

(4.8_) KT = K+K6+Kl

S. Calculation of bifurcation state

Herein, the previously outlined finite element formulation is applied to the linearized
analysis of a bifurcation state of the shell. Since the external loading is considered to be
independent of the displacement, the application of the Trefftz criterion to the complete
structure leads to the relation 62V > 0 where ,,V¢” is the total strain cnergy of the system.
The second variation of the total strain energy may be expressed as follows

(5.1) 8%V, = S¢TKybr.

In the linearized stability analysis, the prebuckled geometry corresponds to the undefor-
med (initial) geometry. This assumption is introduced by disregarding the second order
nonlinear terms, therefore, the matrix K is neglected. The total tangent stiffness matrix
reduces to

(52) \ KT — K+ I(’;

where K is the linear stiffness matrix and K, dépends on the applied loading. If the
distribution of internal forces in the structure does not change along the fundamental
path the matrix K, may be assumed to vary linearly with the load level. If the loading
R, is arbitrary, first we obtain the linear solution r, and then we generate K,. When

the loading can be specified in terms of a single parameter, say A. then K, can be written
as

(53) Kx(r) = )'Kn(rﬂ)~
moreover
(5.9) K; = K+ 2K, (r,).

According to Egs. (5.1) and (5.4) the bifurcation problem can be interpreted as a genera-
lized eigenvalue problem, expressed by

(5.5) Kor— 2K, 0r = 0

Many research efforts have been devoted to solve the foregoing problem (see [i4], [15].
[16]. [17]). Therefore, two independent computational procedures have been developed
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for this purpose. The first procedure represents application of the Householder-Cholesky
method, the second one, based upon Peters-Wilkinson approach may be reffered to as
the trial method. The basis of the trial method may be stated as follows:
“If the matrix K is positive definite then the number of eigenvalues of the problem
(5.5) smaller than the chosen trial value of parameter 4, say Ao, equals to the number
of negative diagonal elements of the top triangular matrix obtained from (K—
— 20K,) by the Gauss elimination” '
The number of negative diagonal elements displaying during the trial process enables-
sensible selection the succeeding values of parameter A, during the calculation. These
values can be introduced into computer storage simply via monitor. The trial process
advances iteratively until the desirable accuracy of solution is accomplished.

6. Numerical examples and accuracy comparisons

In this section the previously described element is verified by comparing numerical
results for the linear stability analysis to the alternative classical solution for the same
problem. The basis for appropriate computations are the computer programs created in
accordance with the methods applied to resolution of the eigenvalue problem. These
programs were coded in FORTRAN for the computers ODRA 1305 and ODRA 1325.
The explicit listings and a concise flow charts of these programs are given in dissertation
[5]. The first example considered was a simply supported along the longitudinal edges,
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L = i
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PTRCTE ER r ( e 21605
A, |2081332 | ——
; [N N |
== 47 B 2l M # 30 7l 36 Number 0f nodes
4 6 8 o0 12 14 6 8 X 22 Number of alements

“Fig. 3. Cylindrical panel under uniform normal pressure —
— Accuracy Vs, Grid Refinement
e — unstiffened panel,
A — pancl stiffened by the three rings,
— — classical solution
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and free along the circular ends unstiffened cylindrical panel subjected to uniform normal
pressure. Fig. 3 shows a comparison of the finite-element solution with the classical solu-
tion [18]. The same cylindrical panel stiffened, by the three rings (see Fig. 3) was studied
next. Fig. 3 indicates a study of the convergence of the present method. The diagram shows
that the non-dimensional buckling load ,,A” converges guite rapidly. The difference bet-
ween the present result and classical solution is approximately 59, for 22 clements.

Numbar o,
24 27 eleingnts f
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¢
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Fig. 4. Cylindrical panel under uniform compressive load —
— Accuracy Vs. Grid Refinement
® — present solution,
— — clasical solution

Figure 4 shows a simply supported on all four sides cylindrical panel under uniform
end compressive load pe. The non-dimensional buckling load is plotted against the number
of discrete elements. The result for employed class of the finite element mesh division is
compared with the classical Timoshenko’s solution [18]. In this case the difference bet-
ween the present result and those of Reference [18] is approximately 10%. The diagram
shows that the buckling factor ,.2”" converges to value higher then those of Timoshenko,
however, a finer. in longitudinal direction, type of the grid can be used, giving more
accurate answer,

Another problem examined is the buckling of a set of stringers supported and loaded
as shown in Fig. 5. The results prove to be in close agrecment with the classical Euler’s
solution,

Fig. 6 indicates a study of the convergence of the present solution for the simply sup-
ported on all four sides cylindrical panel in the shear conditions. VoLmir [I19] has ana-
lyzed this problem using Galerkin's method. Volmir’s results are compared with results
of the present method. Ref. [19] predicts higher loads in comparison with “exact” solution.
whereas the present method gives lower buckling loads. The difference between the results
of foregoing solutions is approximately 8% for 24 elements.
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Fig. 6. Cylindrical panel in the shear conditions —
— Accuracy Vs. Grid Refinement
® — present solution,
A — Galerkin's method

Finally, a stiffened by 7 stringers and 5 rings cylindrical panel under uniform end
compressive load is considered (see Fig. 7). The panel is simply supported on all sides.
In the discrete element analysis, employing 24 elements the result obtained is 2 = 5.46066.
For this case the solution for Householder’s method was compared with the employed
trial method (see Ref. [20]). The results of the trial method prove to be in close agreement
with Householder’s solution also in the other cases examined [5].
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§=123

Fig. 7. Stiffened cylindrical panel under end compressive load

7. Conclusions

It is clear trom the outlined convergence study, that present method assures conver-
gence for the basic cases of loading. The convergence characteristics depend on these
cases of loading. Appropriate curves can converge from opposite directions. It arises from
the nature of the assumed displacement field. Namely, displacement function for the
normal translation ,,w’" satisfies the continuity condition, whereas the simpler functions
for the ..u” and ,,v"" components are assumed. It causes that the violations ol the conti-
nuity conditions for “in plane™ translations are present in the element representation.
It the normal translation is the dominant component in prebuckled state, the convergence
characteristics, therefore, converge from the top direction. On the other hand it the “in
plane™ translations are in prebuckled state the dominant components the convergence
occurs from the bottom direction. Ref. [5] gives more detailed convergence and accuracv
analysis. Fairly good agreement was observed between the results of applicd methods
of solution of the buckling eigenvalue problem in all examined cases. The trial methed
seems to be very effective in such a class of the eigenvalue problem. Finally, it should
be pointed out that discrepancies between the theoretically predicted classical bifurcation
buckling loads and test results are always expected for thin-shell structures. The reason
is that buckling of thin shells is very sensitive to initial imperfections. More accurate
results may be obtained by applying nonlinear stability analysis. The derived non!incar
terms enable an extension of the present formulation for investigation of the nonlinzar
instability effects of the stiffened cylindrical shells.

4 Mech, Teoret i Stos. 2—3/83
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Peszome

KOHEUHBIM 3JEMEHT B PACUETAX YCTOIUMBOCTHU PEBPHCTDLIX
HAJIVMHIPUYECKHX OBOJIOYEK

B pa60're NAPEACTABACHO MCMOJb30BAHIE METOAA KOHCUHLIX JJICMEHTOB B pacycTax yCTOﬁllHBOCTM

PEOPHCTBIX LHIMHAPHUECKHX obomouex. JIJist MCC/IENOBaHMA YCTOMUMBOCTH HCHOJB3OBAH KpPHTEPH
TpeBua. AJropuTM NPHMEHAETCA B pacuere oblleil morepu ycroiiumBocti. B paGoTe mocrpoeHs!r He-
JIHHEHHBIE MAaTPHIBI KOHEUHOIO 3JIEMEHTA.
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Summary

- An extension of the finite element method to the analysis of bifurcation buckling of cylindrical stif-
fened shells is presented. A procedure for the formulation of the problem is based upon the Trefftz criterion.
The present formulation is applied to the prediction of general instabilities. Aspects of the element formula-
tion which pertain to geometrically nonlinear behavior are also described.
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