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1. Stability Equations

The set of stability equations for a conical shell under external pressure is of the form:
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where: x = —1—, ¢, = esinf (see Fig. 1),
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w — shell deflection,
F — force function,
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Equations (L), and (2), given here in a transformed form, were derived for the conical
shell of an arbitrary shape, c.f. [I]. In equation (2) pl*cos*« should be substituted instead
of the underlined term for the stability problem of a shallow conical shell (for a shallow
shell tga < 0.2).

In this paper the solution of the shallow conical shell stability problem is presented, where
the equation (2) in a “full” (with under lined term included) and in a “simplified” form
are used. It can be concluded from the analysis which of the equations of (1) and (2)
are better in use. The analysis of the influence of shell dimensions on the critical load is
also presented.

2. Solution of the Equations.
The strain compability equation (1) was solved by Papkowicz — type procedure.
The deflection function was taken as
3) w = (x2= D2 +x*(x*>— 1), cosng, .
where: f, f; — unknown parameters,

k

=— (k= )
n Sinﬂ ( 0’1)2,3, )
The function (3) satisfies the conditions for clamped shell edge at x = I, i.e.:
' 0
(4) w —=0; R Ly
ox

When the deflection function (3) is introduced into right-hand side of equation (1), this
can be writgen as follows:

®) V2V2F = Eh(Ay+ A, cosne, + A5,cos2np,),

where Ay, A,, 45, are the functions of x. 1

The parameters of deflection function and shell dimensions are also included in these
functions. The equations arc of the form given in ref. [3]. The solution of equation (5)
we accept in the form of power series

«0

(6) F(x, ) = E F,(x)cosmep, .

m=1

The coefficients in equation (6) can be determined when the set of four differential
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equations. obtained by substituting the function (6) into equation (5) and comparing
by identity the corresponding terms of the left — and right-hand side, is solved.
Thus the force function takes the form of

(7) F(x,¢,) = Fy+ F,cosng, + Fy,cos2ng, .

F,, F,, F,, are functions of x and of deflection function parameters and they are of
a complex structure. When the force function is known, then we can approximately solve
the equilibrium equation (2) assuming a deflection function w.
A Bubnov-Galerkin-type procedure is used for solving the equation (2). The “full” and
also the “simplified” equations are solved. Orthogonalization of equation (2) requires
27 1

®) . [ [ KGx.g)x(x2=1)*dxdpsinp = 0,
0 0

e, il
’ f K(x,0,)x*(x*—1)2cosngp,dxdpsinf = 0,
6 0

where: K(x, ¢,) is left — hand side of equation (2).

When the conditions (8) are expanded we obtain a set of two algebraic equations in
the vector of deflection functions parameters.
For the “full” equation (2) one obtains
A p* AL A+ AL+ A58 G+ A3 = 0,
B,p*+B>+By{,+ B, {1+ Bs(3 =0,

and for the “'simplified“ equation (2) there is

&)

Al 4 Ao+ A+ A B3+ Ay B3+ A £3 = 0,
CZ(B2+B3:1+B4C%+B565) = 0_

The next quantities are introduced in equations (9) and (10):

- f - f 1 ¥P

hil=_r=% %2=“F, P"=€-

(10)

The coefficients A; and B; include shell dimensions and parameter n. Their structure is
very complicated. When parameter (£, is eliminated from equations (9) we obtain an
expresion form which we calculate the pressure

l:?"‘Kz_C%'l‘KsCl +K4_
i+ K,

The same operation made on equations (10) gives

(ll) p* = KO

(12) ' p* = H,+H2C1+H3Cf+H4C?.

 Since the directions of the pressure and the deflection (see Fig. 1) in equation (11), and
(12) are opposite one has to put £, < 0.
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3. Analysis of the Solution

The .analysis has been performed for shells with —/—ir = 100, 200, 300 and with angle
a varied (tga was from 0.1 trough 0.5 by step of 0.1).

p‘x106‘f
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Fig. 2

; ! : el
From equations (11) and (12) for each pair of = and tga one obtains an infinite num-

k -
ber of solutions, because they both include the parameter n(n = g:—) The only signi-

. ing]’
ficant solution is the solution which gives a minimum p* value,
Fig. 2 is a plot of curves obtained from the solutions of equation (11). They refer to a shell

for which —/[z_ = 100 and tga = 0.1. Each of the solutions brings two extremal values

of the pressure. The lowest from maximum pressures is the upper critical load, signed
Py, the lowest taken from minimum pressures is the lower critical load pZ.
The lowest pressures were obtained at k = 1. These are p} = 6.6489 - 10~6 and pE
= 1.4374-10°. The line for {, = 0 is also presented.
It represents a symmetrical form of buckling and it is of a first approximation of the
solution. The minimum value is 2.859 - 10~6.

Change of dimensions and angle « do not influence the quality changes. The critical
load is then obtained from the equation at & = 0,

The solutions of equation (12) are of the same form. However the buckling critical
loads are much higher (for & = 0) here then buckling loads obtained from equation (11).
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Fig. 3 presents the lines of lower critical load pJ versus angle « for three different

! S g
values of e The lower of the two lines presented by the same type of line is referred to

equation (11), the upper line is referred to equation (12). It is worthenoting to show that
by using the “full” equilibrium equation (2) one obtains in each case, the lower critical
load smaller than the critical load of the “simplified” equation. The decrease is as much
as 507, of the pressure obtained from “simplified” equation. The critical load increases

rapidly with the increase of angle & but the increase is not so rapid when the " ratio

is larger.
To evaluate theoretical results the use is made of the experimental data given in ref. [4].

l
These data are pointed aut by crosses in Fig. 3, and they refer to shells of il 200,

tga = 0.1 and of % = 300 and « = 30°.

The experimental result for a shallow shell is contained within the solutions of equa-
tions (11) and (12), but the result for a shell of & = 30° differs very much from the theo-
retical predictions (when the latter are extrapolated for the angle of 30°). Since the other
experimental data are not a vailable the range of valid solutions is not resolvable correctly.

One may say with cortainty that the accepted deflection, while using a Papkowicz-
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-type procedure and “full” equilibrium equation, makes the results valid for shells of small
angle «; it is also to say that the regime of solutions can be enlarged up to tg ~ 0.3,

especially when % > 200.
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Pesome

3AJJAYA OB YCTOMUMBOCTH II10JIOIOI1 KOHUYECKOM OBOJIOUKH CO
BCECTOPOHHHMM TTIIPABJIMYECKHM ITABJEHHEM

PaGoTa COAep KUT CpaBHEHHE PelIeHHH NPoOseMbl YCTOHYMBOCTH IONOrOH KOHHYECKOH 0B0I0UKIH
C NpUMEHEHHEM YIPOILEHHOI'O M HEYNPOLIEHHOI'O YpPaBHEHHsI PaBHOBECHA.

AHanusupyercsi BIHAHHE Pa3MEpOB OGOJIOUKH HA CTOMMOCTb KPHMTHYECKMX JaBilenuii. CpaBHu-
BOIOTCSl TAKIKe TEOPCTHUECKHE PE3YNLTATBEI C B3ATBHIMM C JIMTEPATYPLI SKCIEPUMEHTAJIBILIMK pe3yIlb-
TATaMH.

. Streszczenie

ZAGADNIENIE STATECZNOSCI MALO WYNIOSEEJ POWLOKI STOZKOWEJ POD
DZIALANIEM CISNIENIA

W pracy dokonano poréwnania rozwigzan zagadnienia statecznosci powloki stozkowej o malej wy-
niosto$ci przy zastosowaniu uproszczonego i nieuproszczonego réownania rownowagi. Przeanalizowano
wplyw wymiarow 1 ksztaltu powloki na warto$¢ obcigzen krytycznych. Oceniono réwniez pnydatnosé
otrzymanych wynikéw na podstawie danych doswiadczalnych wzigtych z literatury.

Praca zostala zlozona w Redakcji dnia 1 lutego 1983 roku



