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1. Introduction

The paper deals with the method of finding the governing equations for a surface
structure having a form of a dense and regular grid made of bars. The lateral deformation
of elements of the system are taken into account. It is assumed that the material of the
structure is elastic, homogeneous and isotropic. The problem of statics is analysed within
the linear theory.

The numerical methods employed to solve the problems related to the considered
systems were based on discret representation of the structure (see, among others [I, 2, 3])
and lead to a system of algebraic equations with a large number of unknowns. The dimen-
sions of nodes, their deformability and the lateral deformability of structure’s bars were
not taken into account.

The application of a continuum model of a structure consists in an appsoximation of
the multi-connected geometry of the system by a certain simply-connected and conti-
nuous model (see, among others [4, 5, 6]). The advantage of the discussed approach
over the previous one lies in the fact that the analytical methods can be employed. The
negative aspects are: a) considerable inaccuracy of results for not sufficiently dense grids,
b) the required geometrical symmetry of the structure. An interesting idea of a continuum
model of such structures based on the concept of a continuum with internal microstruc-
ture and higher order internal reactions is presented in [6]. In the present paper Cz. Woz-
niak’s model will be applied to obtain equations of the second order theory. An ener-
getic approach, different from the previously considered one, which will be employed
makes it possible to describe in the explicit from all properties of the continuum model.
As a special case (in which the higher order effects are neglected) equations of the first
approximation will be obtained.

2. Basic assumptions

It is assumed that the structure consist of (homogeneously) deformable cubicoid nodes
connected by means of the prismatic links of rectangular cross-sections (and subject to
homogeneous deformation in their plane) and constitute the regular and orthogonal
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surface grid made of bars (Fig. 1). The lengths of the elements of structure are small as
compared with the lengths of the surface and its curvature radii.

A system of x!, x? coordinates on the n surface on which the structure is shaped and
a z coordinate in the direction normal to surface = were chosen in such a way that x!, x2, z
axes represent a right-hand system of coordinates. It was assumed that the geometric
centers of the nodes lie at intersections of parametric lines x! = const, x> = const, z = 0
and that the axes of the links coincide with directions of these parametric lines. A typical
segment of such a structure is shown in Fig. 1.
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Fig. 1

We shall introduce twelve continuous, sufficiently smooth functions defined on the
surface 7 of the structure. These functions represent translations, rotations, deformations
along the coordinate axes and the shape deformations. The forementioned functions
constitute unknown quantities of the model and have a physical sense only at the node
centres. In every net mesh they can be treated as linear nature. :

3. The analysis of the structure components

Node. When a structure is loaded a typical node is subjected to a homogeneous deforma-
tion having 12 degrees of freedom. Let (u,, u,, u.) be the displacements, (9., &y, #:) —
the components of an independent vector of rotation, (wy, @y, w:) and (Wxy, Wz, Wyz) —
the linear and deviatoric components of a homogeneous deformation, respectively. De-
noting by w,, w,, w. displacements within the node area in directions x, y, z, respoctively
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the following formula hold
Wi(%, ¥, 2) = Uit x+ (0, — )y + (@ o)z,
3.0 wy(x,y,2) = u,+ (@, +o)xto,y+ (0, — %)z,
W (x,¥,2) = u,+(w,,—3)x+ (Ftw,,)yt+w,z.

After applying the principle of ideal constraints we can arrive at 12 equations describing
the node equilibrium with 6 generalized internal forces and 12 generalized external forces.
From the equations of the linear theory of elasticity the general constitutive relations can
be obtained together with a formula for the strain energy of a node.

Link. Let us take into account a typical element connecting the i-th and the j-th nodes
situated on the x* = const parametric line (see Fig. 1). Let w,, w,, w, represent displa-
cements of the link area in directions of a local coordinates x, y, z (see Fig. 2). It is assumed
that the lateral cross-sections of a link are subjected to homogeneous deformations in
their planes as well as to the rigid displacements (9 degrees of freedom). Hence:

we(X, Y, 2) = 0,(x) = yp,(x)+2z¢,(x),

(3.2) wy(%, y,2) = 0,(x)+yyy(x) +2 [—21— Vye(X) — %(x)] ;

wo(x, y,2) = v(%)+y [;— Yy2(%) + %(x)] +zy.(x),

where o.,v,,v. are dislocations, ¢, ¢,, ¢, —rotations, y,, ¥:, ¥,. — deformations
of the cross-section of an element along the x coordinate.
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The state of link area displacements is described by 9 functions of the variable x being
the Lagrange’s generalized displacements. The assumption (3.2) can be called the hypo-
thesis of a flat, homogeneously deformable cross-section with independent rotations. This
is a generalization of the well-known hypothesis of Bernoulli and Timoshenko for the
classical model of a bar. :

The constraints for stresses are assumed in the form

3.3) g, =0, o0,=0.

This assumption simplifies considerably the formulae given below. After applying the
principle of ideal constraints of the static and kinematic types we shall obtain 9 equations
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describing the equilibrium of the link with 10 generalized internal forces and 9 genera-
lized external forces. Taking into account the known equations of the linear elasticity,
the generalized constitutive equations and the formulae defining the strain energy of a link
can be found.

Node-link-node system. A system consisting of the i-th node, the j-th node and the
(/—j)-th link connecting these two nodes is presented below (see Fig. 2).
From the equilibrium and constitutive equations describing the link, the differential
equations for the generalized displacements can be obtained. The kinematic boundary
conditions result from the assumption that the displacements of the appriopriate bounda-
ries of the /-th and j-th nodes have to be competible with the displacements of the suitable
boundaries of the link situated between them. In this way we obtain, functions v, v,,
Vzs Pxs Pys Pz> Vyr Vz» Vyz» Which are expressed as the functions of the i-th node and the
4 operator defined as follows:

(3.4) 4()= (Y=

These functions can be understood as certain shape functions of the bar treated as a three-
-dimensional body. The total elastic energy of the (i—j)-th link is a function of parameter<
attributed to the i-th node and the A operator defined above.

The analogous procedure can be applied to link situated on the x' = const. parame-
tric line and connecting the /~th and the k-th nodes. Instead of the A opsrator we deal

now with the 4 operator defined as follows:

(3.5 A() = (F=() | -

4. Boverning equations

According to the forementioned assumptions, the parameters describing the displa-
cement, deformation, strains and stresses as well as the elastic moduli are described by
the continuous, sufficiently regular functions of arguments x!, x2. These functions have
a physical sense only in certain points of the surface.

The displacement state of a structure is defined by 12 parameters for each node. A con-
tinuous, sufficiently regular extension of these discrete functions leads to the relations:

ul(xly xl) & u.\') “2(x1) x2) = uyi u(xly x2) = u:y
4 ﬂl(xlv x2) = ﬁxv ﬁl(xl! xZ) i 119,\” 29(x1y x2) i 'ﬁzv
( 'l) w“(x‘, xl) = Wy, wzz(xl, x2) = Wy, w(xlv x2) = 0,

(UJZ(xI’ xl) -— w.‘!l(xlv xl) - wxyy wl(xly x2) = Wyg,y wl(xlv x?.) == (’)}':'
The strain energy of a typical structure segment (i.e. the energy of the (/—J)-th and the
| |
(i—k)-th links, — energy of the i-th node, of energy of the j-th node, — of energy of

the k-th node) is related to ABCD surface segment with /[, drmensrons (sce Fig. 1)
This energy is a function of parameters assigned to the i-th node and involve 4 and A
operators.
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Assuming that:

1 d I - d

4.2) T40= 5= On 740 =57 = O

and that the density of elastic energy o° is equal to the density of energy o in the i-th
node, the basic relation of the continuum model of the considered structure in its explicit
form was found:

1 1
= 2 CKLMN”KL;{MN-F—Q_ ALy ey L+ G¥ Moty y y + FE MV v+
b 1 1
+DAL'}’KCUL+ HKL.V“KLwM+RKI.MyK TLM+T GKLMNTKL TMN+-2— GKL’L'K TL+

1 1 ok .
i F¥agw, +~2~ Aw?*+ C* g 70+ AX TR0+ =% ANy yn +

(4.3) 1

KL, . KLM, KLMN KLMN,,
+7 C*ugup+ EX Mgy + B YkLWpy+ D g Timnt

1.
KLM, KLMNP - KLMN t I"KLMN
+F LMI{K(OLM+A yKLTMNP+—2 '8, wKLwMN+ E wKLwth+

1

KLMPRS + ARLMPRS KLMPR
=k > A Tionm Ters+'A Tkim Ters T C WxL TMPRT
+ H* @y, w+ D¥ Moy 7y + B¥ Mgy oo+ HEMN g Ty

K, L, M,N,P,R,S=1,2.

The density of work of the external forces can be olso defined. The relation (4.3) was
originally expressed in the Cartesian coordinate system and then generalized to a curvi-
linear orthogonal system of coordinates in terms of which the surface system is described.
The ™ parameters:™ i, Yx, ZxL: %Kk, TELA = TRMES TRy T8, Ogy = "0rn, g b 'cConstis
tute generalized components of the state of deformation, with the geometric relations taking
the form

vy = Uplg—brxu+ex®,  yx = ulx+bgku, +ex V",
(4.4) #rr = Oplg—bix®, g = H+bkd,,

Tiorm = Opmlx—Dpx—bxwy,

N N
Ty = Orlx+bRoy —bixw, Tk = w|x+2bRwy,

where by, , exy., ( )k represent the components of the second metric tensor of the surface,
Ricci’s bivector, and the symbol of covariant differentiation on the surface, respectively.
The functions 4XLMPRS  CKLM = 4K 4 stand for the tensor of elastic moduli of the
structure and describe its geometric and physical properties. )

The components of the stress state of the structure are given by the formulae
4.5) KL do° - do® o do® e WG |

= —— = m

oYL e« ~('j“/KV’ Onygy,’ B Ok

= F = =

2

7* !
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. . do® . do? 3 do®
(4.5) [cont] e G £ et ety
OTxim Ik, dtx
Kl o do® & _ do® \ do®
dwgr’ doyg’ ‘w

We see that 12 from 30 introduced agqove components of the stress state is of the force
type (p%L, p%, r*t, r%, r), and the remaining 18 is of the couple type (mXL, mXK, skKLM
FEE 5,

With the aid of the principle of virtual work the equilibrium equations and the boundary

conditions for the continuum model of the structure can be obtained in the form
PR —bkp*+4* =0, pX|x+bikp*+q =0,

m*t g —bgm +egpX+ht =0, m¥|x+ex, p*'+ bgm*t+h = 0,
(4.6) 1
SKLM[K——i—(kaKM+b¥SKL)—)‘LM+fLM e 0’
SKLIK+2bMKSKLM—2kaK—rL+fL == 0, SKIK+bLKSKL'—r+f= 0.
g .
p¥'ng—p* =0 or u, = i.‘:Li PK"K—; =0 or u= l*“,
* * * *
m&nge—mt =0 or H.=9¢,; mng—m=0 or I =95,
4.7
SKLM"K—;:LM =0 or wy= (“;LM; SKL"x—§L =0 or o = ;’L’

* *
s¥iy—s =0 or w=ow

where ng represents the components of a unit normal vector to the boundary 42 of the

structure, g%, q, A%, h, X% (X f— are the densities of the surface-type external stress;

¥ % kg k% I N . dpan s X K R e %
pX,p,m% m SKL K s are the densities of boundary stresses, u%, u, 35, ¢, Ly, W, @

are the given values of generalized displacements within the dQ.

The equilibrium equations (4.6) and the boundary conditions (4.7) together with the
constitutive (4.5) and geometric (4.4) relations form the basic system of equations descri-
bing the continuous model of the structure. This system enables us to calculate the displa-
cement distribution in the link and node areas as well as the stress distribution.

It must be stressed that parameters vy, »kr, Tkr.x, @r, [see (4.4)] define the
components of the plate-like deformation state, while yxr, wxr, %k, Txrs — the com-
ponents of the plane-like deformation state. The components yx; , W, %k, TkLm, Tk, @ are
defined exactly as in the rst order model (see [6]), however the parameters which do not
appear in that model, i.e. Tgry, Txr, Tx, Wk, Wk, @ result from the deformability of

“a node and the deformability of link’s lateral cross-sections.

The analysis of the influence of the second order parameters on the internal forces

together with the suitable numerical calculation will be the subject of separate papers.
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Peswome

YPABHEHHS JIMHEUMHOM TEOPUU BTOPOTrO PAHOA VYIIPYTHUX ITIOBEPXHOCTHBIX
POCTBOPOK

B paBore npencraBieHO AMHEHHBIE YDaBHEHHMA CTaTHKM YNPYTHX IOBEPXHOCTHLIX PAacCTBOPDOK MMe-
OUMX IJIOTHYIO M PErYIAPHYIO CeTKY 3JIEMEHTOB, KOTOPBIX AeopMHPOBAHHbIE, IIPAMOYTOALHEIE Y3JIbI
COEQUHEHHBIE MEXIY COGOH pnu IOMOILM NPU3MATHYECKHX CTepyiHeil HMEIOLAX NPSMOYIONbHOE Ce-
yeHue.

Ilpunuman ucxoaible ANaHHbIE: YPaBHEHMs JIMHEHHON TeOpMM YIIpYrocTH, a TaK)Ke ITOJXOASLIHE -
KHMHEMaTHUYeCKHE THIIOTE3bI MIOJIYUEHO BapHAHOHHLIM METOOM YPAaBHEHHMA CIUJIOLIHOTO MOAEJST IIPOroHa.

PaGoTa copep>kuT oGoGlueHre Teopur Boausixa, BbIXOOALMeE 32 mpeaeinl Teopun I-ro papa, mos-
BOJIAIOILME YYHTBIBaTh 3 (EKTHI ,,BLICUINX PAXOB’’ (pasmephl y3JIoB, UX AedopmHpoBaHHe, Aedopmu-
POBaHKe MONEPEYHOrO CeYeHHsl CTCPH(HEH COeMUHSAIOIINX Y3JIbI).

Streszczenie

ROWNANIA LINIOWE] TEORII DRUGIEGO RZEDU SPREZYSTYCH RUSZTOW
POWIERZCHNIOWYCH

W pracy wyprowadzono liniowe réwnania statyki sprezystych rusztébw powierzchniowych o gestej
i regularnej siatce elementow, ktérych odksztalcalne, prostopadioscienne wezly polaczone sg za pomoca
pryzmatycznych pretow o przekroju prostokatnym.

Przyjmujac za punkt wyjécia rownania liniowej teorii sprezystosci oraz zakladajac odpowiednie hipo-
tezy kinematyczne otrzymano na drodze wariacyjnej réownania ciaglego modelu dzwigara.

Praca zawiera uogoélnienie teorii Wozniaka, wykraczajace poza teori¢ I-go rzedu, zezwalajace na
uwzglednicnie efektow ,,wyzszych rzedéw' (wymiary weziéw, ich odksztalcalnos¢, odksztalcalno$¢ prze—
krojow poprzecznych pretow laczacych wezly).

Praca zostala zloiona w Redakcji dnia 3 marca 1983 roku



