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1. Introduction

The subject of the present paper is an analysis of various differential models appro-
ximating deformations of dense, elastic, hexagonal-type (honeycomb) plates in plane-
stress state.

The simplest mathematical model describing honeycomb plate response is, so called
in engineering literature, technical isotropy, cf. [I, 2]. Elastic properties are determined
by two effective moduli e.g. effective Young modulus and effective Poisson’s ratio. These
characteristics have been found by Horvay (see [1]) in 1952; some adjustments concerning
the deformability of nodes have been proposed in [2].

More accurate approximation yields from Wozniak’s models of grid surface structures
based on the two-dimensional Cosserats’ media theory, [3]. Among many papers pertaining
to the response of lattice-type plates of simple and complex layout (the list of them has
been published in [3]) the only one [4] is devoted to hexagonal surface structures. Gene-
ralisation and extension of Klemm’s and Wozniak’s results are presented in [5]. However,
in the latter work, some new questions occur concerning the existence of two different
variants resulting from Wozniak’s approach. One aim of the present work is to elu-
cidate, why more than one version (in a frame of one Cosserats” model) can exist. In order
to achieve the answer a new look at the problem is necessary.

»Phenomenological” approaches (resembling to that of Wozniak, for instance) will
not be applied here. Differential approximations for differencc equilibrium equations
of the lattice will be found by means of Rogula and Kunin quasicontinuum method,
[6, 10], analogy between the mentioned difference equations (yiclded from the well known
displacement method) and crystal lattice equations resulting from harmonic approxima-
tion [6, 7] being utilised. Such a method makes it feasible to carry out a consequent accu-
facy analysis of the proposed models and in particular allows a new look at WoZniak’s
theory; a separate paper will be devoted to the latter problem. Derivations performed
Via the Rogula-Kunin approach result from physically clear approximations. Nevertheless
the obtained differential models of higher order than zero do not satisfy stability con-
ditions (in the spirit of Kunin [6], for example). Thus the derived models cannot be
Used for analysis of boundary value problems. A simple method of formulating a stable,
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well established Cosserats’ type model derived from Rogula-Kunin’s differential appro-
ximations will be presented in a separate paper. In the prepared work a comparison of
Wozniak’s and modified Rogula-Kunin’s Cosserat models will be carried out.

It is worth emphasising that more complicated (of higher order than one) continuum
descriptions of hexagonal-type grid plates can be formulated as stable models via appro-
priate generalisation of Kunin’s methods [6]; but the mentioned topics exceed the scope
of the present paper.

2. Preleminaries. Basic assumptions
-

Consider elastic grid plate (in plane-stress state), cf. Fig. 2.1 in [5], axes of the rods
constitute a honeycomb layout. A thickness of the plate is assumed to be of unit size.
Rods’axes form hexagons the length of sides being equal to /. The rods are assumed to
have two axes of symmetry, cross section areas and moments of inertia can vary. Lattice
rods are made of elastic homogeneous and isotropic material whose elastic properties
are determined by Young modulus E and Poisson’s ratio ». Considerations are confined
to the grids composed of sufficiently slender bars so as to their deflections could be decri-
bed by means of the improved theory of rods, where transverse shear deformations are -
taken into account. External loads are assumed to be subjected in-plane and concentrated
in nodes only.

Notations, sign conventions of the external loads (forces and moments), of displa-
cements and of internal forces as well as slope deflection equations are assumed as in
the previous paper [5].

Proceeding analogously as in [4,5] two families of nodes: main and intermediate
are distinguished, Fig. 1. To each main node a pair of integer numbers m = (m,, m,)
is assigned. Cartesian coordinates x™ of a node m and a vector m are interrelated by
means of the formula ‘

1 05 2
x® = Q- m, s'z=b-[0 1/3_/2]’ b=1y3. : 2.1

Main node displacements are denoted as follows
Wh = tup = u'(x™), Wi =vn=u (x"), wi=@n= kD). 2.2)
Forces and moments subjected to main m and intermediate m’ nodes are denoted by
Fo o= F(xm), Fo= MGx®), Fw=Fem), P = MGE™), a=1,2. 23
Each main node m is surrouned by six main nodes m;, J =1, ..., VI
X® = x®—1, 24

which lie on the circumference of the circle r = b = 1]/5 (¢; vectors are shown in Fig. 1)
and by intermediate nodes my, J = a, b, ¢

XMa—xm—7 o wJi= agbs e
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Without afraid of misunderstandings one can write also
m-—m; =t;, m—-m;= 1,
Where
t;=(0,-1, ty=(1,-1, t,=01,0),
ty = (0, 1), ty = (—1,1), tyr = (—1,0),

and
Zo = (=2/3,1/3), =z =(0,-2/3), =z = (2/3,1/3).

In the course of the procedure a discrete Fourier transform (cf. [9], [10]) will be applied.
Discrete Fourier transform of a discrete argument function f™ is defined with the aid of
the formula®

fI) =P D™ fm, k= (ky, k) @.5)

Where P = 1,5 1/372 denotes a hexagon’s area indicated by a dot line in Fig. 1.

3. Difference equilibrium equations referred to mains nodes

Slope deflection equations (which express internal forces in terms of displacements,
See (2.6), [5]) make it possible to find equilibrium equations of each node of the grid.
However, these difference formulae vary depending on intermediate nodes. By
utilising equilibrium conditions of the latters.it is feasible to eliminate displacements and
rotations of the intermediate nodes and then to arrive at main nodes’equilibrium equations
involving displacements of main nodes only. These formulae will be called difference

1 Notations used in Rogula’s paper included in [10].
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equations referred to main nodes. A brief derivation of these equations is presented be-
neeth; more detailed procedure can be found in [12].

A starting point of the derivation is a set of equilibrium conditions of the intermediate
a, b and ¢ nodes which surround the main node m. Equations of equilibrium of the node
a have the form (the proof is omitted here)

1 L. . . 3 .
—-2—(l+37—))-(u+uy,)——2uy+3-(l+7))ua+lT(7)—l)(v~1'y,)+

I 1 -
B AP AR R - A

V2 G 1) Gimitv) =+ G+ G+ 0027 50+

. '/§ ,,_} 12 *2_ (31)
3 +00a+ T v =)=y Fi =0,
1 . . . 3 . . 3n+7
7(11+uw—2llv)+ LZ'(W_WVI)‘F 7}27}7} " @at
397 Wl
+ 67 '(‘P‘*“PV:‘*“PV)"@'E M,=0,

where
(@, a,, 4;5 9, 0y, 03) = (Um, Umys U5 Vms Pmis> O/, 3.2)
¢ =@m, @ =¢m, i=1,...,VI, j=a,b,c.
Quantities n and % stand for slenderness ratios of grid bars, EJ denotes an effective fle-
xural stiffness (cf. [5], Sec. 2.1).

Note that the set of equations (3.1) is decoupled with respect to u,, v, and ¢, unknowns.
Thus it is easy to express these quantities in terms of displacements of main nodes m,
my and my, and in terms of the loads subjected to a.

The equations of equilibrium of b and ¢ nodes assume an analogous form (which
will not be reported here). Thus the intermediate nodes’displacements w;,j = a, b, ¢,
can be expressed by means of main nodes’displacements wy and wg,, i = I, ..., VI and
with the aid of the loads subjected to intermediate joints, i.e. the functions AS

* *
wt = hi(wa; was Fi. M), a=1,2,3, o=1,2, j=a/b,e, i=1..,VI

are known, where, according to (2.2), w!' = u, w? = v, w® = ¢.
Let us write equilibrium equations of the m’s node

| e = 3 - L = = =
G (1 +3%) (e + 1) —2up+ 3(1 +0) it + '/2—3——(7;—1)(v,—vc)+
+l('+v—2 )—ﬁ LZ-F'—O K37,
2 q“ (7'(‘ ‘/‘h _66 EJ = » ( 2
T ] e, 3 s . V3 T e
Y- (h,—u)— - (9, . —2n-9 N = e =0,
3 (u, ue) 5 N+3) (Cat+v)+3(l+9)0—21- Oy + 5 (pa—@c) e F
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| 3 Lo In+
——2—-(ua—2ub+uc)—VT-(vs.—-v..-)+—772—7777 cp+ (3.3)
[cont.]
3n—9 n |
———-" (@n ———.—-M=0.
t 6 @ +<m»\+%) &n EJ
By inser’ting (3.2) into (3.3) the sought equilibrium equations of the m’s node referred to
main nodes only (i.e. to m and m;, { = I, ..., VI nodes) are arrived at. These equations
can be displayed in the following discrete-convolution form
3 ' 3
*
—P D N om-myiLp Y N s@-w. Fu g fm = 0, (3.4)
B=1 n B=1 m

where «, § = 1,2, 3; n, m denote main nodes. Summation with respect to n extends
(for the m fixed) on seven vectors: n = m and six vectors such that [m—n| = b. For other
pairs (m, n) @@~ = 0. Summation with respect to m’concerns three vectors m’ = m—

~z;,J = a, b, ¢. For others S$@-™) = 0. Nonvanishing components of the matrix @&
read

o = 4 0 (w+6n+) 3\ BT
V3 7 741 n+3n) 1
B0 = Pty T ity e W A3 R RS
11 11 11 11 ]/37] N+ 3y 3(1+7) 5
2 L o=h s
Oun = d)(”') = __g__ — U + 417_ " ( 377 977+1_) ﬂ’
Y V3 n@+3n 7 637 1+7 /s
P — —@urn— |1 - ‘(71;,1)2 5’
= = 7 2(n+37) 6(m+1) | I°
47 7 n—1 EJ
33 a0 o v L Nomel - s W RN
PP =" = [3n+n SETCFSVN MR
—4n(n-1) EJ
(ap) = i RSN =)
o = ~ep = ST o (3.5)
Dty = Pltrn = 2q . [n=39 1;3,'7] : ,Eé
337 | n+3m l+79 /
2 [7-3n 1+35] EJ
(trv) = Pty — el R ] |
s 3 VS X [77+3r/ i 1+ | ¢
4n In—7n 1 EJ
D) o g e e T T e g i
I ST e [3n+11 I+7 | 1
®Gged  for  J= 1,11, 1T
P =
.- {(D(l‘;—“') for J=1V,V, VI,
o= L [PEGEL s T
V37 n+1 R [
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BEp = PUD = Py = B = —4n(+3)  EJ

Y3 -G+y 127

2 [ 3y 7 —6§-31 EJ
PUn = etvn = 1 .| - I (P
22 22 V3-q l317+77 3-(1+y) ] I8
+4y  EJ (3.5)
) = —@Qu) =~ ¢,
e Al PR S B [cont.]

QUM = — Py = 2n | n-} _ﬂ] EJ

3 |+l q+3q) 1%
4n EJ
PN = Pty — 1
% 23 3@+1) 1%
(Zif;g*r"') for J=1,011I
oty —
38 Q)gfjl-ul) for J=1V,V, VI
=12,
O = [ 'ﬂ @"ﬁ’?_) = = 2..@—377)2 _] E_J
Polyseg-a+n 0 V3o 3W3n@+3p ] P
== 2
qa(;g:[_ N I n- . i ]ETJ J=1, .., VI
33 -9-(1+n)  9V3-7-@+3n ] !
Nonvanishing components of S&) have the form
SE» = §Fo = _ (43, O 4 -
9Y3-(1+7) 9V3- (1+7)
ST = ST = gy 1T S = —SE =SB
SE = SZ) = —28@F) = 2 s
3Y3- (G+3n)
SEw = SZO = — +3) -2 S@» = i s G.q
93 - (p+1) 9V3-(m+1)
27
() = CaAEE. L e, -3
Szaa S23c 3@_'_3,'7) Y
1
S@a = §Zo = _2SZp) — ST S
31 31 31 9‘/,3.(1_}_;])
ST = —S& = 1/91,
2 3n-7
SZa) — §@b) — §Zo) = = = LS p=2
33 S33 S33 91/3 3,'7+,'7 I
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4. Main node equilibrium equations in k-representation

A formal derivation of equilibrium equations in k-representation, similar to, that of
Rogula and Kunin, see [6, 10], concerning crystal lattices, will be presented herein. On
performing the discrete Fourier transform (cf. (2.5)) of Eqs. (3.4), algebraic equations

3 3

— D' Bp ()W) + D) Sop(k) FW)+ Full) = 0, @.1)
F=1

ey
where

Bypk) = P D e ®xmpm  jAk) = P D) emhxm . ph
m m

— *
Suk) = P D e kxS@  Fy(k) = Pr D) e~ikex®. Fm), (4.2)
C :

m
Fuk) = P D emiiexm. pm),

are obtained. Vectors s assume all the values m—m’. The Egs. (4.1) have been found with
the aid of the theorem on the transform of convolution equations, cf. [10]. The summations

in definitions of cﬁaﬂ and .STaﬂ are finite. By virtue of (2.4) we arrive at
v

Pt k) = D) et $5t0 109, (4.3)
J=1
Similarly
Pl Suk) = D) elw. SGw, 4.9)
J=a,b,c

5. Formulation of differential approximate models

A set of k-representation Eqgs. (4.1) is a starting point (cf. [6]) to obtain differential
equations approximating discrete argument functions being solutions of (3.4). The known

functions é’aﬁ and §aﬁ can be expanded in power series with respect to the variables ik, ik,

— P Byp(k,) = Clhwa,  Suplks) = stawen,
(5.1)

Wes = ik, 0= ]/:T, (not summed)

where g denotes a multiindex, cf. [11] p. 77. Substituting Eqs. (5.1) into (4.1) and then
carrying out an inverse integral Fourier transformation, differential equations of equili-
brium in x-representation

ClaouwP (<) + P - sghogup? () +pP(x?) = 0, «,f,0=1,2,3 (52)

where

*
PP=P1-F,, p=P'F (5.3)
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are arrived at. In order to avoid misunderstandings let us display first few terms of the
expansion
3

3
Cordpw(x?) = D Cow?(x)+ D) (Clpdy WP+ C0, wh) +
=1 B=1

3
+ D (CHPWE+(Cl+CH)a,0,wP + C 3w +
=1

3 3
+ D o a0, + D) D) Cl™08,0m0, %0 + ..

B=1k,Im B=1k,,mn

Coefficients C¢s are proportional to consecutive powers of the quantity b which express
a spacing of main nodes of the grid. The Egs. (5.2) will be assumed to be of p-order pro-
vided the coefficients C% proportional to &°, s < p, are retained. It will be said that Egs.
(5.2) are of p-order with respect to the displacement u(z or ¢) provided all the terms in-
volving u (v or @) proportional to &%, s < p, are taken into account and the other terms
are assumed to be negligible.

Substitution of infinite series of Eq. (5.2) by polynomials of p-order with respect to
differential operators d, amounts to assuming that deformation patterns of wave lengthg
being shorter than some value L, liave a negligible effect on resulting lattice plate response.
1t is always required here that L, > 2b, hence |k, b| < = Thus physical facet of the pro-
blem restricts a domain of variation of the wave vector k to a certain circular neighbour-
hood of point k = 0.

The smaller the parameter p is, the longer the deformation waves can be admitted.
In the limiting case of p = 0 a zero-order approximation, so-called long-wave approxi-
mation, is obtained the solutions of which are quantitatively different from those yielding
from the more complex models. In particular, the simplest model does not describe dis-
persion of waves, cf. [6]. It will be shown below that in this model the hexagonal
lattice is considered as a point-wise centrosymmetrical structure so that an interchange
of main and intermediate nodes do not change the governing equations of the theory.
Nevertheless, the formulation of this model is not a main goal of the paper. This work
ought to be treated rather as an introduction to further considerations (see [13]) pertaining
to Cosserat-type models of hexagonal grids, i.e. to the models of the same mathematical

structure as those of Wozniak’s-type outlined in [S].
6. Second order approximation equations

By neglecting in (5.2) the terms dependent on the powers b% s > 3, second-order

equations (with respect to all displacements) are found. Appropriate rearrangements
give

3
[(,u+a)V2u+(Z+,u—a)é)fu]+12|:F(,u+ ) V4u+ %(2+,u—a)8‘}u] +
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l 2
+(A+pu—a)o, 0,v+I1[0- 9,(3?—33§)v]+/2| 3 (A+u—a)é, 62(3f+335)v] +

3
+2ad, ¢+ 1(0F — 0D p + 12 (Taanz(p)+'p’ =0,

1
Ot pi—0) 3y & u+1[— 08,(% ~ 30D u+ I [§ O+ p—a) a,az(a%+3a§)u]+ o

3 1
+(u+)Vo+(A+pu—a)div+ EIZ |(‘u+a)V4‘v+(l+‘u—a)(— 7 o+ 62+23§a§)v] —

3
—200, ¢ +1(=2p0, 0, p)+1* (— 7d31V2¢)+’p2 =0,
—20d,u+1B(d% — 3§)u—12(%a@szu)+2a3,v+l[—2ﬂ3, 0,0+

+12 (—i—a@lev)—Mz- p+12(yVip)+'Y? =0,

where functions u(x%), v(x°) and @(x°) are equal to w!(x?), w?(x°) and w*(x"), respectively.
The following definitions of effective elastic moduli, depending on slenderness ratios
n and % only,

1= 2y3n(=1) EJ _ V3 E 3 _2yY3m E
T+ D) ERA R (T W 5, I P
g V3 . m [3’7;’1__ £ 301 ].ﬂ

Iy Bp+n | g+l | 137

27
5=,3_V'3'.z7.[_<v‘7—1>2 Sl ]._51

2 7 3(m+1) n+3n 3’
V3 [on—mz 7 ] EJ

n L 3G+ " wer | T

(6.2)

y:

are introduced, where, in the case of prismatic rods, see [S], Eq. (2.9),

EJ] E
i 129 ]/5 .
Two first definitions expressing effective Lamé moduli 2 and u are exactly consistent with
Horvay’s results [1]. Moreover, the same expressions for 2 and x have been obtained in
[5] by means of two different approaches resulting from the general concept of Wozniak.
Functions ‘p* and 'Y? depend on the loads subjected to both intermediate and main
nodes. Their form is complex (see [12]) and will not be given here.
Note that displacements u, v and rotations g are involved in different ways in the
second order equilibrium equations (6.1). Two first cquations involve the fourth order
derivatives of functions # and v at cozfficients proportional to /2, whereas the fourth order
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derivatives of ¢ do not occur in (6.1). Thus the considered set of equations is not con-
sequent with respect to orders of powers of the parameter 1. In order to make the system
of Eqgs. (6.1) consistent in the mentioned meaning the last Eq. (6.1); should be substituted
by the relation of order three with respect to u,  and of fourth order with respect to ¢:

—208,u+l- (07— %)u—lz(%aazvzu)+13[—1’%(sa‘}—3a‘2‘—6afa§)u]+
' 3 1
T U NeE R 2 RV BV ERNCEEY ) PG

—4a- <P+12(yV2<P)+1“(%yV‘*<p)+’Y3 =0.

Stability

It will be shown that both systems of Eqs. (6.1) and (6.1),,,, (6.3) do not allow us to
formulate boundary value problems, e.g. these sets are not well-established since they
do not satisfy stability conditions. The stability Kunin’s criterion [6], means positive
determination of the matrix @gf,)(k) (for the arbitrary wave vector k), associated with the
second order approximation. One of the necessary conditions reads

PO = (uta) (A + (ot p—a) ki1 [ (ur o) (T +kD+

+711r—(1+u—a)-k‘} >0 Vk,,k,€eR. (6.4)

Let k, = |k|cosf, k, = |k|sin0, § = [k|/. The condition (6.4) takes the form

52'{(,u+ o)+ (A+p— a)cos?6 — %

L%(‘u+a)+(l-l'—,u—a)cos40“ >0

for arbitrary 6 € (0, 2x) and § > 0. Inserting 6 = =/2, we have § < 4)/3/3, |k| - I < 2,31.
Thus, the analysed inequality is satisfied in some vicinity of k = 0 vector: |k| < k.
Moreover it can be proved that such k., exists that in the region |k| < k., the stability
condition of second order equations is satisfied.

In the case of sufficiently long wave deformation patterns (sufficiently small |k|), an
application of the second order equations is justified. However, the mentioned equations
are not correct in general so that they lose their sense in the case of particularly short wave
lengths.

Elimination of rotation unknowns

Proceeding similarly to the Kunin’s method (cf. [10], Sec. U, p. 134), function
(which stands for rotations of nodes) will be eliminated from Eqs. (6.1). To this end the
last of the latter equations is expressed in k — representation
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1 . 3 - A
e TP {[ —2aiky +1B(k3 ~ k) + -1k 1K} + k%)]u+

3 A
+ [20:- eyi+ 2Bl ks ey = 1wy (k{+k§)]v+'y3}.

Provided N1 - k| < 2/ afy the RHS of the above equation can be expanded in convergent
power series with respect to k,. Retaining terms of lower order than second and transfor-
ming the obtained formula into x-representation, we arrive at

1 1,
P(x") = [7(310—82u)+w- 1/3]+1-4‘%[((')f—ag)u—zal 8,0+

+12{(i + —)VZ(a,v dy0)+ vz'ys}

16 16 2

Substituting the RHS of the above equation into two first of Eqs. (6.1) and neglecting the
terms involving the powers I, s > 3, we finally find

12
[(Qu+2) 03 +pd3lu+ . [(Tu+42—a+4p2a"1) 01+ Bu—8a—dy +4B%a~1) 03 +
+ (61— 6 —dy—82a=1) 82 DBlu+ [(A+ 1) &, 3o+ I(8+B/2) 3,(82 — 363w +
12

g 0y B2 [(Sa+ A+p+2y—482071) 03 + BA+3u+3a+2y+4p2a~1) Blo+pt = 0,

12
(4 p) &y 03u—1(8+ [2)0,(8 = 30D+ —- 01 8, [(Sat A+ p+ 2y — 470 - 3 +

+(3A4+3u+3a+2y+44%a “)82]u+[(2,u+2)82+/482]z+ [(2,u 2—8a—4y) ot +

+(6,u+32)8§'+(12,u+62—12a—4y+16,82a“)3§ No+p? =0, 6.5)
where
Mo 7o 1 af 3 ﬂ 3 2 3 ofl 2'y3
p=p+2e 8Y+14 + G%,0,0,Y*—1 +l6eé’VY (6.6)
and G!, = —Gi, = G?, = G2, = 1, the other Gy = 0, €,5 denotes a permutation sym-
bol.

It can be shown that the obtained system of Eqs. (6.5) is not stable.

7. First order approximation

By neglecting the underlined terms in Eqs. (6.1) we arrive at the first order approxima-
tion equations. The functions ‘p% ‘Y3 take the form

=)
2(n+1)
(=1 3

p=t 2SS e
— 2610 T e @ aZ)Y]’

, 3 -
Pt = (p‘+:")+'3,7 =0, 4| — 9,0 -

(7.1)

7 Mech. Teoret. i Stos. 3-4/84
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n—1 * (-1 _*x, 3
1= opiy =D e, 5
26+1) P T +1)32”+2ﬁ 77332)/3,

*
?= (172+1’;2)— 3*7%31 Y3+1[—

_3m-n ¥
Y3 = Y34+Y3, . :
. 377‘*"7 + (7.1) [cont.]

where ;3 =;)3, Y3 = p3, see Egs. (5.3).

The last equation allows us to express the function ¢ in terms of functions u, v, their
derivatives and — function’Y? depending on moment loads. The elimination of rotations
does not require here any additional assumptions and leads to equations involving two
functions « and v only

[Qu+2) 83+ pd3lu+ (A+p) 8, 3,0+ 1(8+B/2) (83— 303w +"p' = 0,
[(1+u)3laz]u—l(5+ﬂ/2)3,(af—38%)u+[(2/t+/1)3§+/t8f]v+”p' =0, (72

upa — Ipa+ ; aﬁa Y3+1 ﬂ Ggpa 6,,'Y3

However, it can be proved that Eqs. (7.2) are not stable.

The derived model (and the obtained before too) takes into account the lack of centro-
symmetry of the neighbourhoods of nodes. This is revealed in Egs. (7.2) by terms in-
volving the third derivatives of the displacement functions. These terms include constants
& and B, the signs of which depend on the choice of main nodes. Thus the first order equa-
tions are sensitive to the division of the nodes on two families of intermediate and main
nodes.

8. Zero-order equations (Horvay’s model)

Zero-oder equations are obtained by neglecting of all the terms of first and second
order in Egs. (6.1) and (7.1). Hence, we have
(e+a)V2+A+p—a)oilu+(A+u—a)d,8,v+2ad,9+p" =0,
[(A4+p=—0)d,0]u+ [(u+a)V2+ (A+pu—a) 3]lv—2ad, ¢ +p* = 0, 8.1
—200,u+2a0,v—4a- ¢+ Y? = 0,
where &

3 s
73,
I+ -

8.2)
o —_ 3)7 +ﬁ *
3 = Y3 i B Ys.
Y + Ty
The last equilibrium equation can be rearranged to the form
K~ 1 e,
2 A= "2- (dl'v— azll)"‘ ’;1; FX (8.3)

Making use of the above formula the function ¢ can be eliminated from Egs. (8.1)y,2,
and, the classical equations (involving u and @ only) of isotropic plate in a plane-stress
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state occur. They can be associated with the name of Horvay to honour of his pioneer
achievements concerning effective moduli (cf. remarks in Sec, 6)

[Qu+A) %+ pdRu+ (A +p) 8 0,0+p" = 0,
(A+1)818,u+[Qu+ ) 3+ udlo+5? = 0, 8.4)

s 1 ;
P = p°‘+—2 o, Y3.
The system (8.4),,, is stable, provided

T+ Bis 0, 55 Db (8.5)

By inserting the definitions (6.2),, , into above inequalities it is clear that by virtue
of positiveness of Young modulus and slenderness ratio 7 the conditions (8.5) are fulfilled
for all real hexagonal-type lattices.

Note that p* do not depend of #. Substituting (8.2) into (8.4); one obtains

=1 o %a 1 B 3 *3

It is worth emphasising a fact that external: main as well as intermediate loads affect in
(8.6) in an equal manner. Thus the zero-order approximation does not distinguish between
main and intermediate nodes: both Eqgs. (8.4) as well as (8.6) retain their forms if one
choose a family of main nodes by an opposite way to the way previously assumed. The
lack of centrosymmetry of neighbourhoods of nodes is ,,a priori” ignored.

9. Final remarks

It has been shown that only one zero-order version leads to a stable, well established
mathematical model, which makes it feasible to examine boundary value problems of
the hexagonal-type grid plates. The other models can be applied to analysis of local effects,
for instance.
~ The unstable differential equations can be transformed into stable ones. In the subse-
quent paper [13] a derivation of such a model of a mathematical structure analogous
to that known from the micropolar plane-stress theory will be proposed. On the other
hand such models have been considered by Wozniak, [3]. Thus there are two ways of
constructing Cosserats’-type approximations: the first due to Wozniak, obtained via va-
riational calculus, and the second one resulting from Rogula-Kunin’s methods. As it
will be shown in [13], it is dilficult to indicate the best version satisfying both conditions
of stability and approximation,

In the present paper our attention has been focused on the specific plate of honeycomb
layout. Nevertheless, the presented procedure does not lose its value for all dense regular
grid plates; in particular it is not diffucult to examine by the same method lattices
constructed of two families of orthogonal bars or of three families of bars intersecting
at an angle 60°. The mentioned structures belong to the class of simple layout grids, the
centrosymmetry of the vicinities of nodes being fulfilled. It can be proved, that an essential

7
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difference exists between the lattices of simple geometry and the considered hexagonal
structure, namely, an effective modulus, y (cf. (6.2)¢), which is positive in the latter case,
and takes a negative value in case of simple layout structures. This fact is of significant
interest, because in the Cosserats’-type approximation the modulus y determines a fluxural
stiffness corresponding to polar couples. Specific problems concerning Cosserats’ conti-
nuum models of hexagonal-type grids will be a subject of the prepared paper [13].
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Peaswome

JNPPEPEHITMAJIBHBIE MOJEJIM TEKCATOHAJIBHBIX CETYATBIX ITNIACTHMHOK

B paGore BhiBopsaTcs B aHaymsupyiorca anddepeHUHANbHbIE MOLENIH ANNPOKCHMHUPYIOLME IO~
BeJieHHEe T'YCTBIX, YNPYTHX, TeKCarOHAJILHBIX CTEPXKHEBBIX IUIaCTHHOK. duddepenumansuple amipoKcH-
MaIlHA PasHOCTHbIX YPaBHEHHI PaBHOBECHA CTEPXKHEBOH PELUETKH MNOJIyueHbl MeToxom Porynu m KyHn-
Ha, UCIOJIB3YA QHAJIOTHIO MEXAY STHMH YpPAaBHEHWAMU W YPaBHEHUAMM TEOPHH KPHUCTAIIMUECKMX pe-
uieToK. IIpuMeHeHHBIA MOAXOX NaeT BOSMOXKHOCTh NPEACTaBUTh KOHCEKBEHTHLIH aHaau3 TouHoctH (o~
PMYJIMPDOBaHHbIX MaTEMAaTHUECKUX MOJEJIeH, MOJYUNTh YPaBHEHUA 'B CMEIICHUAX IyTEM SJIMMHHALUH
YIJIOB IIOBOPOTa Y3JIOB M, KPOME TOro, MO3BOJISIET BBIABUTH (DH3UUECKMHA CMBICT NpHOIKeHUH B
K-peIpe3eHTaluH .

B paGote noxasbiBaeTCs, YTO CPEeAN OGCYIKIAaeMbIX NPUGIIKEHHBIX BEPCHil, TOMBLKO OAMH BapHaHT
HyJIEBOH ammIpOKCHMAIMH JaeT CTaGHIbHbIC YPaBHEHHA M IIOTOMY TOJIBKO B TOM CJIyyae MOTYT ObITh KOP-
PEKTHO NOCTaBJIEHHBI KpaeBble 3afauM I OTPaHMYEHHBIX peuleToK, OcTajbHble MONETH MOTYT OBITR
MOJIE3HBI NP aHaNIN3e JIOKAJBHBIX 3(pdexToB.

IlpencraBiieHHbIE HCCIEXOBAHHMST MOYKHO MCIIOJIB30BATh UL aHAIM3a (DMSHUECKONH KOPPEKTHOCTH
mopmesteil Tuma Koccepa {koTopble 6b11n mpucnocobuens: BosHAkoM B ero MoHorpaduM mocBsieHHON
CeTYATLIM TIOBEPXHOCTHBLIX KOHCTPYKLIUAM).
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Streszczenie

ROZNICZKOWE MODELE HEKSAGONALNYCH TARCZ PRETOWYCH

W pracy wyprowadzono i przeanalizowano modele rozniczkowe aproksymujace deformacje gestych,
sprezystych, heksagonalnych tarcz pretowych. Rézniczkowe przyblizenia dyskretnych réwnan réwnowagi
siatki pretowej otrzymano metoda Roguli i Kunina wykorzystujac analogie miedzy w/w réwnaniami
i roébwnaniami teorii siatek krystalicznych. Zastosowane podejscie zezwala na: konsekwentng analize do-
kladnosci formulowanych modeli, modyfikacj¢ rébwnan polegajaca na eliminacji przemieszczen katowych
i umozliwia ponadto fizyczng interpretacj¢ przyblizen dokonywanych na réwnaniach w k-reprezentacji.

W pracy wykazano, ze spo$réd omawianych wersji jedynie wariant zerowego przyblizenia prowadzi
do réownan stabilnych. Zatem tylko w tym przypadku mozna poprawnie formutowaé zagadnienia brzegowe
dla tarcz ograniczonych. Pozostale modele mogg stuzyé do badania zjawisk lokalnych.

Przedstawione w pracy wywody zezwalaja na analize fizycznej poprawnosci modeli typu Cosseratéw
wykorzystanych przez Wozniaka w jego monografii [3] dotyczacej dzwigarow siatkowych.

Praca zostala zloiona w Redakcji dnia 26 kwietnia 1983 roku



