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Abstract

The subject matter of the present considerations is the problem of resjstance of a system
of cylindrical bars under perpendiculal creeping flow. This system, which has the form of
a bundle of parallel bars, is treated as an antisotropic porous medium, the flow through is
described by the Darcy equation of filtration. The resistance of filtration is represented as
a'dimensionless permeability function F,(¢), where ¢ is the ratio of the volume of the bars
that of the entire bundle.

The paper contains a survey of theoretical and experimental works concerning the

. problem under considerations.

1. Introduction

The problem of force acting on a single circular cylinder placed in a transverse uniform
stream is a standard problem of fluid mechanics. At small Reynolds numbers Navier —
Stokes equations governing the flow become Stokes equations {[1], p. 436}. It should be
pointed out, however, that Stokes paradox occurs when the fluid flow is perpendicular to
the cylinder axis and when the boundary conditions on the cylinder surface and at infinity
cannot be satisfied simultaneusly.

Oseen [2] has suggested the linearization of Navier — Stokes equations. This has not
led to such paradox. Now, there are many proposals of solving the boundary value
problems including Oseen equations concerning the transverse fluid flow uniform at infinity
around the circular cylinder {see e. g. references in [3]}. I

The problem of filtration resistance of a system of parallel cylinders is also of great
importance considering the technical applications. The review of papers regarding the
resistance of a system of parallel cylinders at the longitudinal laminar flow is given in [4]
emphasizing the resistance dependence on the volume fraction of the solids and on the
arrangement of the cylinders.

The purpose of this paper is to make a survey of the theoretical and experimental
results given -by various authors concerning the resistance of a system of cylinders at the
transverse flow. Our considerations will be restricted to small Reynolds numbers.
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It should be pointed out that in the case of the relative flow to the infinite system of
cylinders when Stokes paradox does not exist, almost all the theoretical considerations
regarding the transverse flow in such a system are based on the solutions of Stokes equa-
tions.

There are many different methods of representing the resistance of a system of cylinders,
Usually a drag coefficient of a single cylinder of this system is given. In this paper a bundle
of cylinders is considered as a porous medium, and permeability is presented as a proportio-
nality coefficient occuring in Darcy filtration equations. This permeability presents the
above mentioned resistance.

2. A bundle of parallel circular cylinders as an anisotropic porous medium

In some theoretical considerations it is convenient to treat a system of parallel circular
cylinders as a porous medium. Such a model, for instance, has been used in describing the
phenomena which occur in the production technology of man-made fibres [5], [6] as well
as in the theory of fibrous filtres [7, 8]. This enables one to apply an appropriate filtration
law for the flow phenomena through a bundle. Since we restrict our considerations to of
small Reynolds numbers, then Darcy law governing of the fluid flow through a porous
medium can be used {[9], p. 400}.

Taking into account the fact that the flow resistance depends on the flow directions
through a bundle, then Darcy law for an anisotropic porous medium should be applied:
that is '
q = -ﬁgradP (1)

7
where ¢ is the filtration velocity, P is the pressure, g is the viscosity of the fluid and K is the
permeability tensor (the second order tensor).

It has been proved in [10 - 12] that the permeability tensor is a symmetric tensor.
- Therefore, in a general case of anisotropy and of any selection of the coordinate system,
the permeability tensor has six independent components.

In our case, when a bundle of parallel circular cylinders is considered, the filtration
properties along the direction perpendicular to the bundle axes are the same and the number
of tensor permeability components reduces to two, [4], which can be described by _

Ky = SF(p) @
and

K, = SF (). : ©)

In these relations K| and K| are the components of the permeability at the parallel and per-
pendicular fluid flow towards a bundle, respectively, S stands for{an area of a cross-section
corresponding to one cylinder at the average, F|(p) and F,(¢) are the nondimensional
functions characterizing the permeability at the fluid flow parallel and perpendicular.
towards a bundle, respectively, and ¢ represents a volume fraction of the solids. The pa-
rameter @ is defined as a ratio of volume of the cylinders to the bulk volume of a system.

For regular arrays of the cylinders the volume fraction ¢ can be expressed by means of
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the distance b between the adjoining cylinders and by the radius a of the cylinders. In Table 1
there are formulae of @, S values and other parametrs for some regular arrays of the
cylinders.

Table 1.
triangular ~ hexagonal
array square array array no 4 no.5 no.6
oo 00000 O oo o o
o o O 0o
00000 0000 O0O0 00 o o 0 00O © °ee Oooo o
00 00O O o o o
000000 1 s500]° oo o, o o o 050,00 ©
000 O0O0 000 o o o0 o o 0O 00 00 OOOOOOo oo [SHe)
cocoool|?° °le o0 o o o ol 90000 o °
co 0000 6 0°%0°
000 0O oo oo 0000|2000 00 1,6 o0 00
o o 000 00O oo o o 00 000 O oooooo
2a\? 20\ 2a \? 2 2
o | 090690 (22| 0785398 (22} | 0604600 (4L)" | 0.777301 {22)"| 0.8:1810 (22-)°| 0.801810 (2]
S
r 0.8660 1 1.1299 1.0104 0.9330 0.8330
E 0.06979 0.10004 0.08093 0.04301 0.07311 0.07311

In the present paper the results of other authors regarding the flow resistance at per-
pendicular flow with respect to the cylinders are shown and compared by means of the
nondimensional permeability functions F, (¢). Since some of the results are given by means
of the drag coefficient of a single cylinder of the system, we assume in our calculations that
the pressure drop at the fluid flow through the system is balanced by the drag forces of the
cylinders. :

@
Pmax

3. Functions F,(g) at any values of ¢ and at (1 — ) £ 1 for some regular arrays of

the cylinders

The theoretical study of the flow of viscous fluid through the regular arrays of the
cylinders (especially square and triangular array), continues to attract the interest because
of the importance of regular configurations in the design of many heat and mass transfer
equipments. The creeping flow around the circular cylinders in the square and triangular
arrays was discussed in [13], making use of the analitical-numerical methods. Those consi-
defations are based on two-dimensional Stokes equations, and boundary value problems
are formulated for the recurrent cells of these systems (Fig. 1). The governing equations of
the fluid flow and a part of the boundary conditions are satisfied - exactly by the assumed
solutions (boundary conditions on the continuous lines of a boundary in Fig. 1). For the
remaining part of the boundary conditions the collocation method is applied i. e. the bou-
dary conditions are satisfied exactly in the finite number of points on the boundary (on the
doted lines of the boundary in Fig. 1). The calculations have been done practically for the
range of the volume fraction, when 0 < @ < @max. The graphs of the function F\ (@) obtai-
ned on the base of the results from [13] are shown in Fig. 2.

When ¢ approaches @, the function F, can be calculated in the approximate manner
basing on Keller paper [14]; in which the flow through a narrow gap between two adjacent
cylinders was analysed. Keller assumed that at amall Reynolds numbers the flow through
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Fig. 1. The formulation of the boundary value problems in recurrent cells for the square and triangular
array in the paper [13] where 4 B C D is the reccurrent cell for the square array, 4 BCDEF
is the recurrent cell for the traingular array, w is the vorticity, ¥ is the stream function, V2 is the

two-dimensional Laplace operator

the narrow gap can be described using the hydrodynamic lubrication theory. His assump-
tion and the results have been tested by Huston [15] numerically. From [14] results thdE
the pressure difference 4p at the perpendicular flow through the gap is
ImuQa’l?
p = = a 572 ? (4)
82 (bj2—a)®!

where Q is the total volume flux per unit lenght of the gap. Substituting Ap = b grad, P

and Q = gb to (4) Keller obtained the filter velocity g for the square array in the form
82 (b)2—a)’?
= —'———V 9nluall2 rale. (5)'

According to this result the nondimensional permeability function for the square array

gets the form
1/275/2
e[ T

where E = 2/2 [97 = 0.100036.




FILTRATION RESISTANCE OF... 541

Fug|

oo,

0o

0.00013

| \ A\

02 0L 06 08 o

Fig. 2. The theoretical nondimensional permeability function F; versus the volume fraction ¢; ] — Kuwa-
bara cell model [17] {eq. (7)}, 2 — Happel cell model [16] {eq. (8)}, 3 — the square array — €eq.
(6), 4 — the hexogonal array — eg. (6), 5 — the triangular array — eq. (6), 6 — the array no 4 in
tab. 1 -—eq. (6), 7 — the array no 5 and 6 in tab. 1 —eq. (6), 8 — the square array [13}, 9 — the

triangular array [13]

Sangani and Acrivos [13] applaying the same concept as Keller probably not knowing
his paper, have got the same result for the square array. Moreover, their results give the
possibility of determination of value of the constant E in (6) for the triangular array.

In this paper for the remaining arrangments of the cylinders given in Table 1, the con-
stant E in (6) basing on Keller concept is specified. The graphs of functions F,, according
to (6), are shown in Fig. 2.

4. Functions I (p) at ¢ < | for the random and regular arrays of the cylinders

It should be pointed out that for the regular arrays as well as for the random arrangement
of the cylinders the case when the volume fraction @ is small (¢ < 1) has been exhaustively
examined. This arises from the fact that-there is a wide possibility of the use of the asympto-
tic methods in the theoretical considerations.

For the first time the problem of the resistance of fluid flow through a parallel bundle
of the cylinders for their random arrangement was considered by Happel [16] and Kuwabara
[17]. They used a cell model in which every cylinder of a radius @ was enclosed in thought,

by a coaxial cylinder whose radius was determined by the relation ¢ = a/|/&—. In sucha ring-
shape zone these authors solved the boundary value problems with two-dimensional Stokes
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equation but they employed different conditions on the outer cell boundary, however,
Specifically, Kuwabara assumed the vanishing of vorticity while Happel the vanishing of
viscous stresses on the cylinder surface of radius c. That is why the formulae defining the
function F,(p) on the ground of their results, fiffer in form.

According to Kuwabara results the function F,(p) is

1 1 3 p*

while on the base of Happel results we have
2 .
) ®

Kirsch and Fuchs [18] tested experimentaly Happel and Kuwabara formulae using the
regular triangular array and found a good agreement especially with Kuwabara results.
The experiment consisted in taking the photographs of the streamlines near one of the
cylinders of a bundle.

Spielman and Goren [7], using the concept of Brinkman [19] proposed a competitive
cell model. They suggested that instead of considering the flow throught a system of the
cylinders, the flow around a single cylinder could be analysed, taking into account the
influence of the remaining cylinders by an additional drag term in Stokes equations. Using
the results of these authors we obtain

N XK (%) :
| = ke ©
where K, and K, are modified Bessel functions and x is the function of ¢, determined by
x? K (x)
¥ (p[ 2 KB ] (10

Hasimoto [20] considered, among other things, the problem of the transverse flow
through a biperiodical system ogf the cylinders. He made use of Fourier series in order to
solve Stokes equations, For the square array his results give

11 2y "
F, = %[m 5~ LAT6+2p+0(p )]. an

Golowin and Lopatin [21] using the theory of the elliptic functions gave the solution
describing the transverse flow for two-dimensional regular system of cyrcular cylinders.
With the help of Miyagi method [22] they found the exact solution of two-dimensional
Stokes equations, but boundary conditions were satisfied in the approximate manner.
According to their results functions F, are: '

— for the square array

1 -

i , :
Fy= g |In % — 1478+ 2+ 0(¢?) (12)

-

8n

— for the triangular array

. [ 1 . "
= —— — — 2
Fy o=+ L1n p 1.508+2¢+0(¢%)|. (13)
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In [23], using Hasimoto method [20], the force acting on one cylinder of the square and
triangular array of the cylinders was calculated preserving the higher order of terms as
compared with [20] and [21]. On the ground of these results functions F, have a form:

— for the square array

[, 1
Fo= [ln 1476+ 20 1.774(p2+4.076<p3+0((p4)], (14)

— for the triangular array
F 1 1 2 4
1= g lnAq; —~1.49+2¢—0.5¢>+0(p%) | (15)

In the paper [24] the method of singularities [25 - 26] was adopted to biharmonic equa-
tions which has produces some rigorous and reasonably accurate formulae for the square
array

| 1 '
F = o lln Y —1.47633597 4 2 — 1.77428264¢*> +

' (16)
+4.0770444¢° —4.84227402¢* + 0((p5)] ,
and the triangular array
1 ‘
Fy = - [ln L 1.497504972 + 2¢p—0.5¢% --0.739137296¢* +
Sl e -

2.534145018¢°

The comparison of the theoretical results F, (¢) at ¢ <€ 1 for the square and the triangu-
lar array proposed by the above mentioned authors with the results accurate at any values ¢
is given in Tab. 2 and 3. This comparison indicates that the most rigorous formula (16)

“for the square array agrees with Sangani and Acrivos

Table 2
-triangular array

@ ' [13] [24] for. (17 | 231 for. (15) 1]  for. (13)
0.05 | 0.6353240 (—1)* 0.6354171 (—1) 0.6384032 (—=1) 0.6317386 (—1)
0.10 | 0.3974563 (—1) 0.3978988 (— 1) 0.4009054 (—1) 0.3957280 (—1)
020 | 0.1955034 (—1) 0.1955205 (—1) 0.2065982 (—1) 0.1995158 (—1)
0.30 | 0.1033165 (—1) 0.1034246 (—1) 0.1070209 (—1) 0.1177638 (—1)
0.40 | 0.5383000 (—2) 0.5452870 (—2) | 0.5820720 (—2) 0.8287620 (—2)
0.50 | 0.261643 (—2) 0.289646 (—~2) 0.310938 (—2) 0.736677 (~2)
0.60 | 0.110913 (—2) 0.195553 (~2) 0.162440 (—2) 0.807018 (-~2)
0.70 | 0.36101 (—3) 0.86242 (—3)

0.80 | 0.61728 (—4)
085 | 0.13151 (—4)

* 0.6353240 (—1) = 0,6353240%10-1, etc
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Table 3

- square array

— —— - o o
P [13] @11 for. (12) | [20} for. (1) | [23] for. (14) | (24) for. (16)
0.05 | 0.6426735 (—1) 0.6436752 (—1) 0.6444710 (—1) ! 0.6429091 (—l)‘ 0.6427752 (~1)
0.10 | 0.4027386 (—1) 0.4076695 (—1) 0.4084652 (—1)| 0.4030285 (~1)| 0.4027017 (~1)
0.20 | 0.1940617 (- 1) 0.2114524 (-1) 0.2122482 (—1)| 0.1969884 (—1)| 0.1937730 (—1)
0.30 | 0.9718170 (-2) 0.1297005 (—2) 0.1304962 (—1)| 0.1107578 (—1)‘ 0.950263 (-2)
0.40 | 0.458947 (—2) 0.948129 (—2) 0.956086 (—2) | 0.862503 (—2) | 0.370187 (-2)
0.50 | 0.187776 (—2) 0.856043 (—2) 0.864001 (—=2) | 0.112661 (—1)
0.60 | 0.56721 (—3) 0.926384 (—2) 0.934341 (—2) |

0.70 | 0.73964 (—4) 1.108812 (—2) 1.11677 (=2) '

0.75 | 0.79177 (-95)

collocation calculations within 0.3% when ¢ ='0.2, 4% when ¢ = 0.3 and deteriorates
rapidly thereafter. The most rigorous formula (17) for the traingular array agrees with
Sangani and Acrivos calculations within 0.1% when @ = 0.3, 1.39 when ¢ = 0.4, 109
when ¢ = 0.5 and deteriorates rapidly thereafter,

The experimental investigations for small values of ¢ have been carried out by Sullivan
and Hertel [27], Boumstart [28] and Billing [29]. Sullivan and Hertel applied Kozeny-Car-
man hydraulic radius theory [30] from which one could obtain

_ (-9
4apy
where constant p needs further experimental investigation. Mentioned authors assumed
p = 6 on basis of their first experimental observations. In futher experiments [31 - 32]
Sullivan found out that at small values of ¢, p depends on changes of ¢ and formula (18)
loses its mesning. Sullivan results induced desistance from futher application of the hydrau-
lic radius theory to the filtration flow through the system of the cylinders. :
In the literature concerning the air filters [33] the following empirical formula is used

- (18)

L

F, = 2
L 16mp'3(1+56¢%)

(19)

that is the approximation to Dowson experimental results [34] which concern small packing
densities for the random cylinder arrangment in a parallel bumdle.

The results of some authors for F,(p) at ¢ < 1 are shown in Fig. 3 the comparison of
the theoretical and experimental indicates that experimentally established permeability is
greater than the theoretical one. This can be explained by the difficulties in preserving
perfectly uniform volume fraction in experiinent such uniformity is assumed in the theoreti-
cal considerations. Then, in the experiment, greater quantity of the fluid can flow through
the regions of less packing density producing greater permeability.

In order to get the theoretical model more approximating to the experimental results,
Yu and Soong [8] have proposed a generalization of Happel and Kuwabara model. Contrary
to Happel and Kuwabara model in which the distorsion of the flow due to the interaction
was replaced concentrically to each single cylindrical rod, Yo and Soong proposed the
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Fig. 3. The theoretical and empirical nondimensional permeability function F, for ¢ < 1 versus ¢; 1 —
Kuwabara cell model [17] {eq. (7)}, 2 — Happel cell model [16] {eq. (8)}, 3 — Sulivan and Hertel '
[27]1 {eq. (18)}, 4 — the square array obtained by: Golovin and Lopatin [12] {eq. (12)}, Hasimoto
{[20] eq. (11)}, Sangani and Acrivos [23] {eq. (14)}, Drummond and Tahir [24] {eq. (16)}, 5 —
the triangular array obtained by Golovin and Lopatin [21] {eq. (13)}, Sangani and Acrivos [23]
{eq. (15)}, Drummond and Tahir [24] {eq. (17) }, 6 — Happel cell model improved by Yu and Soong
[8], 7 — Kuwabara cell model improved by Yu and Soong [8], 8 — Spielman and Goren [7] {eq.
(9)}, 9 — the empirical formula of Dowson {eq. (19)}, O —the experiments of Billing [29],

x —the experiments of Baumstart [28]

filtration model consisting of the random distribution of the parallel circular cylinders.
The average pressure drop through the filtration region was determined by the random
cell model of hydrodynamics. Assuming the particular probability distribution they obtained
good agrrement of their theoretical results with the experimental‘t’ines [28 - 29].

5. Functions F\(p) at values of Knudsen numbers in a transition region

The classical theory of the filtration is built upon the hydrodynamics of the crreeping
flow (Stokes equations) and upon the boundary conditions of the velocity field. The boun-
dary conditions refer to both the radial and tangential velocity components. These compo-
nents are equal zero on the surface of pores. Fibres in some of the types of the air filtres
are made to a size which is not far from the mean free path of gas molecules. Then Knudsen
number Kn = 2 1/a (where 1 is the mean free path of gas molecules), may reach relativety
high values, particularly when filtration takes place at the reduced pressures. For 1073 <
< Kn < 0.25, i. e. in the transition region, the calculation of the pressure drop requires
the use of the slip boundary condition for the tangential c omponent of the velocity. With
the use of this boundary condition and Kuwabara cell model, Pich [35] found out that
the nondimensional permeability at << | gives the form

In 1 1.5-0.5¢* +1.998Kn
¥

Fo= 87(1 + 1.996 Kn)

+ 2 1nl+0.5'—o.5q)2>. (20)
n\

5 Mech, Teoret. i Stos. 4/86
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Other, more complicated considerations for the flow at Knudsen numbers in transition
region have been done by Spielman and Goren [7] as well as by Yu and Soong [8]. The
experimental investigations concerning the transition region have been carried out by
Robinson and Franklin [36]. Their results referring to nondimensional permeability of
a system of the cylinders at the reduced pressure are shown in Fig. 4.

i

0:
F

005

| ! &
0 01 0.2 03 04
' Kn

Fig. 4. The theoretical and empirical nondimensional permeability function F; versus Knudsen numbers;
| — Pich cell model [35] {eq. (20)}, 2 — Yu and Soong [8], 3 — Spielman and Goren [7], x — the
experiments of Robinson and Franklin [36]

6. Conclusions

The analysis of the presented results leads to the following general conclusions:
a) The theoretical nondimensional permeability for the transverse flow through a system
for the regular and random arrays of the cylinders at very small values of valume fraction
weekly depends on the arrangment of thé cylinders. This approximately the following
formula is valid:

1 1
F_ng(ln?—l.s). (21)

b) At very low values of the volume fraction the theoretical nondimensional permeability
of the transverse flow is two times less than that of the longitudinal flow {see Eq. (24) in

[3]}, and it results in
F, =2F,. ' (22)

¢) For the square array of the cylinders the following approximate formulae are valid with
an error less than 5%

1 1
F, = Eﬁ-[ln i 1.47633597 + 20— 1.77428264¢ +

(23)
+4.07770444(p3—4.84227402(794], for 0 < @ < 0.3,

21/5 4¢ 1/25/2 .
= ~ |22 il 24
F, oy '[1 (n) 5 for04< o< (24)
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HT For the triangular array of the cylinders the approximate following formulae are valid
with an error less than 109

1 1
F, = 4 [m 5 14975049724 20,54 ~0.739137296 ¢ +

| 2:5341450180°
141275793632

_ I, (2Te) . "
F, = T [1 — (T , for0.6< ¢« —2—l73:, (26)

e) A “disturbance” of the uniformity of the volume fraction of a system has a large
influence on the filtration resistance. This is observed in the experiments, where the
filtration resistance is approximately smaller by a half than obtained from the theore~
tical considerations. This may be due to the difficulties of preserving the uniformity
of porosity in the experiments. Therefore the empirical relations are of great importance.

(25)
}, for 0 < ¢ £ 0.5,
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Peawome

SUINBTPALITMOHHOE COIPOTHUBJIEHHUE CHCTEMDLI ITAPAJIIEJIBHBIX IIBIIMHIPOB
P NOTIEPEYHOM JIOJ3YUHUM OBTEKAHMH

ITpenmerom paGoThi ABSETCST Npobsema CONpPOTUBIIEHHUS LLUIMHAPUYECKHX CTEPIKHEH NpH rorepey-
HOM noisyuum obTexanun. CucTema B Bue NapasuiesisHOro IMyuKa CTEPIKEHH, CUMTACTCA aHU30TPONMHOH
TIOPHCTOH cpepoii, B KOTOPO# TeueHHE ONMHCLIBaeTCcA ypaBHenuem dunsrpaimn Hapcu. Vnomsmyroe
CONPOTHBIEHHE NPEJCTABIIEHO NpK nomolu GeapaamepHoil GyHKIMH nponnuaemocta F, (p), rae ¢ —
oTHOIIeHne oObeMa CTEpXHEH K ofmemy obbeMy myka.

B paBore npuBemen o030p TEOPETHUECKMX M IKCIEPHMMEHTANBHBIX paboT, KACAIOUIMXCS CONPOTMB-
JIEHUA CHCTEMBI CTEPIKHEN YIIOMSHYTOM 0OTCKAHMH.

Streszczenie

OPOR FILTRACYINY UKEADU ROWNOLEGLYCH CYLINDROW PRZY POPRZECZNYM
OPLYWIE PELZAJACYM

Przedmiotem pracy jest zagadnienie oporu ukladu pretéw cylindrycznych przy poprzecznym oplywie
pelzajacym. Uktad w postaci rownoleglej wiazki pr@téw potraktowano jako anizotropowy osrodek poro-
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waty, w ktorym przeplyw opisany jest réwnaniem filtracji Darcy. Wspomniany opér przedstawia sic przy-
pomocy bezwymiarowej funkcji przepuszczalnosci F (p), gdzie ¢ jest stosunkiem objetosci pretow do obje-
tosci catkowitej wigzki.

W pracy dokonano przegladu prac teoretycznych i doswiadczalnych dotyczacych zagadnienia oporu
ukladu pretow przy wspomnianym oplywie.

Praca wplynela do Redakcji dnia 20 maja 1983 roku.



