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1. Introduction

The study of the behavior of stresses in periodically layered elastic composites is of
importance in many enginnering and geophysical applications. The problems of laminated
materials have been treated by various methods (see for references, cf. [1]). One of the
approaches is the linear theory of elasticity with microlocal parameters given by Wozniak
[1 - 4]. This homogenized model of microperiodic multilayered bodies describes the micro-
local effects, i.e. the effects due to the microperiodic structure of the body.

The aim of this paper is to adopt the complex variable method for two-dimensional
problems of the periodically layered elastic composites. As a basis of the consideration
we take into account the linear theory of elasticity with microlocal parameters [1 - 4].
The complex potentials are introduced for the reduction of the two-dimensional static
problems of the layered periodic composites to the boundary values problems of analytical
functions. The complex variable method is well-known, cf. [5] and it was applied fruit-
fully in the linear elasticity of anisotropic bodies, cf. [6].

In Section 2, based on the results of papers [1 - 4], the fundamental equations of the
homogenized models of the periodic layered linear-elastic composited are presented for
the two-dimensional static problems. The complex potentials for these equations are
introduced in Section 3. In Section 4 a special example describing the stress distribution
- in the periodic two-layered half-space is considered. The solution of the problem is obtained
for arbitrary given loads on the boundary.

2. Statement of the problem and governing equations

We consider a periodic laminated body in which every lamina is composed of two
homogeneous isotropic linear-elastic layers. Let Ay, j; and 4,, u, be Lamé constants
of the subsequent layers, (x,, x,, x3) comprise the Cartesian coordinate system such
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that the axis x, is normal to the layering. Let /;, /; be the thicknesses of the layers, and
0 be the thickness of the fundamental layer, so § = /, +-/,. The scheme of the open middle
cross-section B, = R? of the considered body is given on Fig. 1. We assume the perfect
bonding between the layers.
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We confine attention to the two-dimensional static problems in which the displacement
vector u is given in the form:

u(x,, x;) = (ui(x1 s X2), Uz (X1, X2), 0)-
To determine the stress and strain distribution in the Jaminated body we take into consi-
deration the homogenized model of linear elasticity - with microlocal parameters given
in [1 - 4], in which the components of displacement vector is assumed as follows:

Uy(x;, %) = Wal(X1, X2) +h(xX ) qulxy, X2), @ = 1,2, (2.1

where 4:R — R is the known a priori continuous d-periodic function, called the shape
function [l - 4], given by:

Xy — —%L for x,e<0, /1>
S b for x,e(/,0>
l __7’ X1 '2_ + 1 '_7] 1 1s >
and (Vx; € B), h(x,) = h(x,+5), where:
ns—%—e(();l). 2.3)
The shape function h(-) satisfies the conditions
x;+96/2
[ htydt =0, x eR,h(x)| < 0. (2.4)
x;-—d/2 .

The functions w,( ), g.(*), @ = 1,2 are unknown functions of class CZ(}}O), the functions
wo( -) are interpreted as the components of ,,macro”-displacement vector and the functions
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q.(") are called the microlocal parameters. The vector /- g represents the “micro-displa-
cement vector connected with the microperiodic structure of the body. ,
According to the results given in [I - 4], the governing equations of the homogenized
model of the microperiodic two-layered composites under consideration in the two-dimen-
sional static case take the following form: '
(z“'[‘)(wl,u +wy, ) (W, 1 Wy, 22+
(A +2[pD g, + (1lg2,2 = 0,
(A+ ) (Wi, 12+ W2, 22)+ (W2, 11+ W3, 22) +
(414952 + W g2,, = 0,
(A420) gy + (AW, 1 +w,, ) +2 [l wy,, = 0,

/2512 + [ (W, +wyi,2) = 0,
where

A=+ (L=, [A]=n(A—21),

o=t (=nus, [ = (e, —u.), (2.6)

( U

I—7

and the comma denotes partial derivatives with respect to the coordinates x,, o = 1,2.
Solving Egs. (2.5)a_4 we obtain '

/12), /Al =17 (;Uq + ‘l'i—;l‘ ,uz) s

A . 2
q, = —“A“[]-r (W1.1+W2,2)_—A“[#]TW1.17
A+2u At+2u
u .7
42 = _TJ(WLI'*'WLZ)‘

Next, substitution of the microlocal parameters gi( ) given by Egs. (2.7) into Egs. (2.5)(-,
yields
' Aiwi, i1+ (B+C)wy, 15+ Cwy, 2y =0,

2.8
AWy, 22+ (B+CO)w, 1, +CWs, gy =0, (2.8)
where:
A, = (A +2u) (A2 +2u,) >0
LT A=+ 2u) +1Gs+2m) T
B = (1= 222 +2p1) + A (A2 +20,) -0
T=m) (A +2u) + 702 +2 ’
(I=m(A+2u)+n(A2+2p2) 9
My 2

T A=)t s

dn(1 —n)(u, — o)Ay~ A+ — 1)
A, = A, + > 0.
o (=) (As+2p1) +1(A2+2u5)
The stresses in the subsequent layers may be obtained from the Hooke’s law taking
into account the displacement (2.1), the shape function () given by (2.2) and equations

(2.7). The components of stress tensor o&f, where index j runs over 1, 2 and is related to
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the layers of the first kind (with material constants A, 4,) and the second kind (with
material constants A,, 4,), can be expressed by:

o} = Aywy, +Bw, 5,

o) = Clwy, 4+ w2,1), (2.10)

ol = D(j)W1.1+EU)W2.2a |
where:

A y (A +w) A
DY = -Z+2,u, A, EY= 1,170 1120 B, 2.11)

Within the framework of given above homogenized model we can formulate boundary
value problems for the equations (2.8) in terms of the “macro-displacements w,(-) (by
using Egs. (2.10)).

3. Complex representation of the solution for the equations of homogenized model

We consider now two-dimensional problems of the “hypothetical ” elastic orthotropic
body which is described by strain-stress relations as follows
01y = Ay &1+ Bées,,
012 = 2C¢,, @G.1)
022 = Bey +A4; 6,3,
where:
. E11 = Wi,1, a2 = Wp,2, &2 = 0.5(wy,,+w, ), (3.2
and the constants A,, A,, B, C are defined by (2.9).
The equilibrium equations
O11,1+012,2 =0, 021,14+ 035,2 =0, (3.3

expressed in terms of w,, (by using (3.1), (3.2)) « = 1,2 take the same form as equations
(2.8). So, we can apply the well-known general solution of these equations given in, cf.
[6], for the case of orthotropic elastic body.

If we express the components of stress tensor by the stress function U(-) € C*(By).

01 =Usa, 0622=Uy, o0p==U,y, (3.4
then the equations (3.3) are satisfied identitely. Now solving equations (3.1) we have
o A, o B
11 = A, 4,—B° 11 A, 4, B? 022,
B 1
€22 = — A, A,~ B2 011 F A A,—B? 0225 (3.5)
E12 = e O12.

Utilizing the strain compatibility equation

£11,20F 22,11 = 283,125 (3.6)
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and equations (3.4), (3.5) we obtain the following equation for unknown function U:

A1CU.1111+(A1 Az_ZBC—BZ) U.1122+A2CU,2222 = 0. (3-7)
If we introduce the differential operators:
0 0

Dk='5.-x—:1——sk'—ax—2“, k= 1,2, 3,4, (3.8)

where sy, kK = 1, 2, 3, 4 are the roots of the characteristic equation

Ay Cs* 4 (A, A, —2BC—B*s*+ A4,C = 0, 3.9
the equation (3.7) can be rewritten in the form
’ D,D,D;D, U = 0. (3.10)

The solutions of characteristic equation (3.9) depend on material constants of the layers,
and we can mark out two cases:

3.1. Case 1, [u] # 0. We assume now that u; # u,. The equation (3.9) has four
different pure imaginary complex roots +ik,, +ik,, where
= ( Ay A,—2BC—B>—y/ 8, \'?
e 24,C ’
. — (AIA,,—ZBC—B2+ Vo, \' (3.11)
2 24,C ;
61 = (Al A2—2BC—B2)2_4A1 A2 C2 > 0.
By integration of the equation (3.10) we obtain the following general solution in the form
U(xy, xz) = 2Re[U,; (x4 ik, x1)+ Uy (x2 +ik; xy)]
= 2Re[U1(21)+ U2(22)],
where U,(z,) and U,(z,) are arbitrary holomorphic functions of the complex variable
zZ; = x2+ik1x1 and Zy = x2+ik2x1.
Introducing the complex potentials

(3.12)

_ du;
(P(Zl) = dZL >
(.13)
() = 20
1P 1} = dZ2 3

and utilizing Egs. (3.4), (3.1) and (2.10) we obtain the complex representation for the
stress components o¢? and ¢¢}:

o} =0y, = 2Re[¢'(zl)+1p'(zz)],

. , Ty, . 3.14
o) = 01 = —2Rel[k P @) +hay' @), = 1,2. (3.14)

To obtain the complex representation for the stress components of? defined by (2.10)s
we must determine the functions w,,, and w, . by solving the following equations (we
use Egs. (3.1),5, (3.2) and (3.14)):

Ay wy, 1+ Bw, 5 = 2Re[¢'(z)) +9'(22)],

3.15
Bwy, 1+ Agwy, 2 = —2Re[ki ¢/ (21) + 39 (2], 3.13)
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After simple calculations we have functions w, , , w,,» expressed by the complex potentials
and next from (2.10); we obtain

0% = 2Re[c{’ ¢’ (z)) + 59 (22)], (3.16)
where :

2 )y _ 2 )]
o o AatkiB)DO—(Brhku ADED GA7
Ay A, B
Finally taking into account equations (3.5), (3.1) and (3.2) we arrive at the following
expressions for the “macro”-displacements wy:

w, = —2Re[q, ¢(21)+q2V)(Z2)]: G 18)
w, = —2Re[p, p(z}+p29(22)], '
where:

A K2 +B . A+ BiE

_ At B mjo 2T e 12, 3.19
pa A1A2—B2 qu 1 ka(AlAz—Bz) o ( ?

The equations (3.18), (3.16) and (3.14) constitute the complex representation of the general
solution for the homogenized model of microperiodic two-layered elastic composites
presented in Section 2, in which the shear modulus u,, p, satisfy u; # u,. In this way
two-dimensional problems of the composite bodies were reduced to the boundary value
problems for holomorphic functions (complex potentials @( ), w()) of complex variables,
which are well-known, cf. [5], [7].

3.2. Case 2, [u] = 0. We now assume that u, = u,. Then, from Egs. (2.9), (3.11) it
follows that

(4, 4+2C) (1, +20C)
(I=m) 4 +ni+2C ° (3.20)
6120, k1=k2-':1.

pr =t =C, A =4,=B+2C=

The equation (3.9) has two double roots +1i, what it means that equation (3.10) can
be reduced to the biharmonic equation. The stress function U(x,, x,) takes the Goursat’s
form

U(xy, x,) = Re[zU,(2)+ U,(2)], 3.2D
where U,(z), U,(z) are arbitrary holomorphic functions of the complex variable z =
= X,+ix,. The stress function U given by (3.21) is the same as in the classical theory of
elasticity, cf. [5, 7]. .
The “macro”-displacements w, and components of stress tensor off, «, f# = 1,2 can be
written in terms of complex potentials U,(z), U,(z) and @(z) = Ui(z), ¥(z) = U, (2)
as follows: '

2C(wy+iwy) = %U,(2)—2P(z) - Us(2),
o} = Re[29(2)+29'(2)+ ¥(2)],
o} = Im[z?'(2) + ¥(2)],
a3? = Re[2aPP(2) —zP'(2) - ¥ (2)],

(3.22)
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where, (see equation (3.20))
_20(2,+2C—-4y) .
A, -Ox+20 " 7

_ 4+C
} Al—C ’

a? = i+ 1,2,

' (3.2"3)

3.3. Remark. Setting [A] = 0, [¢] =0, i.e. 4, = 1, and y, = u, we obtain the case
of homogeneous isotropic linear-elastic body. From equation (3.20) and (3.23) it follows
now that: '

A +3u,
2.1'*"‘”1 '

'Equations (3.22) together with (3.24) constitute the well-known complex representati.on
of the general solution for the homogeneous isotropic linear-elastic body, [5, 7].

aP =1, x= (3.24)

4, Example of application

We consider ‘a two-layered microperiodic elastic half-space x; > 0, the scheme of
which is given on Fig. 2. Let the half-space be loaded on the boundary x, = 0 by the force
(N(xy), T(x,), 0), where N(x,), T(x,) are known functions described normal and tangent
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Fig. 2.
cdmponents of the force vector. The boundary conditions of equations (2.8) in this case
can be written: ;
a{P(0, x,) = 4, w1,1(0, x2)+ Bw,, 5 (0, x3) = —N(x,), (4.1)
0(112)(0> x,) = C(wy,2(0, x3)+w,,,(0, x2)) = —T(xy).

According to the results given in Section 3 we consider two cases:
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4.1. Case 1, [u] # 0. Taking into account the complex representation (3.14), (3.16)
and (3.18) and utilizing the solution of adequate problem for the ortotrophic linear-elastic
half-space x, > 0, [6] (with the constitutire relations given by (3.1)) we arrive at the solu-
tion:

1T kNO-ITE
(1) = ky—k, 27 J E—z,

dg,

@.2)

kN —-ITE) IT(E)
2m f

1/)(22) = E —z,

Knowing the complex potentials ¢ and p we can obtain easily the “macro”-displacements
Wwo (by using Bgs. (3.18) and (4.2)) and stresses 0§} (by using Eqgs. (3.14), (3.16) and (4.2)).
4.2, Remark. If we put in equations (4.2)

{— for |x,]| € &,
N(.xz) = 3 T(xz) = 0 for .x2 ER, (4.3)

0 for |x3] < e

where ¢ > 0, and consider the limit case e = 0 we obtain the solution for the concentrated
normal load N(x,) = Pd(x,) in the form:

c C
p) = —=, () =—", “.4)
Zy 23

where constants C,, C, are given by

S = S,k

CZ = — -m_:k-l—)— . (45)
The obtained above complex potentials ¢ and y together with equations (3.14) and (3.16)
give the stress distribution consistent with the results obtained in [8] by using the Fourier
transform methods.

4.3. Case 2, [u]= 0. Taking into account the complex representation (3.22) and utili-
zing the solution of adequate problem for the homogeneous isotropic linear-elastic half-

space x, = 0, [5] we arrive at the solution:

1 Me-iTE
®@) = " 2qi f E—z a,

-~

(4.6)

P0) = — 1 f N(&)EiiZT(ﬁ) 1' N(&)—iT(&) cat.

27 A s+ 2 (=2)?

In the case of the concentrated force given by Eq. (4.3), where ¢ — 0, we obtain

D(2) = _Ef_:—z—’ Y() = 2—; . 4.7
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5, Conclusions

The presented method of complex potentials for the homogenized model of micro-
periodic two-layered composites is very useful and effective in two-dimensional problems.
The method may be applied to solve contact problems, crack problems in the laminated
bodies. It is possible to developed and adopt it for the two-dimensional problems of multi-

Jayered microperiodic composites within the framework of the linear elasticity with micro-
local parameters, [1 -4]. '
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~3

Pesome
KOMIUJIEKCHELIE INOTEHIIUAILI B IBYMEPHBIX 3ATAYWAX CJIOUCTHIX
CPEI TIEPMOOWYECKOY CTPYKTYPhI

B palore BBeHEHO HOMDNEKCHBIC NOTEHUMANLI INIA LBYMEPHBIX 3a0ad CIOUCTLIX YIPYTHX Cpex
MEePHONMHYCCKON CIPYKTYPLI PACCMOTPEHHBIX B PAMKAaX moheny BosHAxa JMHEHHOM TEOPHH YIIPYLOCTM
€ MHKPOJOKAILHBIMH [TapaMeTpamiu,

Streszczenie

POTENCJALY ZESPOLONE W DWUWYMIAROWYCH ZAGADNIENIACH
KOMPOZYTOW WARSTWOWYCH O STRUKTURZE PERIODYCZNEJ

W ramach modelu Wozniaka liniowej teorii sprezystosci z mikrolokalnymi parametrami wyprowa-
dzono zespolona reprezentacje dla dwuwymiarowych zagadnien kompozytéw warstwowych o strukturze

periodycznej.

Praca wplynela do Redakeji dnia 20 listopada 1986 roku.



