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1. Introduction

In recent years, there has been growing interest in the partial differential equations
which govern wave phenomena on the basis of the reductive Taniuti-Wei’s [1], the mul-
tiple-scaling [2], the Lagrangian [3], and Shen’s [4] methods. Amongst them, the number
of equations appeared on linear waves in tubes [5-9]. It was shown that in the absence
of dissipation of energy the fundamental set of nonlinear equations for the irrotational
motion of waves in a liquid filled a tube can be reduced to the Korteweg-de Vries equation
[10]. Also Burgers equation was obtained for dissipative systems [10 - 12]. In 1968 Johnson
[13] introduced the so-called Korteweg-de Vries-Burgers equation for a wave propaga-
tion on an elastic tube containing a viscous fluid which may be regarded as a simple model
of an artery. Recently the discussion of an incompressible fluid that is confined within
an infinitely long circular cylinder with thin walls of elastic rings leads to the Korteweg-de
Vries equation [14] which also may be obtained in this case via Lagrangian method [15].

The main purpose of this note is to broaden Lamb equations [14] to allow compressi-
bility of fluid and to take more realistic model equation, describing motion of a tube
wall, into consideration. ,

The organization of this note is as follows. In the next Section fundamental sets of
equations are presented. Section 3 and 4 deal with derivation of the Korteweg-de Vries
equation for a tube with elastic rings and the Korteweg-de Vries equation with varying
coefficients. Section 5 presents construction of the same equation via the multiple-scaling
method. Last Section is devoted to the short summary of this note.

2. Physial models

In this note we consider the one-dimensional irrotational fiuid waves of characteristic
amplitude / and characteristic length 2 in an infinitely long tube with thin walls of elastic
rings and a diameter 2a to take into account nonlinearity and dispersion of medium on
the assumption that / <€ 2¢ <€ A. The tube wall is assumed to be incompressible and we
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ignore axial motions of the wall and bending moments are neglected. Then we take ag

the set of relevant basic equations:
— equation of continuity,

— Euler’s equation,
1
Vl + VVx +?px =0, . (22)
— Newton’s equation, _
E 2na w(2aq — Eh) '
— — - =0, .
At oo ATk ? omh 23)
~— equation of state,
e =o(p)=Dp,D =const, 2.4

where we used the following notations: ¢ — liquid density, A — area of the crossection,
V — liquid velocity, a — tube radius at the undisturbed uniform state, o — density
of the tube material, £ — Young’s modulus in the circumferential direction, p — liquid
pressure, g — outside pressure. The subscripts x and ¢ imply partial diferentiation.

The other model equation governing motion of a tube wall without rings as a linear
viscoelastic solid characterized by its relaxation time was that employed previously in
[16] and for our aim may be written in the following form

Eh oh? Eh
_— F ro—-=___p - = 2.
(1 __1)2) a2 7 +Qh 13 12 Pxxit P (1 _,vz)a q: ( 5)

where: » is a Poisson’s coefficients and r is a tube radius at the disturbed uniform state
We define two dimensionless small parameters, namely:

2a -
= =—— 2.
| e=h b= 26
which measure the weakness of dispersion and nonlinearity, respectively. The Korte-
weg-de Vries equation will be derived on assumption that 6 = ¢,

3. Derivation of the Korteweg-de Vries equation for tube with rings

Our primary aim is to derive an approximate single equation from the fundamenta
set of equations (2.1) - (2.4). For this purpose we apply the reductive Taniuti-Wei’s
method [2]. Assuming that 4, ¥, p are slowly varying functions in a reference frame mo-
ving with the speed V,, we introduce the following coordinate-stretching:

E=e(x—Vyt), 7T=ct. 3.1
In new coordinates &, 7, equations (2.1) - (2.4) may be rewritten in the form
&*(pA). ~Vo(pA)e+(pAV)e = 0, (3.2)

DpleV,+(V=Vo) Vl+pe = 0, (3.3)
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E — Eh
e Ass+ 4 2na i 7 (2aq— Eh)

on ok o = 0(e?). (3.4)

On the other hand, since we are concerned with weak nonlinear waves, we expand the
dependent variables as power series in ¢ around the undisturbed uniform state:

p=q+op, + ...,
V=23V, +*V,+ .., (3.5)
A = A()+5A1+ e

Substituting (3.5) and &* = § into the above set of equations (3.2) - (3.4) and equating
all the coefficients of the various powers of ¢ to zero, we have the equations:

4AoVie—Vo(Aopie+qAy) = 0, (3.6)
Pis—qVo V1.;_£ =0, 3.7
EhA, —2aa’p, = 0. _ (3.8)
Hence, we obtain
2na®
4, = _ﬂp" (3.9)
- Vo(EhAO + 27!(](13)
V, = T A P, (3.10)
EhA
2 0
Vo = By Eh+ 2rga® (3.1)

Finally, from &* the second-order perturbed terms can be eliminated and the compati-
bility condition (3.11) gives rise to the Korteweg-de Vries equation for p,

PiztPPipietopieee = 0. . (3.12)
The nonlinear § and the dispersive a coefficients are described by the formulae

Vo [(ER)? + agEh+6(ag)?]

_ 3.13

b Ehq(Eh+ 2aq) g (3.13)
erxqa3V0

L lndTVo 3.14

“ = E(Eh2ag) (3.14)

4. Derivation of the Korteweg-de Vries equation with varying coefficients

We consider now the fundamental set of equations (2.1), (2.2), and (2.5) which describe
wave propagation in an infinite thin-walled tube without rings neglecting bending mo-
ments and axial motion of the tube wall. We assume that the undisturbed radius a is
varying slowly along axial direction and rewrite the above mentioned equations for o =
const. = g, in the following form:

H3
0o(Vi +VV )+ (Br)y+ 001 ““Q‘;)i—" Faxxr—Cx = 0, 4.1)
(#2),+ (V) = 0, 4.2)
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where we introduce the notation:

B Eh
= (1 _172)‘12 ’ (4-3)
Eh
C= ~(~1' —;ﬂa— —q. (4.9

We investigate ingoing solutions of equations (4.1) and (4.2) in the small amplitude appro-
ximation using the same reductive method. Because a = a(x), we introduce the following
coordinate-stretching of the reference moving frame:

dx
= ——t
: 8( Vo ) (4.5
n = &’x.

Now V, is a function of x. We take ¢* = ¢ into consideration. Expansion of r, ¥ into
power series of the same parameter
r=a+en+ ..,
V=gV, +&V,+ ..
leads to the decomposition of equations (4.1) and (4. 2) establlshmg the 1e1atlonshlp among
the first-order perturbed quantities from collecting terms by ¢:

(4.6)

2V,
_I/l = ao )‘1, . (47)
R aB
Vs = ——290 . (4.8)

From the second-order .equations &2, the compatibility condition give rise to the Korte-
weg-de Vries equation with varying coefficients

28BV,,+ 500V, Vie+ - L 2[1/0 Ba_ —Ba,|V,. (4.9)
V 2V, |,

5. Derivation of the Korteweg-de Vries equation via multiple-scaling method

Our next purpose is to apply the multiple-scaling method [2] to derive the Korte-
weg-de Vries equation which describe small amplitude and long waves. The fundamental
set of equations (4.1) and (4.2) may be rewritten in the following form:

Vt+VVx+rx+rxn+rxxxlt = 0; (51)
(r?)e+(2V)y =0, (52)
where dimensionless variables are introduced by the transformations:
/1 e h “Bh
" 7V B et VoY T ¥ 3)

In equations (5.1) and (5.2) we introduce the multiple spatial and temporal scales x, =
g'x and 1, = &'t for n = 1, 2, ... The dependent variables are expanded around the undi-
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sturbed uniform state into the asymptotic series in terms of the parameter § by writing
V= )&, r=Ii+) o, (5.4)

[is the undisturbed dimensionless radius of tube. The derivative operators are considered
to be of the form

_3 9 , 0

a‘[——ﬁ—a?’i'ﬁ a—tz—-i-..., .
.5

9 0 , 0 (3-3)

o 8—3x1 + & ———ax2+

Substituting (5.5) and (5.4) into equations (5.1) and (5.2), we obtain a sequence of equa-
tions by equating the coefficients of like powers of ¢. The first three sets of perturbation
equations are as follows:

{Vlt,’*"lxl =0, (5.6)

2ry A1V, =0, 6.7

ey Vu,‘i"u, =0, (5.8)

2!‘1,2-1-”/1‘2 = 0, (5.9)

JV21 +V113+V1V1x1+’2x1+r1x3+’1a t: = 0 (5 10)
lzh‘zt ‘*"’1134‘2"1"111"“2”/1”1::1 12(V2x1+ Vixg)+ '

+2ir Vi, = 0. (5.11)

From equations (5.6) - (5.9), we find

V, =V, (xl—l/% tl),z V(E), (5.12)
reo=r(E) = ]/—é- Vi, (5.13)

V=V, (xz—-]/-é— tz) = V(&), ro= n(é). (5.19)

The fourth-order equations (5.10) and (5.11) lead to the following equation after remo-
ving second-order terms by assuming that ¥, depends on X1 and #, through &,:

~ ~\3/2
[ 5 /
V1;3+V7 le’+z Vl VL51+(_§) Vlflflfl = 0' (5'15)
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Ly

. T
&y = xs—]/‘i ty, T =13, (5.16)

we can obtain the Korteweg-de Vries equation

/
Transforming to the coordinate system moving with a phase velocity ]/ ,{24, ie

5

~\3/2
!
Vie+ i ViV, + (2‘) Viete, = 0. (5.17

6. Summary

Basing on the rigorous developed in the reductive theory, we have derived the Kor-
teweg-de Vries equations as a first-order of approximation of waves in an infinite thin-
walled tube having taken into account the fundamental sets of equations. These equations
model also impulse propagation in an a arterial system, small intensines and a nervous
system. The problem of impulse propagation was considered via various methods by
Scott [17] for the nervous system and by Greenwald et al [18] for the arterial stenoses and
aneurysms.

The formulae (3.11), (4.8), and (5.16) may be used to determine physical parameters
such as Young’s modulus having measured the velocity of the moving frame [19]. Various
models of the tubes may be tested against experiments.

The Korteweg-de Vries equation with constant coefficients was discussed in some
details to obtain N — soliton [20] and N — periodical wave [21] solutions. These equations
were reviewed for water waves by Johnson [22].

Solution of the Korteweg-de Vries equation with varying coefficients was considered
in the context of a solitary wave propagation from one uniform cross section of a symmet-
ric triangular channel into another through a transition region. Numerical results showed
that the solitary wave is desintegrated into a train of solitons of decreasing amplitudes
[23].

The author would like to express the sincere thanks to the referee for his valuable
comments.

References

1. T. TantwuTr, C. C. WEL, Reductive perturbation method in nonlinear wave propagation, J. Phys. Soc.
Japan 24 1968 941/46.

2. T. KawWAHARA, The derivative-expansion method and nonlinear dispersive waves, J. Phys. Soc. Japan
35 1973 1537/44.

3. T. KAWAHARA, 4 note on the Lagrangian method for nonlinear dispersive waves, J. Plasma Phys. 18
1977 305/16. '

4. M. C. SHeN, X. -C. ZHONG, Derivation of K-dV equatlons Jor water waves in a channel with variable cross
section, J. Mecanique 20 1981 789/801.

5. T. Younag, Hydraulic investigations, subserviant to an intended Croonian Lecture on the motion of the
blood, Phil. Trans. Roy. Soc. London 98 1808 164/86,



THE KORTEWEG-DE VRIES EQUATIONS... 119

6. T. B. MooDIE, D. W. BARCLAY, R. J. TAIT, Pressure and flow pulses in viscoelastic arterial models with
reflection sites, Acta Mech. 53 1984 57/72,

7. R.J. Tarr, T. B. Moobix, J. B. HApDOW, On radial motion of a non-linear viscoelastic tube, Q. Appl.
Math. 17 1985 385/93. '

8. T.B. Moopig, D. W. BARCLAY, S. E. GREENWALD, D. L. NewMaN, Waves in fluid filled tubes; theory
and experiment, Acta Mech. 54 1984 107/19.

9. T.B. Moobpie, D. W. BARCLAY, Propagation and reflection of waves in finite length fiquid-filled dis-
tensible shells, Acta Mech. 56 1985 151/63.

10. P. L. BHATNAGAR, Nonlinear waves in one-dimensional dispersive systems, Claredon Press, Oxford 1979,

11. K. Murawskl, Homogeneous Burgers equation for a wave propagation in an infinite iube, Acta Phys.
Polon. A6l 1986.

12. K. MURAWSKI, Burgers equation for a wave propagation in an infinite stout-wall tube, Z. Naturforsch.
40a 1985 952/54.

13. R.S. Jounson, Doctoral thesis, Univ. London, London 1969,

14. G.L, Lamg, Jr., Elements of Soliton Theory, J. Wiley 1980.

15. K. MUrRawSKl, The Korteweg-de Vries equation obtained via Lagrangian method for a wave propagation
in an infinite tube, Z. Naturforsch. 40a 1985 955/6.

16. T. B. MoobrE, R. J. Tart, J.B. HADDOW, Waves in compliant tubes, F. Mainardi(ed.), Res. Notes in
Math. 52 1982 124/68. :

17. A.C. Scott, The vibrational structure of Davydov solitons Phys. Scr. 25 1982 651/8.

18. S. E. GreenwaLD, D. L. NewmanN, T. B. Moobig, Impulse propagation in rubber-tube analogues of
arterial stenoses and aneurysms, Med. & Biol. Eng. & Computing March 1985 150/4.

19. K. Murawskl J. KUKIELKA, Determination of Young's modulus in the circumferential direction to the,
stalk of corn, submitted to J. ASAE.

20. R. Hirora, in ,,Solitons”, R. K. BuLLvoGgH, P.J. Cauprey (eds.), Topics in Current Physics 17,
Springer-Verlag, Berlin 1980. )

21. R. HiroTA, M. IT0, A direct approach to multi-periodic wave solutions to nonlinear evolution equations,
J. Phys. Soc. Japan 50 1981 338/42.

22. R.S. JouNSON, Water waves and Korteweg-de Vries equations, J. Fluid Mech. 97 1980 701/19.

23. X, -C. ZaonG, M. C. SHEN, Fission of solitons in a symmetric triangular channel with variable cross
section, Wave Motion 5 1983 167/76.

PesmoMme

VYPABHEHUS KOPTEBETA-IE ®PHU3A IUISI PACIIPOCTPAHEHUWS BOJIH
B BECKOHEYHO JJIMHHOM TPYEBE

B pafoTe NMPHUMEHEHO TEODHIO HENMHENHBIX BOJH, OCHOBAHHYIO Ha MeTofe peaywiuu Tamoru-Ben
H MeToje MHOMX TapaMeTpOB AJs NojlydyeHmnsa ypasueHusa Kopresera-ge Ppusa ais pacrpocrpaHeHus
HEMMHERHBIX W NHUCNEPCHOHHBIX BOJH B Tpybe.

Stfeszczenie
ROWNANIA KORTEWEGA-DE VRIESA DLA PROPAGACJI FAL W RURZE O NIESKONCZONEJY
DEUGOSCI

W pracy zastosowano teori¢ fal nieliniowych oparta na metodzie redukcji Taniuti-Wei i metodzie
wielu skal od otrzymania réwnania Kortewega-de Vriesa dla propagacji nieliniowych i dyspersyinych fal
w rurach.

Praca wplynela do Redakcji dnia 20 wrzesnia 1985 roku.



