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APPLICATION OF WAVE METHOD IN INVESTIGATION OF DRIVE SYSTEMS
COMPARISONS WITH OTHER METHODS
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1. Introduction

The paper concerns dynamic investigations of drive systems with variable and constant
shaft cross-sections using the wave solution of motion equations. The model of a drive
system consists of shafts and rigid bodies with constant mass moments of inertia with
respect to the axis of rotation. Rigid bodies are loaded by external moments which prac-
tically can be arbitrary. Considerations concern those systems where supporting bearings
eliminate flexural deformations and shafts are mainly torsionally deformed. Damping
appearing in these systems is taking into account by an equivalent damping, which is
compared with a damping continuously distributed in the case of a unilaterally fixed rod
torsionally deformed. Moreover, results obtained by means of the wave method are com-
pared with suitable results obtained by means of the rigid finite element method and with
the method of separation of variables.

It should be pointed out that dynamic investigations of drive systems are carried mostly
out by means of discrete models, [1]. In literature also discrete-continuous models are used
likewise in the present paper,“[2, 3], which more precisely describe real systems but re-
quire slightly different methods for solution. The method of separation of variables the
most often is applied in these studies. It allows, in principle, to consider undamped sys-
tems and to determine natural frequencies and eigenfunctions, [2 - 4]. Using the wave
solution of motion equations one can determine displacements, strains and velocities in
arbitrary shaft cross-sections at an arbitrary time instant.

2. Wave method in investigation of drive systems

In this section the wave method is presented in the case of the discrete-continuous
model of a drive system with variable cros-section of shafts. The method is based on the
utilization of wave solution of appropriate motion equations. It can be applied for shafts
with a constant and variable cross-section, however in the last case the functions repre-
senting variable cross-sections should be such that the equations of motion have solutions
of the d’Alembert type.

7 Mech. Teoret. i Stos. 1/88



98 A. PIELORZ

2.1. Drive systems with variable shaft cross-section. Consider a multi-mass drive system con-
sisting of an arbitrary number of rigid bodies connected by means of shafts. The shafis
consist of segments with variable polar moment of inertia. The method proposed may be
easily applied to ‘the discussion of models for drive systems with an arbitrary number
of segments, however in order to get clearer and simpler analytical formulae the analysis
is limited to the case when each shaft consists of two segments, Fig. 1.
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Fig. 1. Model of a drive system

The shafts are deformable only in torsion-like manner and their central axes, together
with elements settled on them, coincide with the main axis of the drive system. It is assu-
med that the x axis is parallel to the main axis of the drive system, and that its origin
coincides with the location of the left end of the first shaft in an undisturbed state at time
instant ¢ == 0. Moreover, damping is taken into account by means of an equivalent dam-
ping.

The i-th shaft segment, i = 1, 2, ..., N, where N is an even number, is characterized
by the length /;, density g, shear modulus G and variable polar moment of ineriia Jy;
which is described by the function:

—~b
Joi(x) = Ty (ﬁt_)‘" ¢y
-1

where: Jo,(bo)) = 0, Jp1 = Joi(Li= ), Ly = i+ + ... +4. If by » —oco then function
(1) is constant, therefore shaft cross-sections can be constant, piece-wisely constant, va-
riable and piece-wisely variable. Other forms of function Jy;, suitable motion equations
for which have the solution of the d’Alembert type, one can find in [5 - 7]. The rigid bo-
dies of the system, with mass moments of inertia J;, are loaded by external moments
M;(t). The moments of an equivalent damping, also loaded these bodies, are assumed
in the form:

MDl(’)= —D,@,,,(x,t) for x=L1_1, i= 1,3,...,N,
Mp,ns1(t) = =Dy 1Oy, (x,t) for x= Ly,

where D, are the coefficients of the equivalent damping of viscous type, @; angular displa-
cements of shafts, and comma denotes partial differentiation. Moments My, act in se-
lected shaft cross-sections, and thus this aassumption allows to apply motion equations
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APPLICATION OF WAVE METHOD... 99

without damping. Moreover, it is assumed that displacements and velocities of shaft
cross-sections are equal to zero at time instant ¢ = 0.

Under above assumptions, the determination of angular displacements and velocities
of the system shown in Fig. 1 is reduced to the solution of wave equations, [7],

01 —C (01 xxt @l x) i= 1,2,...,N (3)

:—b.OL
with boundary conditions;
M, (1)—-J,0,, ll+GJ0101 x D.@J,r =0 for x=0,
Jo,1-10-1,x = J0:0,, for x=1L,_,, i=24,.,N,
Mi(t)—-J0,,.+GCT00:,c—GCTo, 110y, x—DO,, =0 for x=1L,,,
i=3,5,...,N=-1,
MNH(f)_JN+1@N.1:—GJONON,A-‘DNH.@N,: =0 for x= Ly,
6,.,=06, for x=L_,, i=2,3..,N
and with initial conditions
O(x0) =6, (x,00=0, i=1,2,...,N, 5)
where ¢ = GJp. In the case of constant polar moment of inertia J,; equations (3) be-
come clasical wave equations.
Upon the introduction of the following nondimensional quantities
x =x/(,+1h), . r = ct/( +1), @l =0,/0,, D;= D(l,+1,)/(J,¢),
Ml = Mt(ll"f‘lz)z/(lh@ocz)’ K, = Jp19(11,+12)/J1: E = JJ./J'I, 6
B, = Jyu/Ty, 115 o= Lj(l,+1), Jot = JotlTpts bor = boi/(y+1)
relations (3) - (4), omitting bars for convenience, are

2 R . '
@i,u_@i,xx_x—_l‘)‘(;'@l,x=0’ l=1:2:"->N: (7)
M, =0 +K Jy0,,:—D®,, =0 for x=0,
Jol 101 l,x:BlJOi@ fOI‘ x=Li 13 i=2 4 N,

Eth O+ K J0:iO o~ K1 EiJo, 12101,/ Ei - I—EID@l =0

)

®
for x=1L,_,, i=3,5..,N-1,
EN+1-MN+L_@I\'.rt—KNJONEN+1,@N,x/EN_EN+1,DN+10N.I =0 for x=1Ly,
i—1 =@l fOI‘ x=L[_]_, i=2,3,...,N
where @, is the constant value of an angular displacement.
The solutions of the problem (7), (8) and (5) are sought in the form
1 :
Ox, ) = —— [filt—x+L,_)+&(t+x—L,_)] for x=1,3,...,N-1,
x_bOi . (9)

Oi(x,1) = (t—x+L)+g(t+x—L)] for i=2,4,...,N,

where functions (x bo,) 1f, and (x—bo;)"'g; represent waves, caused by an external
loading, propagating in the i-th shaft segment in the direction consistent and opposite

i
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to the direction of the x axis, respectively. In the arguments of functions f; and g; it was
taken into account that the first perturbation occurs in the i-th shaft segment at the time
instant z = 0 in the cross-section x = L;_, or x = L;, respectively, where L; = [, +/,+
+...+1;. Furthermore it is assumed that the functions f; and g, are equal to zero for nega-
tive arguments. If the function Jy; is constant and equations (7) become classical wave
equations then the sought solution (9) consists only of the sums of functions f; and g;
with the same arguments, [8, 9].

Upon the substitution the assumed form of solution (9) into boundary conditions (8),
upon denoting the largest argument in each equality by z and using the function (1) to
the description of the variation of polar moment of inertia one gets the following system
of equations for- unknown functions f; and g;:

rufi@)+rafi(z) = rygi(z—20)—ryug:(z—21)
+rafioz—1L_=1) for i=2,4,...,N,
P 8@ 12,101 81(2) = =13, f1(Z=20) = ra, 101 fi(2—21)
+ra, i1 &l z—=L—1y) for i=1,3,...,N—1,
1@+ f1@+120/1(2) = Ci M (2) gV (D) +73.81(2) — 121 84(2),
' @+rufi@+rafi@) = CM(2)—gi (2)+r318:(2) (10
~ry 8@ +rofi_i(z) for i=3,5,...,N-1,
g’ (D) 4+ r1,14181@) 4 F2,1,.8:(2) = C M, (2) =11 (2)
+73, 14112 = F2,161. 1@ 414, 141 8141(2)
for i=2,4,...,N=-2,
gn (@) 411, ne1 8N @)+ P2 wr 1 88(2) = CyMyyy(2)—1N (2)
+r3, n1 1 5@ =12,y 1 /()

ris = Ky+Dy, ry = —Kilby, rayz=K,—D,

Fu = (Licy—=bo,i-)*Li—a—bo,i-1)"*+B;, i=2,4,...,N,

ra = Bi(Li_i—bo) ™ —(Limy—bo,i-)Lios—bo,1-1)"%, i=2,4,.,N,

ry = Bi— (L1 —bo,1=)*(Li_2—bo,,_1)"% i=2,4,..,N,

Par = 2(Li~y—bo, ;) Lymy —bo)(Li—y—bo,1-1)"% i=2,4,...,N,

rar = 2B(Lyo; —bo, i ) Li—y—bo)™t, i=2,4,..,N,

ry =K+K_ E(Li—1—bg, i )*E-\(Ly_,—by,i_ ) >+ ED,,
i=3,5,...,N—-1,

rai = Ki(Li-y—bo) ™ = K-y E(Liy=bo,i- Y EZN (Li—s~bo, ,-1) 72,
i=3,5 .,N-1,

ra= —r+2K;, rh= —ry—2ED, i=3,5,.. N-1, ()

Fao = 2K, E;(Ly_;—bo, 1~ )Ly — b)) E7- N (Li—a—bo, ;1) 72,
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ri; = 2K(Li~y —bo,1-)(Li~y—bo)™',  i=3,5,...,N~1,
Fioner = KnEyny i (Ly—=bon)*Ef " (Ly—1—bon) >+ Eyy ( Dy o
Yo,n+1 = —KyEny 1 By (Ly-y —bon)™*(Lv—bow) »

Fa,netr = Fiyn+1— 2By Dyyy,

C1=Ei(L1—1“b01)a i=1,3,..,N-1,
C[=El+1(Li—bO'), i=2,4,...,N.

Equations (10) are differential equations with constant coefficients, however the
arguments of several functions of the right-hand sides of these equations are shifted. These
equations can be solved numerically by means of the finite difference method or analy-
tically, as it was presented in [8, 9] for a drive system with a constant shaft cross-section.

2.2. Numerical results. Numerical calculations for nondimensional angular displace-
ments @(x, 1) are carried out in the case of a two-mass drive system, The method of fi-
nite differences with Az = 0.025 is applied in order to solve equations (10) for N = 2,
and next displacement functions are determined according to formulae (9).

The two-mass drive system is characterized by the following nondimensional para-
meters, (6): Iy =1, =05, K, =001, E; =0.1, B, =08, 1.0, 1.25, D, = D, = 1.0,
the parameters bo; = —20, —1000, by, = byy —/; occuring in formula (1), and &, = 1
[rad], ¢ = 5000 [m/s]. The effect of the quotient of polar moments of inertia of shaft

segments B, = J,,/J,, is investigated for the nondimensional external moments M,(t) =
7+ 107 %exp(—0.0044¢) - sin(7/70) and M;(¢) = 0. Displacements @(x, t) are plotted

out in Fig. 2 for the three selected shaft cross-sections x = 0, 0.5, 1.0 and for by, = —20,
—1000. It follows from Fig. 2 that for any time instant differences between displacernents
for moderately changing shaft cross-sections with by, = —20 and by, = — 1000 are small,

and that the effect of the quotient B, = J,,/J,1 on displacements is most observable in
the cross-section x = 0.5.

In the case of a two-mass drive system the effect of the lengths of shaft segments on
displacements @(x, t) was also considered, namely for the lengths of shaft segments
l;, =02, 04, 0.6, 08, I, = 1.0-/,, and for Ky = 0.01, 1.0 and B, = 1.25. All calcu-
lations indicated that this effect on angular displacements in shaft cross-sections under
consideration was inconsiderable. For this reason, the appropriate diagrams for displa-
cements are not presented in the paper.

3. Comparisons

The method, proposed in the paper for investigations of drive systems torsionally
deformed, takes into account all reflectons of waves during the work of the drive system and
leads to solving ordinary differential equations with a retarded argument. These equations
are derived under the assumption that equivalent damping may be considered in boundary
conditions. In real systems damping is distributed continuously. For the present, methods
for solving appropriate motion equations with damping are not sufficiently effective to
be used in investigations of discrete-continuous models of drive systems. A comparative
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Fig. 2. Displacement diagrams for a two-mass drive system
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analysis for the dissipative wave equation and the classical wave equation with the equiva-
Jent damping is performed in the case of a unilaterally fixed rod with a constant cross-
section. Also for simple systems, results obtained by means of the wave method is com-
pared with appropriate results obtained by means of the rigid finite element method and
the method of separation of variables.

3,1. Damping in dissipative wave equation and equivalent damping. The solution of the, dissi-
pative wave equation is now compared with the solution of the classical wave equation
with the equivalent damping. The comparison is accomplished for the rod right-handly
fixed the free end of which is loaded at time instant # = 0 by a constant torque, Fig. 6
with J = 0.

3.1.1. Solution for dissipative wave equation. The discussion of the system under consi-
deration, Fig. 6 with J = 0O, taking into account the damping continuously distributed
is reduced to solving the dissipative wave equation, which in appropriate nondimensional
quantities analogous to (6) has the form:

0, +2h0,-0, .. =0, (12)
with the following initial conditions:
O=6,=0 for t=0 13
and boundary conditions:
O,.,=-M, for x=0,
=0 for x=1, (14)
where k is a nondimensional damping coefficient, M, is a nondimensional constant tor-

que, and bars are omitted for convenience.
Upon the introduction of the transformation:

O =cMy (15)
equation (12) takes the form:
O~ —h0 = 0. (16)

- By executing the Laplace transformation relations (16), (14) are:

-
(s ~h?)5— Zx’j =0, (17

- do

2=0 for x=1 and W+Mo—0 for x=0, (18)

where by wavy lines the Laplace transformation of suitable functions are marked.
The solution of equation (17) for conditions (18) has the form:

9(x; ) = Z y(_l)ﬂ-k h2)1/2 exp(_xk"(sz__hZ)l/z)’ (19)

where xi, = (—1Yx+2(k+n).
Upon the retransformation and the use of relation (15) the solution of equation (12)
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is the following function:

O, 1) = Mo )J Z (— 14" H(t = Xir) f e M lo(h(z~ xE)H?) dz, (20)

n=0k=

where I,(x) is the Bessel function. From formula (20) it is seen that it is more comfortable
to consider the derivative of function @(x, t) with respect to time. This derivative has the
form:

@',(.X t) = M() Z ( ])k+nH(t'_xkn)e ’lljo(h(tu_xlm)llz) = (21)
0 k=0

n=

- MOZ 2( 1)"+'H(t—xk,,)2, (hz(tl(:;)c;,,)/@ e M,

where H(?) is the Heaviside function.
3.1.2. Equivalent damping. The discussion of the fixed rod to the free end of which
a constant torque and an equivalent damping moment are applied is reduced, in nondi-
mensional quantities, to solving the equation
0,—0,=0 (22)
with initial conditions (13) and with the following boundary conditions:
O,.= —My+DO, for x=0,

2
=0 for x=1, (23)
where D is a nondimensional coefficient of equivalent damping.
For the solution of the form:
O(x, t) = ft—x)+g(t+x), N X))
we have
g(z) = —fz-2), 29)
I’@(1+D) = Mo+ (1-D)g’(2),
from where:
: My N0, [ 1-D\V
= —_— -_— ¥ 5SS . 2
f(2) 1+D‘2./( 1)(1+D for 2n<z<2n+1) (26)
For example for cross-section x = 0 and for 2n < t < 2(n+1)
1-D
-1 27
0.0, 1) = 5 ( )( D) @7)

Function (27) is a piece-wisely constant function.

3.1.3. Numerical results. In Fig. 3 are shown diagrams of velocities in cross-sections
X = 0 and x = 0.5 of the considered rod for damping coefficients # = D = 0.1, 0.2 and
0.5 and for M, = 1.0 obtained according to formulae (21) (continuous lines) and for-
mulae (26) (dashed lines). From Fig. 3 it follows that velocities obtained for the equiva-
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lent damping in successive intervals of time beginning with even numbers are approxima-
tely average velocities obtained for the damping continuously distributed. Moreover,
results for the both types of damping coincide for ¢ > 8. Analytical formulae are consi-
derably simpler in the case of the equivalent damping.

3.2, Wave method and rigid finite element method. The comparison of the wave method
with the rigid finite element method is peiformed for angular displacements of an undam-
ped two-mass drive system with constant cross-section, Fig. 1 for N =2, Jy = Jy, =
const and Mp,(t) = Mps(t) = 0. The system is loaded by the external moment applied
to rigid body (1), which is described in nondimensional quantities by function M, (¢) =
0.00001sin(7¢t/4). In calculations K; = 0.1 and E; = 0.1, (6), are assumed.

The motion of the drive system under consideration using the method proposed in
the paper is described by equations (10) with bo; - —co. Displacements @(x, t) of shaft
cross-sections of the drive system for x = 0, 0.5, 1.0 are obtained by means of the finite
difference method with 4z = 0.025. Diagrams of these displacements are shown in Fig. 4,

Motion equations for the undamped two-mass drive system using the rigid finite
element method have the form, [10],

7,0
Jo+ -2 R\, +-Gor “To1_6,-0,) = ~LMI(1)
2 Al
GJOL ,
RoB,+- 2% (~0,_,+20,—6,,) =0 for i=2,3,..,N, (28)

(Js‘l' 5 R0)0N+ Glo, (=Oy_1+0y) =0,

where NV is the number of finite elements, lengths of extreme and remaining elements are
Al{2 and Al respectively, Ry = Jo, 04! and @; is the displacement of the i-th element.
Introducing the appropriate nondimensional quantities (6) equations (28) take the
form:
"1@"14‘"4(@1“02) = M,(?),
"z@1+"4(_@t—1+2@t—01+1) =0 for i=2,3,.,N-1, . 29
"3@N+r4(_@N—L+@N) =0,
where: ry = 1+4IK, /21, r, = AIK|l, r3 = AIK |21+ 1/E;, r4 = K,1/Al, and bars are
omitted for convenience.

Displacements @; for finite elements are obtained from equations (29) by means of
the Runge-Kutta method with At = 0.01 and initial conditions:

0,(0) = 6,(0) = 0. (30)
Diagrams for these displanements, in nondimensional time, are shown in Fig. 5 takmg
into account 5 finite elements.

From the comparison of the displacement diagram for the cross-section x = 0 in.
Fig. 4 with the diagram of function @, in Fig. 5 it follows that the character of the both
curves is similar, and that the suitable maximum displacements obtained by means of
- the both methods differ from each other by about 8 per cent. However, the displacement
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curves of cross-sections x = 0.5 and x = 1.0 do not differ practically from corresponding

curves @5, ®; presented in Fig. 5. Additionally one may note that the execution time of
numerical calculations is much longer when the rigid finite element method is applied.

3.3. Wave method and method of separiation of variables. In this section the forced vibra-

tions of the undamped system shown in Fig. 6 is considered using wave solutions of mo-

1

M (1) l

f

|

I

|
ANSNNNNY

-4 n T
0 |
Fig. 6. Simple mechanical system

tion equations and the method of separation of variables. In the both cases displacements
of cross-section x = O are determined (i.e. for the cross-section where the rigid body is
attached to the rod), and the amplitude-frequency curve is plotted out for the nondi-
mensional external moment M(¢) = aosinpt. The rod is characterized by polar moment
of inertia J,, shear modulus G, density ¢ and length /.

3.3.1. Wave solution. The determination of nondimensional displacements’in-the elastic
element of the system shown in Fig. 6 is reduced to solving motion equations (22) with
initial conditions (13) and the following boundary conditions:

M@#)-0 ,+KO =0 for x=0,
=0 for x=1,

where bars, denoting nondimensional quantities, are omitted for convenience and K = J, ol.
Substituting (24) into boundary conditions (31) we have:

T"(@)+Kf"(2) = aosinpz+f"'(z~2) - Kf'(z-2),
g8(2) = —f(z-2),
where function f(z) is assumed to be zero for negative arguments. Equations (32) are
solved numerically by means of the finite difference method.
3.3.2. Method of separation of variables. The solution for the forced vibrations of the
undamped system presented in Fig. 6 is now sought in the form:

(31

(32)

O(x, 1) = E T,(1)0,(x), (33)
where T, are unknown functions depending on time, and @, are eigenfunctions which are
determined from equation (22) with boundary conditions (31) for M(¢) = 0. We have
then, analogously as in [4],

. K
0,(x) = sinw,x— © CO8W, X,

n

(34)

1
1 1 K? 1 K2 K
2= | OXx)dx+— OX0) = —- || 1] si 2
Y 6[ (x)dx + % 2(0) 5 (1+ w,%) F T, ( : ].) sm2w,,+w'2' cos?w,,
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where , are natural frequencies, and y; can be obtained from an orthogonality principle
for the discussed example when eingenfunctions are assumed to be identical. As it is seen
from (34)» a nonintegral term appears in the orthogonality principle. Such a term occurs
in the case of discrete-continuous systems. For such systems it is more convenient to use
Lagrange equations in coordinates Tp:

i(gi:)+gi H,,(t), n=1,2,.., (35

where H, are generalized external forces corresponding to coordinates 7, and they are
determined from the expression for the work of an external loading on an infinitesimal
displacement 6@(x, ). In the case under discussion the loading acts in cross-section
x =0

Energies E, and E, in nondimensional quantities:

_ 2 S L1
Ek.p = WEk,m Hn(t) = 2@2 ]_In(t) Vf = l@(z)_ 'y)lx,) (36)

take the form, [4],

se £f(ef o -t e (20). o

where bars are omitted for convenience, and the Lagrange equations remain in the form
(35).

Upon the substitution (33) into (37) and upon proper transformations we get:

[*9]

K
ED = "2—2 n'yn Tz(t)

n=1

(38)
E =5 DT,
n=1
Substituting (38) into (35) we have: ‘
.. 1
To(t)+op T,(t) = K2 H,(t). 39
In the case of an external loading applied in cross-section x = 0, [4],
H,(1) = M(1)0,(0) = — (40)
‘and equation (39) for M(z) = a,sinpt has the following solution
T.(1) = — o (w,sinpz —psinw,t). A1)

w} (s —p*)y
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Displacement ©(x, 1) is then calculated according to the formula

w

O(x,1) = aq Z __*”1_2__2 (wysinpt —psinw,t) X
’ ('Ulz((-')l% P} Yu
n=1 (42)

(K :
X |——cosw,x —sinw, x|.
3.3.3. Numerical results, Numerical calculations are concentrated on the amplitude-
frequency curve for the cross-section x = 0 with K = 0.5 and a, = 1.0. This curve on
the base of the Lagrange equations for the undamped system can be easily determined
from the formula (42). However, when the wave method is used the points of this curve
are obtained from numerical solutions of equations (32) in the region of steady motion.
In Fig. 7 results obtained on the base of formula (42) are marked by a continuous
line. According to this formula, the vibration amplitude is infinite for the frequencies

Fig. 7. Amplitude-frequency curve

of the external moment being equal to the successive natural frequencies of the system,
because in the denominator of formula (42) differences w,—p occur. In the considered
example w, = 0.654, w, = 3.293, w, = 6.362. '
In Fig. 7 results obtained using wave solutions of motion equations are marked by
stars for p smaller than the second natural frequency. It follows from Fig. 7 that stars
lie practically on the continuous curve. However, from numerical calculations it follows
that for p being equal to the first natural frequency and in the neighbourhood of this

~ value the vibration amplitude is not infinite, because expressions (w,—p)~t do not occur



APPLICATION OF WAVE METHOD... 111

when the finite difference method is applied for the solution of equations (32). It appears
moreover that the value of the amplitude for the resonance frequency is sensitive to a nu-
merical integration step and there are some difficulties in its exact determination.

4. Final remarks

The method applied in the paper, based on the use of wave solutions of suitable motion
equations, allows to determine displacements, strains and velocities in arbitrary shaft
cross-sections of drive systems modelled by means of rigid bodies and elements torsio-
nally deformed. These systems can be loaded by periodic and nonperiodic external for-
ces. Using this method variable cross-sections, finite lengths and equivalent damping
can be taken into account.

From comparisons for simple systems it follows that 1) the substitution of damping
continuously distributed by an equivalent damping leads, beyond a short initial time
interval, to practically the same results, 2) maximum values of displacements for the
cross-section in which the external loading is applied, obtained by means of the wave
method and the method of rigid finite elements differ by 8 per cent, while suitable curves
coincide practically for remaining considered cross-sections, and the execution time of
numerical calculations is considerably shorter when the wave method is used, 3) the appli-
cation of the wave method in the investigation of forced vibrations for undamped systems
does not lead to infinite amplitudes,

It should be pointed out that the wave method in the presented form leads to solving
simple mathematical relations and it is more effective than other methods for conside-
rations of discrete-continuous models of drive systems undergoing torsional deformations.
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PeswomMme

UCIIOJNIE30BAHUE BOJIHOBOI'O METOIA B UCCIIEDOBAHUAX
IIPUBOOHLIX CHMCTEM A ErO CPABHEHHUE C OPYTHMH METOIOAMM

B paBoTe mpeUIoKeHo BOJHOBOI MeTon HJS OHHAMHUECKHX HCCTIEOBAaHHM AMCKPETHO-HENpepHE-
HOH MOJCTH NPHBOAHON CHCTEMBI C IIOCTOAHHBIMH H IIEPEMEHHLIMH CCUCHIHMM BAJIOB IEPEHOCHINK
CKPYUMBAKOUIMIT MOMEHT. 3aTyxXaHue B MCCIEJ0BaHHOH CHCTEME YUUTHLIBAIOTCS MNPIX MOMOLIM QHKTHBHOTO
3aTYXaHHA JCHCTBYIOUEro B H3BPAHHLIX CEUCHMIX MPHBOXA, UTO JONYCKAeT INMPHMEHATL YDaBHEHUS
OBIDKCHUA 0C3 3aTyXaHus.

IIpennaraemelif MeTOH, CpPAaBHEHO C ADYTMMM METONaMH Ha JIpHMepe H3OPaHHBIX MPOCTLIX CHCTeM
“TOPCHOHHO AedhopMHUpoBaHHRIX, VIMCHHO, (QUKTHBHOE 3aTyXaHdHe CPaBHEHO C 3aTyXaHHEM HEIPEPHBHO
DA3JIOYKEIHOM U ITOJYYEHHDIE IPH OMOU(H BOJIHOBOIO MCTONA PE3YIILTATBI CPABHEHO C COOTBETCTBYIO-
NMMH PE3YJIETATAMH NOIYUEHHBIMK TP MTOMOLIK METO/Ia IKECTKHX KOMEUHLIX 3JEMEHTOB H METOMA pas-
NesleHus NepeMEHHBIX.

B nmannoit dopme BonHOBOH MeTOX BeNET JO MPOCTLIX MaremaTHdeckux ¢opmyn. Kpome Toro, us
CpaBHEHMH IIPOCTRIX CHCTEM CIELYeT, UTO OH Ooseec 2(DeKTHBEH yem APYrHe METOALI AaHANM3a CHCTEM
IEPEHOCSIUX CKPYUHBATOIIYIO HATPY3KY.

Streszczenie

‘WYKORZYSTANIE  METODY FALOWES W BADANIACH UKELADOW NAPEDOWYCH,
POROWNANIE Z INNYMI METODAMI

W pracy zaproponowano metode falowa do badan dynamicznych dyskretno-cigglego modelu ukladu
napgdowego poddanego odksztatceniom skretnym, o stalych i zmiennych przekrojach waléw. Tiumienie
‘w badanym ukiadzie uwzglednione jest poprzez tiumienie zastepcze dzialajace w wybranych przekrojach
‘walu, co umozliwilo przyj¢cie roOwnan ruchu bez tlumienia,

Proponowana metodg pordéwnano z innymi metodami na przykladzie wybranych prostych ukiadow
-odksztalcanych skretnie. Mianowicie, tlumienie zastepcze por6éwnano z ttumieniem rozlozonym w sposb
.ciggly, oraz wyniki otrzymane za pomocg metody falowej poréwnano z odpowiednimi wynikami uzyska-
‘nymi za pomoca metody sziywnych elementOw skonczonych i metody rozdzielenia zmiennych.

W podanej postaci metoda falowa prowadzi do prostych zwigzk6éw matematycznych. Ponadto z do-
konanych poréwnan dla prostych ukladéw wynika, ze jest efektywniejsza od innych metod przy dyskusji
wktadow poddanych odksztalceniom skretnym.

Praca wplynela do Redakcji dnia 20 stycznia 1987 roku.



