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1. Infroduction -

Singularities contained in the boundary element method represent one of its main
advantages over finite elements, enabling a better approximation of stress distributions
due to shape changes and/or variation of boundary conditions, like supports, contacts
etc. Also, the resulting system of equations is smaller with BEM than with FEM, but,
unfortunately, its matrix is fully populated. In this paper governing equations and numerical
results (for a metal wall and plate bending) are given for the initial strain concept of BEM
elasto-plastic formulation, bearing in mind body forces and thermal loads. For the case
of large displacements, an updated Lagrange technique has been developed and is also re-
ported in this paper. :

2. Theoretical background

Mechanical properties of metals may be divided into elastic, plastic and viscous. In
this paper, viscous influence has been neglected. In the elastic domain a complete revers-
ibility can be observed, and at each point of time there is a unique relationship of loads
and deformations, while for the plastic regime permanent deformations are due to occur,
which are dependent upon the history of loading. If only small strain rates apply:

. 1 . . . . .
=5 (uy, 4y, = 5+ &+ &l (1.1)

an incremental formulation may be written by a formal multiplication with a time step
_dt > 0, which is also typical in the classical elasto-plastic analysis. For the description
of material properties, elasticity and plasticity laws are required, where the last one is
composed of a yield criterion and flow rule. Considering a bilinear material, one dimensional
yield stress formulation reads as:

6, = 0o+ E, &?/(l—E,/E), - (1.2)
‘and the yield criterion is:
F(o,k,0) = |o|—0,(k,0)=0, 1.3)
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which is dependent on stress (o), hardening (k) and temperature (0). For the multidimens-
ional modelling the Mises-Huber criterion is applicable:

F(oy;, k, @) =V/3[28,;S,—0,(k,0) =0, (1.4)
where S;; is the deviatoric stress and & material hardening coefficient:
k=wr= [ o,dep. (1.5)
For the plastic flow Prandtl-Reuss equation may be used in its incremental form:
def; = S;,dA. (L.6)
In order to corelate the unidimensional state, a comparative stress shall be used:
= V3[25,S,;, (1.7
and also a corresponding comparative plastic strain increment:
def = Y/2[3def,de}). | (1.8)
Using the associated yield criterion, the proportionality factor is:
di = 3/2de!o,. ' (1.9

Additionally, there are also incremental equilibrium conditions, valid both in the elastic
and in the plastic regime:

Fuatbh =0, G&,=0b, b=0d,n. (1.10)
For the elastic strain increment:
& = &,;— &, —¢&b, (1.11)
the Hookean constitutive law is applicable:
b1y = 2G(&;;— &};— &) +2Gv 0, (b~ Eha— ER) (1 = 2), (1.122)
where &f; represents imitial strain. Analogously by defining:
ol = 2G&l +2Gv 6,0 /(1 —2),
the above formulation reads for the initial stress:
615 = 2G (& — &) + 268, (s~ i) [(1 — 20) — 6. (1.12b)

Incorporating kinematic relations (1.1) into (1.12a) and (1.12b), and then to the equilibrium
equations (1.10a), the generalised Navier-Lamé equation is obtained:

U+ i, 13/ (1= 29) = b/G, (1.13)

where generalised body forces Z;J include thermal loading.

The direct solution of this equation leads to the finite differences or to the finite element
technique, while by converting this equatlon into an integral form, the boundary element
method may be derived.
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3. Integral formulation

Starting from the weighted residual formulation of the equilibrium equation:
J Gy 4Bz av =o,

where the weighting displacement function % depends on the Kelvin fundamental solution
for an infinite domain. Equation (2.1) may be converted into a generalised Somigliana
equation: '

i1(8) = [ @hibi—phi)dA+ [ @ibe+ub @) dv + [ ofuiav, 2.2)

with initial deformations &f;, while #; and pj; are displacements or tractions at point 7
due to the unit body force in 7 direction at source point £ in Kelvin’s space, o}, being
stress kernel. The volume integral, which includes contributions of body forces and thermal
' loads, may be transformed into a contour integral form. Alternatively particular solutions
(#,p) [4] can also be applied, transforming equation (2.2) into:

&)~ &) = [ ko~ ~PhGu—i))dA+ [ ofihdr. 23)

Bringing the source point & to the contour, the basic integral equation is obtained for
nodes on the boundary:

Culin—it) = [ (ulpe=D)—Phlu—i))dA+ [ afuindv. 2.4

For the iterative process, stress values have to be determined. At the interior, these can be
evaluated from the Somigliana equation (2.3), performing the derivation and bearing in
mind the Hookean relationship (1.12a) of the elastic part of total displacements:

ou=Giy = [ (Uf(pu—B)— Plu—))dA— 6, aEO [ (1—25) +
+ [ ZhimendV — Dy ef(®), @5

where all tensors with an asterisk (*) are derived from the Kelvin fundamental solution,
while vectors with a dash (~) are particular solutions for body forces and temperature
field with constant gradients.

For boundary nodes (2D) two stress tensor components appear to be known, and the third
component may be determined by means of numerical derivatives.

4. Discretization and algebraization

In the case of elasto-plastic computation by the boundary element technique, nodaliza-
tion is required not only on the contour, but also in one part of the interior where plastic
zone is due to appear. Internal cells are to be used for the volume integration of plastic
strain contributions, but they do not increase the number of algebraic equations. With N
boundary nodes and 2N unknowns, only a system of 2N equations is obtained:

Hu = Gp+b+Se”. - @.1)
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Taking into account the prescribed boundary values, the system -is written as:
Ax = f+S¢?, (4.2)
and its solution is:

x = m+K, e _ 4.3)
Stresses have to be evaluated at N boundary nodes and M internal points (i.e. 3*(M+N)
equations):
o = Gp+ Hu+b+(@S+Der. (44)
Taking into account the known boundary values, it gives:
o = dx+f+(S+D)e", @.5)

for x the solution of (4.3) has to be considered, rendering:

o= Am+f+(AK,+8+D)e? = n+ K, . 4.6)

5. Solution procedure .

In the preceeding formulation increments of plastic deformation have been taken as
formally known. In the reality these values have yet to be determined by an incremental
procedure:

A) At the first step a complete elastic computation is performed, using the full load (pres-
cribed tractions, displacements, body forces and thermal loading):

x*=m, ¢ =n. (CN))
Consecutively, the load is to be adjusted to meet the yield criterion at the mostly loaded
node:
Ly = oo/max(s,) = xo = Lom, o = Lon. (5.2)
B) Next, an incremental part of the load is used. After the /-th step the load factor is
determined selecting an increment :
L= Li_+Liw, ‘ (5.3)
and the unknown boundary values are:
X =Limt+K ,e"n a=Ln+K,e". 54
For the evaluation of plastic deformations, plastic strains are separated into accumulated
strains (from the previous increments) and actual strain increments:
() = T(-D+AeD. (5.5
C) The plastic strain increment is determined iteratively [1]. The procedure starts from
the old value at each of M+ N points, producing stress values:
o(l) = Lin+ Ko(2(I- 1) +A£°(D) (56)
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Next, modified strains may be determined:

&y = gy~ = ef;+ el + Ay, .7
and also deviatoric strains:
el = €ij— 01 Epm/3. (5.8)
Using the Hookean law of elasticity, deviatoric strains are evaluated from stresses:
‘ ey = Sy[2G+def;. o (5.9
Plastic strain increments can now be evaluated using Prandtl-Reuss rule:
Ael; = A28y, (5.10)

For the determination of the yield point of a bilinear. material, the following relation
is to be used:

o,(D) = o,(l—1)+E Al /(1 - E,[E). (5.11)
From the last interval plastic strain increments are obtained:
M(Ae) = (3GY2[3eet— (I~ 1)) /(3G +E/(1 — E,[E)), (5.12)
and now for the new interval the strain components become:
new(Aep) = Aehel Y 2[3e); ¢l (5.13)

By recursion, starting from equation (5.6) and repeating the procedure until the required
convergence criterion:

DM(AS,’,’) ~ "ew(d 65) (5]4)
is met, the last load increment gives: '
x=x+Ki (-1 +48(), o= +K(£U-D+4e"D). (.15)

As an example of the described procedure, a thermally loaded metal wall analysis has been
performed, using temperature dependent material properties oy,(6) and E,(6). The tempera-
ture field has been kept steady, 0°C at the upper and 480°C at the lower side. The yield
point has been 310 MPa (20°C) and 175 MPa (500°C), and the tangent modulus of 36 GPa
(20°C) and 30 GPa (500°C) respectively have beéen considered with linear variation between
spemf ied limits. Reésults of the ana]ySJS are given ln Fig. 1. :
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Fig. 1. Plastic zone development in a thefmally loaded wall
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6. Updated Lagrange routine

In many engineering problems there are small strains but large geometrical changes,
For such cases an “updated” Lagrange procedure has been developed, consisting of the
following steps:

A) Evaluation stops if a maximum displacement reaches a specified value.

B) New geometry is determined using computed displacements.

C) For each computational point, a rotation with respect to the previous position is
determined.

D) Stresses and strains from the preceeding steps are added and rotated for the new geo-
metry.

E) Correction of the yield point.

F) Correction of boundary conditions (supports and contacts).

G) Restart of the elasto-plastic computation (i.e. back to A).

| /F

lactic
pzone

Fig. 2. Plastic zone development in a bending plate sheet

As an example of this kind of structural behaviour, plastic bending problem of a plate
has been evaluated. Results of the computation are shown in Fig. 2 (plane strain case
of a metal plate, tent over a rigid support cylinder).

7. Conclusion

In the above paper, theory of the boundary element method for plasticity problems
has been demonstrated. Results of two typical problems have been presented.
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Pesmome’

KPAEBBLIE 2JIEMEHTBI B 3ADAYAX TEPMO-YIPYI'O-TUIACTUYHOCTH METAJIOB

B pafoTe BrIBeAeHHI YNPABAAIOUIME YPABHEHMS M IPEACTABIEHDI UHCNEHHBIE DEIYIIBTATHI HIA
DBYX THUIMYHBIX, YIPYTO-TUIACTHYECKAX 33[ay KACAIOIINXCA HAYANLHON fAebopManun B hopMyIHpOBKe
METO/@ KPAEBBIX 3JIEMEHTOB. YUTEHO MACCOBBIC CHJIBI M TEOPETAYECKYIO HAlPY3KY.

Ina cnyuas Coublmx NepemenieHeid, B paboTe pasBHTO COBpeMeHHYIO (GOPMYIHPOBRKY METOXA
Jlarpamxa, CHUTIOCTPHPOBAHHYIO HA NpUMepe M3ruba MeTAUIMYECKOH IUIAaCTHHKA Ha YKECTKOH orope.

Streszczenie

ELEMENTY BRZEGOWE W ZAGADNIENIACH TERMO-SPREZYSTO-PLASTYCZNOSCI
METALI

W pracy zostaly wyprowadzone réwnania rzadzace i przedstawione wyniki liczbowe dwu typowych
zagadnien sprezystoplastycznych dotyczacych poczatkowego odksztalcenia w sformulowaniu MEB.
Uwzgledniono sily masowe i obcigZzenia termiczne. W przypadku duzych przemieszczed w pracy rozwinig¢to
uwsp6lczeéniong metodg Lagrange’a, zilustrowana przykladem zagadnienia zginania plyty metalowej
na sztywnej podporze.

Praca wplyngla do Redakcji dnia 30 lipca 1987 roku.



