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1. Introduction

The influence of humidity and temperature variation on the properties of different
materials is commonly known. In the case of wood and plywood this influence is of great
moment for the durability and the behaviour in constructions of wood as well. Numerous
investigators have shown that the mechanical properties of such materials strongly depend
on moisture, also. The influence of temperature on the elastic properties of wood is also
perceptible. '

There are many papers in which mathematical models, involving the variations of
moisture content and temperature are considered (e.g. [l - 3]) basing on experimental
investigations. Recently, BaZant [4] has formulated the constitutive relation for steady
states conditions basing on the Maxwell chain model whose viscosity coefficients depend
on moisture content and temperature. However, in the cases mentioned above one dimens-
ional problems were studied only and an anisotropy of the material was omitted.

The object of this paper is an attempt to formulate the equations describing the beha-
viour of orthotropic, viscoelastic plates, subjected to the influence of temperature and
moisture variation.

The paper consist of two general parts. The first one is concerned with deriving the
fundamental equations for the body considered basing on the principles of mechanics
and thermodynamics. We restrict our considerations to the linear case, only. It indicates
that the displacements, temperature changes and moisture concentration are assumed
to be small. The second part is devoted to formulate the basic differential equations for
thin plate, where the equations that were just derived in the first part will be applied.

2. Basic equations l

The point of departure of our considerations are the balance equations that result
from the fundamental laws of mechanics and thermodynamics of continuous media. The
local balance laws which must be satisfied are:
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1. conservation of mass

¢= =M1t €= 0nl0 2.1)
2. balance of linear momentum and angular momentum
Oy g+ X, =gy, 05 =0y (2.2
3. balance of energy
€= ouey—q,+ (U, +r—pr, \ 2.3)
4. entropy inequality
5> on- (q;) 2.4

where ¢ denotes the concentration of moisture, g,, and ¢ are the densities of moisture
and the material, respectively, o;; is the stress tensor, &; is the deformation tensor, X;
is the body force vector, u, is the displacement vector, ¢g; is the heat flux vector, ; is the
vector of moisture mass flux, ¢ is the potential of moisture transmision, e, s, #,, r,y and T
are respectively the internal energy, the entropy, the internal heat source, internal source
of diffusing matter and the absolute temperature. A superposed dot denotes differentiation
with respect to the time variable ¢ and (),; denotes partial differentiation with respect to
the coordinate x,, referred to a system of rectangular cartesian axes fixed in space.

A different form of the entropy inequality (2.4) will be more convenient in the further
considerations. We will obtain it by eliminating from (2.3) and (2.4) the heat source ,
and introducing the function of free energy:

p =e—sT. 2.5)
We now get:

——(w+sT)+ (0mu+mu. —pé)——=5 Ty, (2.6)

where the equation (2.1) has been used.

As can be seen, the field equations (2.1) - (2.3) and entropy inequality (2.6) do not
constitue a closed system. Therefore, it must be supplemented with suitable constitutive
equations defining the class of considered material [5, 6]. In our case we will assume the
following constitutive equations:

oy =0,({FP, @G=a({F}), n=n(F), v=9(F), @7
where: .
Fr={ey, e T, Ths ¢} 2.9

is a set of independent constitutive variables.

Substituting for v from (2.5) into (2.6), and carrying out the indicated differentiations
of p, we obtain:

Vfow V. 1/[ . dp 1 ,. 1 ap \,
T (a‘j—, +AS) T+‘T(0'“— 38” Eu'f‘ T UE“‘-T ‘u‘i'a—c c

1(31,;.. .. dp . Iy

2.9
. 1 q:
bt g g Bt ) + i T2 0
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Here decomposition of the stress tensor into elastic of; and dissipative part o?; have been
introduced. o

The inequality (2.9) must hold for all independent variation of &, &, T, T,;, ¢ and ¢, ;.
These variables appear linearly in (2.9) and thus their coefficients must vanish. It then
follows that: ' '

oy oy Iy
-E; == == -_——— —_ - 7
Oij de,;’ EP T’ (2.10)
Iy ay dy dp
< ESS , — = 0, —_— 5 —_ = .
ae,j 0 aC 3T,‘ 0 30,‘ 0, (2 11)
and inequality (2.9) reduces to:
1 . 1
701'38:'1'_}"]—177(”.(—”;?"2_7‘,(? 0. (2.12)

From conditions (2.10) and (2.11) it results that:
p=ley, T,¢), of=o0f(e;,T,0, p=pley,T,c), s=s(e, T,c). (2.13)

The inequality (2.12) is a constraint of functions ¢¥, #; and g; but does not lead to
a more general conclusion before the choice of these functions.

Let us now proceed to determining the final form of constitutive relations. We begin
by specifying oF;, s and u. To this end we develop the free energy function v into Taylor
series about the reference state (s;; = 0,7 = Ty, ¢ = ¢,) with accuracy to quadratic
terms. We have:

1 1 1
'l,U(Eu, T, 0) == -2— Cijkl T 8kl+ —2-m92+ 5nC2-—ﬂu£,,—@ (2.14)

—yUEUC+§@C, @= T—T()., C=C"‘Co-
On the basis of (2.10) we obtain:
0'5 = Ciu th_ﬂu@—)’u C,

¢
p=yi&;—§0~nC, ,12?,"_, (2.15)
0
§=Pe;—mO-E(C, m=— v ,
To

where Ciu, Bi;, vij, ... etc. are constants characterizing the mechanical and thermal
properties of the medium,

We pass now to determine 6%}, ¢; and ;. We will determine these functions from the
condition of satisfaction of inequality (2.12), limiting ourselves to linear relations. This
makes it possible to use phenomena of the cross effect and Onsager’s symmetry relations.
Thus, making use of the well known procedure we finally obtain:

o = Gt +yitn— Bin® k.
N = Viwbn+ G o — EixO i (2.16)
qy = Toﬂmékﬁ- T, fuc,u,k—klk@,k,

where Giju, viu, &, --. are material constants.
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Summing the result obtained up to now we can write the final form of the constitutive
equations. Hence, making use of (2.15) and (2.16) we obtain:
0,y = o+ 0§ = Clh &ia+ Eupirs = BuyO@— B0 1 — v, C~ ¥ Coi»
M = Y+ Oikrs Ers— ERO u— 0l C ., (2.17)
@ = ToBumiEir+ToEprs 65,1 — k30, x— Tody. C .,

where the following abbreviations have been introduced

Chiu= Cia+Guid,  Ejges=YiVess B = Bun+Evin> 0, ='—(§;,

¢,
— * * . Cm
s = OixVess i = En+Eoy,  af, = nay, = T ks
[+]
— * __ * —
Eprs = EnVrss kil = ku+Tpéby,  yia=nyum, dy=né,.

Proceeding now to writing the equation of heat conductivity we will use'equation (2.3)
in which we will take into consideration the substitution of (2.5), the derivative with
respect to time of function (2.13);, and relations (2.10) and (2.15);. We get:

T(Byyery—mO—EC) = 0B —qu, i+ M i+ T (2.18)
where g, is defined by relation (2.16);.

Assuming further that {§/T| < 1, i.e. restricting our considerations to small temperature
changes and omitting the non-linear terms ¢f;¢;; and m, u ; as hlgher order smalls, we finally
obtain after taking into account (2.17):

kO ;i + Tom@+dlj C i +dC = Efes €rs, 1+ To Buatua, 1+ To fiséiy—rn» (2.19)
where: |,
El'.tlrs = To&ijrs, difl = Tody; = cnéyy, d= Toé.

The equation of concentration of moisture can be obtained from mass continuity

equation (2.1). After taking into consideration (2.17), we have:

% ; * _ .
a5 Coo— C+ERO i = Ops Ergyia+ Ykt Exty 1~ Fms (2.20)
where:
oF = no ——1 c
ik = Ny, = m &k
T,

Equations (2.2), (2.17), (2.19) and (2.20) represent the full set of equations of cons1dered
medium.

3. Basic plate equations

In this section an attempt will be made to derive the basic differential equations for
thin orthotropic, viscoelastic plate of thickness #, whose median plan lies in the x;x;
plane with x; denoting the distance from this plane. The deflection of the middle surface
1s assumed small in relation to the thickness of the plate. Moreover, it is assumed that all
simplifying assumptions that are usually used in the classical thin plates theory [7, 8]
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are also valid in the present case. In accordance with these assumptions we can write
u3(x1, X2, X3, 1) X w(xy, Xz, 1) where w(x,, x,, t) is the deflection- of the middle surface
of the plate. Moreover, the strain tensor g; can be divided into two parts [7]:

, 1 '
Eop = Egp+ Eap = 5 (Ua,p+1h,e)— X3 W, (2,8=1,2), G.1n

where 12 denotes the displacement due to uniform tension of the middle surface, u), = —
—x3w,, stands for the displacement due to the deflection of the plate.

As it was already mentioned above, we are dealing with the thin plates. In this case
the temperature distribution along the thickness can be assumed to be linear. We shall
introduce this simplification also for the concentration field, i.e.:

@(xl, x2, X3, t) ~ TO(xI’ x2’ t)+X3 T(xl, X2, t)9

C(x1, X2, X3, t) ~ ”O(xly X2, t)+x3x(x1 » X2, t): <32)

where the following notations have been introduced:

ii2
1 Oy+0
To(xl,xz,t) 2—7{ f @(xl,x.z, X3,t)dx3 z—vi)'——l‘-,
—hf2
i hi2
Cy+C
%o (Xy, X3, 1) = 5 f C(xy, X3, X3, dxs = __‘iz_l‘,
—hi2
hi2 @
T(x19x2,t)=':l_§' f x:,@(xl,xl,x3,t)dx3 ~ U;—QL,
—hi2
12 ha C
%(xl,xZ’t)-: F f x3C(x1,x2,x3,t)dx3 ,Q’,_%C'L_
—h/2 ¢

Here 7, and %, are the mean temperature and concentration of moisture which do not
vary in x5 direction, respectively, @; and C; (j = U, L) are temperatures and concentra-
tions on upper (U) and lower (L) sides of the plate. .

Further, let us define forces and moments per unit width of the plate cross-section,
as it is usually done in the plate theory:

hi2 hi2
Naplxi, %z, )= [ pdrs, Myg(xy, %2, )= | X30updxs,
—h{2 —h/2 3 3
a2 (33)
Qua (X1, X2, ). = QaulX1, X2, 1) = f Ouzdxs.
—h2

Making now use of (2.17), (3.1) and (3.3) we obtain:

Nug = h(Clps En +Eopyon Evg B¥ss To,0— Bap To—Vigs%o0,0 - Yap*0) s
Moyp = — 12 (Clovs W, ys+ EupyoaW, yo0 = Biipy T,y — Pap T— Vaps%,0~ Vs %) - '

i
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Returning to the equation of motion (2.2) we express it in a different form:
Gaﬁ,ﬁ"' Ua3.3+Xa = Qoi;ou
03p,p+ 033,53+ X5 = QoW.

(3.5)

If we integrate now these equations along the thickness of the plate, and later on doing
the same with equation (3.5),, after having first multiplied it by x5, and taking into account
the expressions (3.3) we arrive at the following equations

Nap,p+Po = 00hily, ‘ (3.6)
Q3a,a+P3 = 0ohiv, 37
Maﬂ,ﬁ""naa = Q3 =0, : : (38)

where g, is the plate density per unit area of the middle surface and:
Bj2 B2
Do = Ga3i,:/13/2+ f Xodxs, p3= o33 + f.Xsd—xs,

~hy2
—hi2 —hj2
A2

m3$=(0’3ax3){"_’:lz+ fxsXsdxa-
1)

Equation (3.6) concerns the state of displacement in the plane of the plate.
Let us return now to the equations (3.7) and (3.8). Eliminating Q,, from it we arrive
at the equation of motion:

Mg, pe + 4w = 00 W, 3.9
where:
Gw = D3t M3y

If we now introduce M, from (3.4),, into the equation of motion (3.9), we obtain in the
general case of anisotropy the differential dynamic equation of the bent plate in the form:

C:pyd W oapys + Eaﬁyﬁd) W, aBvdw + ﬂo Qo W= lgow T,ay>
12 (3.10)

12
+ﬁ:wr»“rw+7aﬁ”,!=ﬁ+a;w":ﬁrd'*'ﬁ qws Bo =gz
For the orthotropic plate the equation (3.10) simplified and take the following form:
' . 12
ClorsW,on+Po0o¥ = —= qut Bay T,uy + Vap #,0p» @11
where: ' ;
Ctin = AE +4,0), Chay=A(E2+2,9), Clian = A(E +43),

C#a12 = (G2 +7 B)E A:L P2 —p
12Y: 12: 12(1_’”2), 172,
B E B3 E
ﬂll = 12 (1_;2 a1+012a2)’ /322=_17(G12a1+ﬁd2).

In these formulas E,(o = 1,2) is the Young’s modulus in the x, direction, #, is the Poisson’s
ratio, Gy, is the shear modulus in the x, x, plane, «g is the thermal expansion coefficient
in the xg direction, A, and #,, are the viscosity coefficients.
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Equation (3.11) must be suplemented by the equations describing heat conduction =
and concentration of the diffusing matter ». In order to derive these equations we turn
to equations (2.19) and (2.20) and integrate over the plate thickness, before this multiplying
them by Xxs.

If, in addition, the boundary conditions of the form:

260 a0
z.o—a;:‘— x3=_h~—'170(x1,x2’t)> Zo_ax_a x3=~£=.pl.(xl7x23t)= "
2
(3.12)
aC aC
DOa—%xFL:fv(xl,xz,t), Do—azx_ h=f1_(x1,x2,t):
=3

are assumed, where 4, and D, are the coefficients of heat conduction and diffusion, respec-
tively, then equations (2.19) and (2.20), in the absence of heat and diffusion sources, for
the considered orthotropic plate reduce to:

. . a
kip T ap—CoT—ay THdgpn ap+di—an = 2/11 (PL—pu)+
]

(3.13)
a .
+ o (fo—f0) = E25ys W, apys— To BupW, s>
2D,

N . " a a
a;yx,ﬂy—%_as x+£aﬂ T,aﬁ—ad» T= 2—)‘; (PL“PU)+ ”2%0_ (fL—fU)— aﬁvda)w.ﬁytswa (314)
where:

ay = k33f0, az={1§‘3ﬂo’ ay = o330, a4 = &33f0.-

The system of equations (3.11), (3.13) and (3.14) formed a mutually coupled system
of differential equations for the case, when the boundary conditions are given by (3.12).
The solution of the set of equations mentioned above must satisfy boundary and initial
conditions appropriate to the given problem.
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Peswme

BIVISIHUE U3MEHEHUA BIIAKHOCTHM W TEMIEPATYPHL HA IIOBEINEHWUE
OPTOTPOITHBIX BA3KOVIIPYIHX ITJIACTHHOK

B paGoTe BLIBEAEHO OCHOBHBIE YPABHEHHMST NI OPTOTPONHBIX BA3KOYNPYFHX, TOHKHX TLIACTHHOK
MOABEPIKEHEIX HEHCTBHIO BIOKHOCTH M TEMIEPATYPH! MEPEMEHHBIX BO BpemeHH. Ipemnonoixeno, urg
PacOpENe/eHNe TAK BIAXKOCTH KAK H TEMIEPATYDhI JiuHeHHOe o TOMIUHHE INAacTHHKH. IIpmwsro, uro
YIPOTIEHMS KJIACCHUECKOM TeopHH TOHKHX IUTACTHHOK 3MECh TAIOKE CpPaBeINBLI.

opMYIHPOBKA NEPEYHCIIEHBIX YPABHEHMI OCHOBANA HA YPABHEHUAX JBIOKEHUS, KOHCTHUTYTYB-
HEIX, 4 TAIOKE YPABHEHUSIX TEIUIONPOBOJHOCTH M KOHIEHTPALMK BIIAKHOCTH A AHH3OTPOIHOM BAa-
KOYIpYrod cpearl. YpaBHEHHSA IOCTPOEHHl B NIEPBOH uacTH paboThI, XPA HCIONB30BAHMK OCHOBHBIX
NPAHUMIOB MEXaHMIKH K TEPMOOHHAMHKHE CIUIOWIHLIX Cpel K OFPAHMUEHUH JO JIMHEHHBIX COOTHOILECHHUH,

Streszczenie

- WPLYW ZMIAN WILGOTNOSCI I TEMPERATURY NA ZACHOWANIE
SIE ORTOTROPOWYCH PLYT LEPKOSPREZYSTYCH

Zasadniczym celem pracy bylo wyprowadzenie podstawowych rownan dla ortotropowych, lepko-
sprgzystych plyt cicnkich poddanych réwnoczesnemu dzialaniu wilgotnoéci 1 temperatury zmiennymi
w czasie. Zalozono, Ze rozklad zar6wno temperatury jak i wilgotnosci na grubosci ptyty jest liniowy. Przyjeto
. réwniez, iz obowiazuja zalozenia upraszczajace stosowane w klasycznej teorii plyt cienkich,

Podstawg do sformulowania wyzej wymienionych réwnan stanowily rownania ruchu, zwiazki konsty-
tutywne oraz réwnania przewodnictwa ciepla i koncentracji wilgotnosci dla anizotropowego ofrodka
lepkosprezystego. Rownania te, co stanowi przedmiot pierwszej czebci pracy, zbudowano wykorzystujac
podstawowe prawa mechaniki i termodynamiki ofrodkow ciaglych, ograniczajac sig do relacji liniowych.

Praca wplynela do Redakcji dnia 24 wrzesnia 1987 -roku.



