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1. Introduction)

Considering the problems of thermo-diffusion in solid bodies we are interested, as
a rule, in finding the distribution of stresses. The effect of uneven heating and that of mass
diffusion may result in stress concentration. Likewise there are the cases for which the
stresses generated by thermal and (or) diffusive effects can be singular.

In this paper we shall not dwell on the dynamical cases. We shall point out the two-
dimensional distributions of thermo-diffusive effects resulting in solid body deformation
only. It is shown that in the case of simply connected bodies there are no stresses while for
multiconnected bodies the problem can be reduced to that of Volterra’s dislocations,
determining the character of the stresses. Next we show the features of stresses for the
three dimensional layered bodies. Finally we discuss the character of stresses in solids
with cracks, taking as an example a disc shaped crack opened by a flux of heat and that
of mass diffusion. The stress intensity factor depends on the distribution of known tem-
perature and the distribution of diffusion concentration on the crack surfaces.

2. Basic equations

As our point of departure we take the equations of thermo-diffusion, i.e. the generalized
Navier equations, the equation of heat conduction (Fourier’s law) and Fick’s equation. We
have the following system of partial differential equations: .

(1—2v)V2u+-graddiva = 2(1+v) (eegrad@+ o, grade), .1

V2@ =0, V2¢=0, 2.2)

where ¥ = (u, v, w) is the displacement vector, » — Poisson’s ratio, u, A Lamé’s cons-
tants, yo = (34+2u) ae, y. = (34+2u)a,, @(x, y, z) change of temperature with respect
to the natural state, ¢(x, y, z) — concentration of diffusing mass, &g, & coefficients of the
linear thermal and diffusive expansion, respectively. In the considered case the constitutive

equations (generalized Duhamel-Neumann relations), in absolute notation, take the fol-
lowing form: ’

o = 28+ (Adivue—yg@—y.0)1, N )
where ‘o, 8, 1 — denote the stress, strain, and unit tensors, respectively. '
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3. Two-dimensional state of strain

For two-dimensional state of strain Eqgs. (2.3) reduce in a cartesian coordinate system
to the form:

Oup == 2pt€up+ (Atty, y— V6O =YY 8ap, o, B,y = 1,2, (3.1)
and:
033 == Ay, +uz, 2)—YeO —vcc, (32

since €34 = 0. Here v, = u, u, = v, 13 = w.
Let us assume the representation:

Uy = U+ (1+9) (coud + o ily). (3.3)
We can impose on uf and #, (x = 1,2) the additional conditions, namely:
ul iy =u3,=0(x,y), uf,=—uf,,
and 3.4
g,y =iy, =c(x,y), Uy,z= —ily,.

Then substituting (3.3) into Egs. (3.1) we obtain:
Gaﬁ == y(u;'5+u;;,a)+l(3aﬁ u,',,.,: (35)

In a similar way, substituting into Navier’s equations (3.1), we obtain the system of homo-
geneous equations:

ptee, g+ (A ) up, po = 0. (3.6)

It is evident from (3.5) that for vanishing tractions u; = 0. Thus we obtain for simply
connected bodies:

= (1+» * 1,
Uy ~( + )(aiua"'acua)’ G
Oy =0,0,==1,2, and
033 = —=2u(1+%) (0gO@+acc). (3.8)

Conclusions:

1. -For two-dimensional state of strain and uneven heating and (or) diffusing mass
concentration penetrating through the boundary there are no stresses except o, in a
simply connected body bounded by any (non-intersecting) contour. The displacements
can be found from Eqgs. (3.7) while #¥ and #, from conditions (3.4),

2. This is a generalization of the result given by Muskhelishvili [1] in the case of heat
conduction.

3. The same is true for an infinite body with a fiux of heat and (or) diffusing mass
penetrating through the boundary of a single hole of any shape.

4. The result holds for simply connected two-dimensional solids and plane strain only.
In the case of multiconnected regions the problem can be reduced to Volterra’s distorsions.
Then in the expressions for u¥-+iu¥ and i, +iii, logarithmic terms appear (compare [1],
§46).

5. In the classical theory of elasticity it is shown that the two-dimensional stress cases
differ by magnitude of constants occurring in the equations. In the case of thermo-diffusive
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effects it is difficult to expect that for two-dimensional stress the heat conduction and
diffusion of mass could be in plane only. Thus it does not make much sense to consider
the two-dimensional stress to be analogous to the two-dimensional strain.

4. Stresses in solids bounded by a plane

We assume that the bounding plane is free from tractions and that over certain domains
£, and Q, there act the fluxes of heat and of mass diffusion, respectively. The system
of partial differential equations of thermodiffusion in elastic solids can be reduced by
applying the exponential Fourier transform:

fE ) =Ff(x,9); x> £y - 1,
[, y) = FfE, n); £ - x,m - )],

to the following system of the linear ordinary differential equations in the transformed
space:

@D

[(1—22) (D2 —9?)—2(1 =) E2Ju—Enp —iEDW = —2(1 +9)iE(ag®+ 2.0),

— &g+ [(1=2) (D> = ) —=2(1 =) pRlo —inDw = —2(1 +2)in(ag® + ,©),
—iEDu~inD + [2(1 —v)D? — (1 —2v) (£2+72)]W = 2(1 +%) (¢ DO+ o, Dc),
(D2_§2_n2)@'= 0, (D2—~EZ—7]2)5=0,

@.2)

d
where D = E.

The solution to this system of differential equations, with the regularity conditions at
infinity taken into account, takes the following form:

u=(4,+z ]/WBJexp(—-zVWZ),

o= (Ao + 2V E+ 12 By)exp(—zV E+02),

w = (A3+zV/E* +n2B;)exp( ~z VE+1), 4.3)
O = Aexp(—zy/ E+n?),

¢ =-Acexp(—z]/§+—n2)‘

with the relationships:
' EB,+nB, =iV E+0’By, EBy=nB,,
VE+72(1-9)Bs— d3] = (1 +9)(¢te Ao+ e Ao,
EA 4+ A, +i Y E + 92 [(3— W) By~ A;3] = 2i(1 +»)(aedo+ 2. Ac).
In the case when the shear stress components disappear on the plane z = 0 we obtain:
| nds = Edzy  AVETP (B3~ As) = Az +Edy. “4)

If we also assume that the normal component of the stress tensor vanishes on z = 0,
we obtain the condition: '

VE+n24s+ (1+v)(tede + 2. As) = 0. 4.5

&6*
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This condition results from the formula for the transform of the normal stress tensor
component:

Oy = 12# [ ——v)Dw—w(Eu+m)) { +v)(a@@+ «.0)] =

= T VE A+ (1 49) (o do+ 2 AJ)(1+VEF772). 4.6)

-exp(—z Y/ E+7?).
It is evident from Eq. (4.6) that normal stresses are identically zero in the whole space
Though o, stress tensor component vanishes in the entire solid, the stress components

oxx and oy, exist. The corresponding results for the thermal stresses were obtained by
Sternberg and McDowell [3] and W. Nowacki [4].

5. Stresses generated by thermodiffusion in solid with a crack

In the case of axial symmetry the system of partial differential equations (3.1) can be
reduced by means of the Hankel transforms of the zero and the first order to a system
of ordinary differential equations [7]. The solution can be written down in the form of the
following Hankel's integrals:

wf {2(1+ T b+ o] - w(n)}eXP( o)y (ne) dy,

W= f {w(n)+ %[w(n) + <p(n)]} exp(—Ln)Jo(no) dn,
0

G.1)
= —,;(—H—,,)a— f @1 () exp(—Ln) Jo(no) dn,
~ e f T2 () exp(~ L) JoCre) e,
r=ea, z={CLa, @=¢ +,
and the z component of the stress tensor:
Ozz = — v)a f [ + @] (L + nDexp(— L Jo(ne)dn.- (5.2)

The above solution is valid for the boundary conditions o,.(r,0) = 0, r e [0,00),z=0.
" Function (%) can be determined from the remaining mechanical boundary condition
on z = 0 while ¢,(n) and ¢,(n) from the thermal and diffusion boundary conditions,
respectively. The solution to the problem is obtained from the corresponding dual integral
equations when on the crack surface temperature and diffusion of mass are prescribed.
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1
In the case when the crack surface is traction free the stresses around the crack are genera-
ted by the distribution of uneven heating and (or) mass diffusion through the crack sur-
faces. Here an important remark should be made. For the traction free surfaces the crack
is openend only provided the sum a.co+ @, is negative. If it is positive we deal with
a source of heat and that of mass diffusion in an infinite solid and there is neither crack
opening nor non zero stress intensity factor.
Let us take an example. Over the crack surface 2 = {z = 0,re [0, a)} there act
a flux of heat @ = —Q, and a flux of mass diffusion M = — M. Then we obtain the
solution:

u= 2—(11% @ (o ¢o + o) f {[né —(1 -] [n" RAOES % n“cosn] -
0
— A +nl)yn=2J, (77)}11 (em)exp(—nl)dn,
1 2 -2 ;1 5.3)
==7(1+v)a (“c»co'*'ae‘&o)f [2n=2J,(n)—7n~*cosn— (53)
0
~ sy oS a(enexp(~ o),
02 = =B alucco +aaBOfle, D,

flo, D) = [ (1+nt)cosnTopmexp(—nt)dny =
0

= R~ 1cos~®+R‘3C[Ccos @+ sin 3@]

2
where:
20
4 __ (n2 2 __1)2 2 — ]
R* = (p?+(*—=1)*+4(%, tan® P
We have the special cases, namely:
243 H 2 —1/2 5.4
f(0;5)='(1"_;z.7)-2‘, e, 0) = Hig—1)(e*—-1)~ 1"~ (5.4)
The stress intensity factor assumes the value:
K=515 = 5 [2:0u+ 2o Mola®. (55)

In a similar way we can find the stress 1nten51ty factors in all the cases for which thc c1ass1cal
“mechanical” solution is known.
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Peawme:

O CBOVICTBAX TEPMO-ITHUD®GYIMOHHBIX HAIPSDKEHUN

B paGore paccMOTpPEHb! HEKOTOPLIE 32JaUM TEOPHMM HaNpsHKEHMH BOSHMKAIOIMME KAK PEe3ybTar
IeicTBHA moToKa Teria u muddysnmn maccor. Obobyena ussecrna sagava H, Y. Mycxenmswm, nai-
AeHbI PACHPENENEHUST HanpAMEHUH oT noToxoB Ternna U Auddysma 2 HEKOTOPOH YACTH NMIOCKOCTH
OrPaHHUWBAIOLICH TENO, & TAKIKE HAUACH Ko3(DpPHIIMEHT AHTEHCHBHOCTH HANPSDKEHME B CIIyYae JHCKo-
o0pasHoil TpelHEI.

Streszczenie
O WEASNOSCIACH NAPREZEN OD' TERMODYFUZJI
W pracy przedstawiono kilka zadaf teorii naprezed wywolanych strumieniem ciepla i dyfuzji masy.
Uogoblniono znane zagadnienie N. 1. Muscheliszwilego, znaleziono naprezenia, gdy strumien ciepla i dyfuzji

masy dziala na czgci plaszczyzny ograniczajacej cieplo. Wyprowadzono réwniez wzor na wspolczynnik
intensywnodci naprezen w przypadku szczeliny osiowo symetryczaej.

Praca wplynela do Redokcji dnia 3 lutego 1988 roku.



