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Introduction

The aim of the paper is to propose a certain method of homogenization of constrained
torsion problems for straight linear-elastic rods with periodic variable compact cross-
sections. The method is based on the concepts of nonstandard analysis [4], taking into
account a nonstandard homogenization approach outlined in [5, 6] as well as the notion
of internal constraints, [1, 2]. The derived homogenized model of the rods under consi-
deration can be a basis-for an analysis of many special engineering problems.

1. Basic assumptions and internal constraints

We consider a straight linear-elastic rod with a variable compact bisymmetric cross-
section. In the undeformed configuration the rod occupies a regular region £ in the 3-space
parametrized by the orthogonal Carthesian coordinates X;, X,, X;. We assume that X,
coincides with the rod axis and X, X, are paralell to the principal central inertia axes
of an arbitrary cross-section F(Xa), X, € [0, 1], cf. Fig. 1. We also assume that F(X;) =
= F(X5+¢), X5 € [0, 1—¢], i.e., that the rod has e-periodic structure, with & < 1.
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We shall confine ourselves to the rod deformations g, = y(X, #), X = (X, X,, X3) €
€2, t [0, t], t being the time coordinate, admissible by the internal constraints of the
form® 4" xm.5 = Oap, [2]. It means that projections of cross-sections of the deformed rod
on the plane OX, X, behave as rigid. Introducing the displacement vector field #(X, t) =
=y(X,t)—X, Xe, t€[0,], after the linearization of constraints with respect to

u(X, t), we arrive at the following explicit form of the internal constraints:
u, = —0(X,, X, +yp(Xs, 1),
u, = O(X3, )X, +9(Xs, 1), 1.1
uy = uz(Xy, X3, X3, t),
where @(+), p(*), @(-) are arbitrary differentiable functions.
Moreover, we introduce the extra constraints in the explicit form:
us (X1, Xz, X3, 1) = @(Xy, X3)E(Xs5, ) +n(Xs, 1), (1.2)

where &(-) is a certain a priori postulated function, depending on the shape of rod cross-
sections, and {(-), n(-) are arbitrary differentiable functions.
Functions @(-), w(), ¢(*), £(-), n(-), called the generalized coordinates [1], are assumed
to be independent and defined on [0, 1]x [0, #].

The motion of the constrained body is governed by the equation of motion, [1]:

T_“}+Qb,+0r;=9'x.u XE.Q,tE!:O,tf], (13)

where T = T(X, t) is the Piola-Kirchhoff tensor of stress produced by the material reac-
tion, p = p(X)is the mass density in the reference configuration, b = b(X, t) is the density
of external loads and r = r(X, t) denotes the density of unknown reaction body forces due
to the internal constraints.

At the boundary 02 of the rod the following conditions hold, [1]:

T"n; = p,+s5,, for almost every Xe dQ. te[0, t], . (1.4)

where n = n(X) is a unit autward normal to 02, p = p(X, ¢t) are the known surface trac-
tions and s = s(X, ) stands for unknown surface reaction forces also due to the internal

constraints. -
We postulate that the constraints are ideal, [1], i.e., that the condition:

[or-83d2+ [s-57d(202) =0, (1.5)
Q i
holds for any virtual displacements dy(X, t) admissible by the internal constrains.
Eliminating the reaction forces from Eq. (1.5) by means of the equations of motion
(1.3) and boundary conditions (1.4), substituting into the resulting relations the virtual
displacements related to the internal constraints (1.1), (1.2):
01Xy, X3, X3) = _Xzé(X3)+¢(X3),
02 (X1, X3, X3) = X,0(X;3)+ ¢(X3), (1.6)
6ZS(X1 > X29 XS) = q)(Xl’ XZ)C(XZ)'*-ﬁ(XS)’

® The Latin indices take the values 1, 2, 3; the Greek ones take the values 1, 2. Summation convention
holds for all kinds of indices.
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where §(-), #(-), é( ), & -), 9(-), are arbitrary independent sufficiently regular functions,
we arrive at the following system of variational equations:

[113pd2+ [[~obi+o(~X6+p)pd2~ [ p,§d22) = o,
o ’ 02

2

[ 1292+ [[—ob: +o(X,B+§)id2~ [ p,pd(22) = 0,

02 2 o
[(@2X,-T2X)0 3d2+ [ [(0b, Xo— b2 X))~ o(— X0+ ) X, +
n 0

+e(X,®+$)X0d2— [ (p,X,—p, X,)Bd(29) = 0, (1.7)
0
[1@> @, + 720 )E+ T30F )0+ [ (—oby @+ 0D +
2 0
+eP) 2~ [ p,®Ed(22) = 0,
a0

[19%5 3d2+ [ (~obs+0PE +oii)id2— [ psiid(292) = 0,
0 on

Q

which has to hold for any @(-), #(-), (), £(-), 7(*).
For homogeneous isotropic materials the well known stress-strain relations yield:

TP = p(—X,0 3+9 3 +(D.y),
723 = y(X1@_3+¢3,+C¢,2), (1'8)
T3 = (A+2u)(PL,3+7.3),

where # and 1 are Lamé modulae.

Denoting:
S, =8:(%:) = | XdF,
F(X3)
S, = S;(Xs) = [ X,aF,
F(X3)
I = LX) = [ (X3+X})dF,
F(X3)

L=IX)= [(x,®,-X,0)dF,

F(X>)

1 =1x)= [ &%4F, (1.9)
F(X3)

L=1LX)= [ (@ )+(@®.)]dF,
F(X3)

K, = K;(X;) = fdi_zdF,

F(X3)
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K, = K,(X) = [ ©,4F,
F(X3)

Sp = Sa(X3) = [ @dF,

F(X53)
and

= f V' 8(v, Xs) pud(9F) for X5 € (0, 1),
oF(Xs)

Pe= [ par for X; =0 and X, = 1,
F

mo= [ Ve, Xa) (p2X,~p. X2)d(@F)  for X;€(0,1),  (1.10)
BF(X3)

M, = [(pX,~p. X)dF for X; = 0 and X5 = 1,
F

me= [ Ve, Xs) ps@d(oF) for X, € (0, 1),
F(X3)

M, = [ ps@dr Cfor X;=0and X; =1,
F

where y is the parameter of the curve dF(X;) and g(y, X3) is the discriminant of the
first quadric form of the lateral surface of the rod, and substituting the RHS of Eg.
(1.8) into (1.7) under the extra assumption b;(X,X,, X, ) = const, after simple
calculations we arrive at the system of the five variational equations for the unknown
generalized coordinates O(X;, 1), w(Xa,1), ¢(Xs,1), &(Xs, D), n(Xs,1), X;€][0,1],
te [0, tf]Z

1 1
/‘f(Io@.s+Sz(P,3‘Sl"l’.s‘*‘]sé‘)é.sdxs‘*‘@blfsxédXs‘*‘
V] 0
1 1 1 1
—ob, [ 8,0dX;+¢ [ 1,66dxs—o [ $,56dX;+o [ $,50dx, +
0 0 0 0
l .
— [ m@dx,— M0, n6©)-M,(1, H6(1) = 0,
0
1 1 1
1 (—$:0. 3+ Py + K, 0, 3 dXs — b, [ FpdXs+o [ (—S,0 + Fip)pdXs +
0 ° 0 0 .
1
— [ Bipdx,—P.©, DO —P,(1, (1) = 0,
0
1 1 1
.“f(S2@.3+F99.3+K15)‘;’.3‘1/‘,3“01’2fF‘i"dXs‘*“@f(Sz@‘*‘F"}’i)
0 0 0

1
§dXs— [ BoGdX,—Py(0, G(0)— Po(1, )F(1) = 0, (111
0
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1
[ 18,5+ Koy, s+ Ky 9.5+ KO E+
0
1 1
+(}'+2l‘)(lc,3+so7l.3)4'.3]dX3—9b3fSoCan"'QfICCdXs'F
0 0
1 1 :
t+o [ Seifdxs— [ maldXs—Mo(0, 1)E©)— Ma(1, E(1) = 0,
(1} 0 .
1 1 1
(+2u) [ (Sol.,s+Fn, )i, 3dXs—ebs [ FidXs+e [ Sobidxs +
0 0 0

1 1
+o [ FifidXs— [ B3 idXs— P30, 1)7(0)—~ Pa(1, D)7i(1) = 0,
0 0

which have to hold for arbitrary @(-), §(+), @(), £(*), 7(-).

The variational system (1.11) leads, after fulfilling the by parts integrations and applying
the divergence theorem as well as the du Bois lemma, to the system differential equations
for the generalized coordinates @(-,1), w(-,t), ¢(-,t) C(-, 1), n(-,¢), t<[0,¢]
However, for the rods under consideration (with the periodically variable cross-sections),
the resulting system of differential equations has the variable e-periodic coefficients. For
small values of ¢, as related to the rod length /, the obtaining of solutions to such systems,
even using numerical calculations, is rather complicated. That is why we are going to
approximate this system of differential equations by a certain system of differential equa-
tions with the constant coefficients. The procedure applied below will be based on the
nonstandard homogenization ideas developed in [3, 5, 6] and is referred to as the micro-
local modelling approach. \

2. Microlocal modelling

We shall use the method of microlocal modelling based on the concepts of the non-
standard analysis [4], the general formulation of which was outlined in [5, 6].

In the general case micro-effects can be due to the existence of a certain small length
- parameter ¢ which characterizes the microstructure of the body. In the case under con-
sideration the parameter ¢ describes the periodic oscillations of the rod cross-sections.
We tacitly assume that ¢ is a small parameter, ¢ € 1, and hence we deal with certain
“micro”-effects due to the variability of the cross-section.

The method of microlocal modelling, applied below, is based on two assumptions, [3].
Firstly, we have to introduce socalled homogenization hypothezis, which
states here that the problem Py, described by the system (1.11) for a sufficiently small e,
e € |, can be approximated by the pertinent problem P, in which e is replaced by
e/n, for n = 2, 3,4, .... Hence, using the known theorems of the nonstandard analysis,
[4], the problem P, can be approximated by the problem P, where @ is a certain
infinite natural number. Obviously, the problem Py, can be properly formulated only
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within the nonstandard analysis structure, where the infinite as well as infinitely small
positive numbers are well defined. As it is known, [4], to every known mathematical en-
tity ¥ corresponds in the nonstandard analysis so called standard entity, denoted by *¥.
Now we can formulate the second basic assumption of the microlocal modelling, which is
referred to as the microlocal approximation assumption. To for-
mulate this assumption let @5(X3, 1), po(Xs, t), qoa"(X3, 1), CE(X3, 1), 1;5(X3, t), Xs€
€*[0, 1], t € *[0, ¢/}, be the unknown solution of the (nonstandard) problem P
The microlocal approximation postulates that we look for the approximate solution to
Py in the class of functions given by:

O3(X,, 1) = *@o(Xs, ) +*0,(Xs, )h3(X3),

Pi(Xs, 1) = *po(Xa, )+ *,(Xs, ) h5(X3),

Po(X3, 1) = *@o(Xs, 1) +*@a(X;, Oh5(Xs), 2.1
(X5, 1) = *Lo(Xs, 1) +*Ea(Xs, DX, '

no(Xs, 1) = *1o(Xs, £)+*n.(X, ’)hg(Xs), .

. . a | .
where @ = 1,2, ..., n, (summation convention holds), A:(X3) = s *h*(wX5), h*(+) are

postulated a priori e-periodic regular functions, such that fhj'3(X3)dX3 = 0,and Oy(- , t),
1]

041(" 1), wo(+, 8)y wa(: 5 8)s @0, 8), @al-5 )y S5 8) La(y8), Mo(+,8), na(-, ) are
sufficiently regular unknown functions.

The unknowns wo(X3, t), Po(Xs, 1), no(X3, 1), will be called macro- displacements in
direction of X;,X,,X; — axes, respectively, Oy(X;,t) are called’ macro-rotations,
D(X,, X,)¢0(X5, ) now represents the non rigid out of plane deformations of the cross-
sections. Functions @o( ), 9o(), ®o(*)s {o(*), 10(-) will be called generalized macro-
deformations. Functions @,( ), w.(-), (), £.(*), n4(*) describe the effects due to the
micro-periodic structure of the rod are called the microlocal parameters.

Substituting the RHS of Eqs. (2.1) into conditions (1.11) and assuming that X, — axis
passes through the mass centers of all cross-sections (hence S,(X;) = 0) we obtain the
following variational equations system for @y(-), @,(*), wo(*)s wa(*), ®o(*), ®a(*), Lo (),
Ca( ')’ 770( ')’ na( ')’

1
“ f [o(*@o, 3 +*@u, b+ *@ahg, )+ I(*Co+*Eah)
0
1
(*éo.s+*éb.3h£+*ébhb¢l,3)dX3+0flo(*éo'*‘*@ahg)
o370 3 Zalw.
1
(O +*0,h5)aX;— [ m(*Oo+*6, hy)dX, +
Zoo, 4 bl

— M,(0, £)[*6,(0)+*6,(0, )hEO)]— M,(1, H[*Gp(1)+
+*0,(1)A5(1)] = 0,
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1
u f [F(*o, 3+ *9a, 3 15+ *puhs, 3)+ Ko (*Co+ *LahS)] 2.2
0 —

x -~ h ~ b ~ ~ ;b
(*wo,s+*%.3h5+*%h5,3)dX3—@blfF(*"Po+*'thX,)dX3+
0
1 1
wor o owes pyexs g pl o (k5 4 %0 pY
+efF( Yo+ *Pahn) (*pPo + %hw)an—fpl( Po+*Pphi)dX; +

-P£,(0, t)[*%(o)'*' *FO) RO~ Pi(1, )[*Po(1) +
+ %(l)h M1 =0,

1
# [ IF(*po,3+*@a.3 ho+*Pahy, 3)+ Ki (*Lo+*Lahi)]
0

~ ~ b ~ ~
(*<P0,3+*%,3h53+*%h$.3)dX3—0b2fF(*<Po+*%hg)dX3+
0 -

. - 549 ~ ~ 30
0 [ F(ti0+*5ah5) (*Fo+ Gy hE)dXs +
0

1
- f B2(Pot@oh5)dXs— Po(0. )[*§o(0) +*F(0) (O] +
—Po(1, )[*Fo(D)+*F(1)AE(D)] = 0,
1
[ (@l (*@0, 3+, s his+*Ouh, 3) + L(*Eo +*Lahip))
0

(Eo+ G ko) + A+ 2 UH(*Co, s+ %, 3 h5 +*Lab, 5) +

a a = ~ b ~
+ 850070, 3+ *Na, s ho+*0a b5, o, s +*E, s hS+*Ey S, 3) Y X5+

1 1
—0bs [ So(*Eot*Euhi)dXs+o [ 1T+ *E R Eo+*EhE) dXs +
0 0 -

1
+o f So (5o + *iiahs) (* o+ *Lyhb) dX3 — f ma(Eo+*E,hE) dX; +

- M40, t)[*Co(0)+*Cb(0)h O] - My(1, ) [*Eo(1)+*E,(1)
hy(D] = 0,

1
(A+20) [ 1So(*Co.3+*Ca, 3 k5 +*CahS,3) + F(*11, 3+ %9, hs +
0

a -~ ~ b ~ b -~ wn g b
+*"7ah33.3)(*770.3+*"7b.3h<7;+*"7bhl;.3)dX3—9b3fF(*"]o‘*'"‘?]th:)dXs‘*'
0
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+9fS¢("Co+*C h o) (*7jo + *7js hi, w)dX3+

e o~ ;4 ~ ~ b ° ~ ~ b
+o f F(*5jo+*)ahd) (*fjo + *1p hi) dX; — f D3 (7o +*7,hz)dXs +
0 0

— P4(0, D)[*iio(0)+*,(0)h3O] — P3(1, )[*7io(1) +*7,(1NAL(D] = O,
which has to hold for any sufficiently regular @o(-), (*), Po(*)s ¥6(-), @0(*), @),
50(')’ Z:b(')’ "70('), ﬁb() ’

The underlined terms in (2.2) as infinitely small will be neglected. Taking into account

the independence of functions: Go(+), @s(-), Fo(*), Ps(*), Bo(*)s Fo()s Eo(*)s Lo(*),
7o(*), 7jp( ) we obtain the system of 5(n+1) equations of the form:
1

1
/‘f(F*SUo.a+Fh2,3*#)a+K2*Co)*’7’o.3dX3—Qb1 fF*’;"’odX3+
0 0

1 1
+o [ Ffipo*PodXs— [ By*FodXs— Py (0, 1)*F0(0)+
0 0
—Py(1, O)*po(l) = 0,

1
,uf (th,3*’/’0,3+Fh2,3h2.3*%+K2 3,3*50)*¢bdX3 ~ 0, 2.3
/]
i [ (F*o. 3+ Fhz, 3* g+ Ki*Eo) o, s X —ob, [ F*GodXs+
0 0

1 1
+9fF*"750*¢0dX3_fﬁz*(f’oan—Pz(O, 1)*@(0) +
0 0
=Py(1, 1)*¢o(1) ~ 0,

/‘I(Fhw 3%@o, 3+Fhm 3hm *@.+ Ky g : 3*8o)*@pdX; ~ 0,
1
/‘f(Io*@o.3+Ioh¢%.3*@a+ls*50)*@o,3d/¥3+Qf]o*@o*@odX3+
0 0
1
— [ m¥@,dxs— M0, 1)*Go(0)~ My(1, )*Eo(1) ~ 0,
0
1
a b ~
,uf(]o 3‘3,3*00_3+Ioh“;,3h£'3*@a+lsh“;,3*4’0)*@,,dX3 ~0,
0

[ 10500 s+ kS *Ou+ I¥ o) * o+ (A+240)
0



ON THE MICROLOCAL MODELLING... 427

(I*Co,3 +Ihs’,, 3*Cat So* 0,3+ Sols, 3*1)* o, s dXa+

1 1 1 '
"Qbsfsm*godXs“‘Qfl*é.o*ZodX3+@fS;';io*z-odXs‘l‘
0 0 0
1
— [ ma*Eodxa—Mo0, 1)E0(0) = Mo(1, 1)Eo(1) = 0,
0

1
(+20) [ (TBS 380, 5+ IhS 3B 3 Cat Sohl 310, 3+ Sohs, s h, s*n,)
(1]
E,,dXs ~ 0,

. 1
(A+2/‘)f(Sm*Co.s+S¢hg.3*Ca+F*770,3+Fh2.3*’7a)*ﬁo.3dX3+
0

) 1 1 . 1
_QbsfF*ﬁodXs‘l'@fso*é:o*';iodXs"‘QfF*’;io*ﬁodXs‘l‘
(1] (1] 0
1
— [ Bs*iiodXy— P30, 1)*7j0(0)~ Pa(1, 1)*5io(1) = 0,

0

1
a b a
(A+200) [ (Sohl,s*Co,s+Suhs b, s*Cat FhE 3¥00, 5+ FhS 3 b 3*n,)
(1]
*l;ibdX:i ~ 0,

Define (f) = —i— f f(X5)dX; for any integrable e-periodic function f(-). Now, using the
0

known theorem of the nonstandard 4integral calculus, [5], which states that:

1 1
st [ fX)*e(X)dXs = > [ g(Xp)dxs, @4)
0 0

"we obtain the following equation system:

#6300, 33+ Lo h3)0a,3 +<L3L0,3) = 0l0>Oo—m,,
ohl3O0 5+ {Tohi s3>0+ LR35 = 0,
BEEIPo, 33+ FhE )P, 3 +CK2>Lo,3) = —0b (F)+0{F>yp,—p,,
<Fh?3'>1l’o,3+<Fh‘,'3h,bs>"l’a+<K2h?3>Co =0,
LF) 90,33+ Fh5)@, 3 +<K>80,3) = —0b(F) +0{F)po—p:,
CFRYsY 9o, 5+ (Fhshls) @u+ (K h5YE0 = 0,
= ({160, 3 +<{Lh53>0,+L Ly 8o) + (A+24) (2.5)
(KID&o, 33 +<Ih5>L0, 3+ {SepN0, 33 +{Sah5)> N4, 3) =
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= —0b3(Se) + oI Y+ o< Su)ijo—ma,
(”’.b3>fo,3+<]h:'3h,b3>5a+<5¢h,b3>770.3 +{Sah%hhdn, =0,
(A+2w)((Sep0,33+{Sah3384,3+{F)N0,33 +{Fh53)1,,3) =
= —0bs(F +e(S)lo+0CFDijo—ba,
(Soh?%) Lo, 3+ (Soh%h%) Lot (FR%Y 00,3+ (FRS A% 7, = 0,

far X;€(0,1), t€[0, 4],
and boundary conditions:

p(10>0, 3 +<{Lohi3>0, +{L) $o) = Mins,

L EFpo, 3+ Fh%s>p,+<K2> Lo) = Pyns,

u(F) @o,3+{Fhis) @+ <K §o) = Pans, (2.6)
(A2 (KI> Co, 5+ <IRSY Cat(Sad 0,5 +<So Y1) = Mo,

G2 Sep Lo, 3 +{Soh%) L+ L{F)no,3+{Fh%>n,) = P3ns,

©

for X3 =0, X3 =1, 1[0, ¢].

Eqgs. (2.5) represent the system of 5(n+1) linear partial differential equations with
the constant coefficients. Hence for the quasi-static case the exact analytical solution to
this system (with the corresponding boundary conditions (2.6)) may be explicitly obtained;
if we neglect inertia forces the Eqgs. (2.5) will constitute the linear differential equations
system of the first order for 5n microlocal parameters &,( -, 1), p.(-, 1), @.(, 1), L.(-, 1),
1.(+, t) and of the second order for 5 generalized macro-deformations &y(-, ¢), o
(',t)’ (pO('at)aCO(',t)’no('at)- .

Now assume that a certain solution to the problem given by (2.5), (2.6) has been ob-
tained. Then the following evaluations hold, [5]:

O(X3, 1) ~ O4(X3,1), O 3(Xs5,1) ~ O 3(X3, 1)+0,(X5, )h5(X5),

P(X3, 1) ~ po(X3, 1), ,3(X3, 1) ~ po,3(X3, ) +9.(X5, 1) H5(X5),

P(X3,t) ~ 9o(X3,1), ¢,3(X5,8) ~ @o.3(X;, )+ 0. (X5, )A5(X5), @en
$(X3, 1) ~ Co(X3, 0), C3(X5,0) ~ o,3(Xs, 1)+ 0u(Xs5, DAL(XG),

N(X3, 1) ~ no(Xs, 1), 1.3(X3, 1) ~ 10,3(X3, 1) +1.(X5, 1) h3(X3).

Hence we see that the microlocal parameters 6,(Xs, 1), va(X3, 1), @.(X3,1), {.(X3,10),
7.(X3, t) have the neglectible influence on the displacement field (1.1), (1.2), but they
play an essential role if we calculate the stresses (1.8), (the terms of the form &,A% are not
small as compared with &, 3). On the basis of @(X;, 1), v(X;,1), p(Xs, 1), {(X;, 1),
7(X3,t) we can calculate the reaction forces produced by the internal constraints (1.1),
(1.2) using Egs. (1.3) and Egs. (1.4). Taking into account the criterion of the physical
correctness of constraints, [1], we can also determine the applicability range of the obtained
solution.
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3. Final remarks

In this paper we have shown that applying the microlocal modelling approach (based
on the concepts of nonstandard analysis) to the problems of torsion of rods with periodi-
cally variable cross-section we arrive to the system of differential equations with the cons-
tant coefficients (2.5) and to the pertinent natural boundary conditions (2.6). It has to be
emphasized that the microlocal parameters can be eliminated from the foregoing system
of equations and hence we obtain what will be called the system of effective equations for
the torsional problems of rods with e-periodic variable cross-section. The general results
obtained in this paper will be analysed and illustrated in the forthcoming papers on this
subject.
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Peswome

MHWKPOJIOKAJIBHOE MOJETWMPOBAHHUE TIIPOBMEMBI KPYUEHUA CTEPXHA
C &-ITEPMOTHUYECKOM CEYEHUMEM

Ilens HacrosiLero COOGLICHHS — MPEACTABIEHHE HEKOTOPOTO METOAA TOMOTEHHU3ALUHM NPoOJIeMbl
CTECHEHHOI'0 KPYUEHHA NMPAMOro, JIMHEWHO — YIPYTOro CTEP)KHS, KOTOPOro CEUCHHE MEHSETCHA &-Tlep-
Hoauuecku. Mcnons3ysa Meroapl HECTaHARPTHOTO aHanu3a [4], ymoTpebisieTcss HECTAHAAPTHYIO roMore-
HH3aIMI0 (MHKPOJIOKAJIbHOE MOENHPOBAHHE), NpHMEHEHHe KOTOpoit K Mexanuike BBen U. BossuAx
[5,6], AN pereHuss HEKATOPOH TEXHWUECKOH TEOPHM KPYUEHHA CTepH(HEN, IMOJyUeHHON B paMKax aHa-
JMHTHUYECKON MEXAHMKH TeJl ¢ BHYTpEHHEIMM cBasAmu [1,2]. [Tonyuennast Mmogens ABiAeTcA ©asoi aHa-
JIM3a MHOTMX MH)KHHEPHBIX mpobsiem.

Streszczenie

O MIKROLOKALNYM MODELOWANIU ZAGADNIENIA SKRECANIA PRETA
O OKRESOWO ZMIENNYM PRZEKROJU

Celem pracy jest przedstawienie pewnej metody homogenizacji problemu nieswobodnego skr¢cania
prostego, liniowo sprezystego preta o okresowo zmieniajacym si¢ zwartym przekroju. Korzystajac z metod
analizy niestandardowej [4], stosuje sic homogenizacj¢ niestandardowa (modelowanie mikrolokalne),
ktérej zastosowanie w mechanice zapoczatkowal Cz. Wozniak [5, 6], celem rozwiazania pewnej technicznej
teorii skrecania pretéw, otrzymanej w ramach mechaniki analitycznej kontinuum materialnego [1, 2].
Otrzymany model moze stanowi¢ podstawe analizy wielu zagadnien inzynierskich,

Praca wplynela do Redakcji dnia 19 sierpnia 1988 roku.



