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SHAKEDOWN ANALYSIS IN THE CASE OF IMPOSED DISPLACEMENT
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1. Introduction

The classical shakedown analysis of elastic-plastic structhres exposed
to variable repeated loads and/or to temperature variations neglects the
possiblility of occurrence, also, of some kinematical external actlons
e.g. imposed boundary displacements varying within prescribed limits. Let
us notice that such actions can not be directly ‘transformed into "equi-
valent"” sfatical boundary conditions. Therefore, e.g. Kolter (1960) limi-
ted himself to the case of rigid-body motions of some parts of the body
boundary.

It is the aim of this work to enlighten the problem of shakedown ana-
lysis in the case of imposed, variable repeated displacements. Correspon-
ding extensions of the static as well as of the kinematic fundamental
shakedown limits for this case will be compared with those proper for
"equivalent" static loads.

2. Basic assumptions

We assume that the material of a given structure obeys the elastic,
perfectly plastic model i.e.
=c s ¢f (2.1)
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cE , e® denote the

Here Euu is the rank f;>ur elasticity tensor, cU, i i

total, elastic and plastic strain, respectively; o-U is the stress tensor
and f( ) 1is a convex scalar-valued function of the stress. Thus Iif
f(cru) s k and f(cr:j) s k then

Z o) &P =
(cr” crU) él] z' 0, (2.5)

where c'l’j is assoclated with 7 via (2.3).
Strains c” and displacements u are assumed to be sufficiently small
so that geometrical linearity of the structural response might be hold.

The total stress and strain can be decomposed in the following way

(2.8)

e =E' of+ Py gl
1) 1kl okl 1) 1kl

Py

where cr:: , called "elastic stress", is the stress calculated under the
assumption of perfectly elastic structural response. Due to linearity of
equilibrium equations, the part p” equilibrates vanishing loads.

Now, let us assume that a given structure of volume.:V bounded by sur-
face S, iIs subjected to the following external actions: '

1° Mechanical loads: body forces b . within V and surface
tractions t.l on a surface ST; . -

Imposed displacements l-Jl on surface SK;

The displacements u vanish on the remalning part S of the
surface S. ’ .

The body forces bl, surface tractions t.l and the imposed displacements
ﬁl may vary arbitrary within some prescribed limits. These variations can
be described, in the majority of practical cases, by means of a finite

number of multipliers B,:

bl(ic,t)= L Bk(t)br(x), t (x, t)=F B (t)t(x), & (x.t)=[ B, (£)E(x),
(2.7)
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a s ﬂk(t) < bk, k=1,....r, . (2.8)
where

a, bk being given constants, r number of independent sets of loads.

The elastic stress rr::j is equal to

E EM EX
a-U= 25 + cv'U ? (2.9)

where 0'?; and o-::: are solutions of the following elasticity problenms:

EM & EK  _

O'U.J‘- bl— 0, O'U’j— 0 inv,

EM EX

o-u nj-— t‘ 2 a'U nj- 0 on S'r .

: (2.10)

EM_ EK_

ul-O, u’—O onSu,

> : EX_ -

ulfo, ul-ul onSK,

B EK :

where ul i u are elastic displacements assoclated with the

corresponding problems, n denotes the external unit vector normal to the
surface S.

The residual stress pu_ appearing in the presénce of plastic deforma-
tions obeys the following relations

2 P ~1 =1 R R
Pisian Q. £t Euupu z(“:,1+ “j,l) in.V..
pUnJ =0 on S'r X A (2.11)
uR =0 : on S+ S
1 : (T ek

whereas the totai actual displacement is equal to

EX R
u=u + = u™e R (2.12)
piany 1 | | 1

3. The statical shakedown theorem

Theorem : if there exist a safety factor s > 1 and a statically admis-

sible time-independent residual stress field 5‘j(x)
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p”'j =0 in Vv, p”nJ =0 on ST , (3.1)

and such that for any combination of mechanical loads and imposed displa-
cements possible to happen, the following conditions holds true

r[s(cf;'(x,t)»« a'f:(x,t)ﬂ RCER (3.2)

then a given structure will shake down.

Proof': necessity of existence of the 5” field is self-evident. To
prove that it suffices for shakedown one can follow the classical proof

by constructing the non-negative functional

Lt) = fE B ) e, by AV O, ' (3.3)
v -

!
2 l_]kl
It is easy to show, cf. e.g. Koiter (1960) that L s 0 and that the total
plastic energy dissipated in an arbitrary long process is bounded, cf.
e.g. Ksnig (1987),

t
W= fc¢ dths-—IL(O) - L(t)] =
| oV 1j 1)
s ° o (3.4)
2(s-1) { Ukl(p - plj)(pkl— ) AV .
where p:J(x) = p”(x,o) i.e. at t = 0.
4. The kinematical shakedown theorem
Theorem : if there exist, for a certain time interval (tl. tz):

(1) a history of body forces b (x,t), surface tractions t (x,t) and impo-
sed dlsplacements u (x,t) resulting in an elastic stress history

a- (x t) =0, (x,t.) A (x t),

(11) a history of plastic strain field Eu(x.t) resulting in a kinemati-

cally admissible increment:
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~ -~ ~ 1, ~ ~
Ae”(x) = eu(x.tz) eu(x,tl) = 5( u‘d+ uj’!) in VvV,

-~

u= 0 on Su+ Sl . ’ (2.1)

so that the following inequality holds

~ G e

. t »
2p (o'?;(x.t) + cf';(x.t)) &, (x.t) av dt > 2 DE ) avat,
’V L‘V 1
P! (4.2)

‘then the body may not shake down. The symbol D(EU) denotes the plastic

energy rate associated uniquely with the é”.

Proof: via "reductio ad absurdum" by assuming that a residual stress
field Bu(x). exists satisfying (3.2) for s=1 then obviously

~ e EK - ~ .
[¢rU (cru + o-”+ p”)] e”z o, (4.3)

.
-~

where 3'” is defined by D(EU) = ;UEU'
By integrating (4.3) over the body volume and over the time interval

(t'x' t.z) we arrive at

t . t .
P25 @™, t) + T (x, 1)) € (x,t) 4V dt s P DE ) v at
vy M 1 1 L v 1
15 A : : 1
(a.4)

what contradicts the assumption (4.2).

Remark : the above-presented proofs are formally identical with those
_ proper for the classical case. Therefore, the classical conclusion, cf.
Kbnig (1987), concerniné the separate criteria of incremental collapse
and alternating plasticity are also valid in the case considered.

S. Equivalent load

Let us imagine that a given structure is subjected to variable repe-
ated body forces b‘. surface tractions t.! on S r and surface tractions
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't:q= o'::';nj acting on S‘. Let u, equal zero on Sd. These external actions
are called together "equivalent" load. A question arises whether shake-

down limits In such a case are the same as in the case of imposed displa-
cements. -To answer this question let us notice that in the case of "equi-

valent. load"” the elastic stress is equal to

E EM. EK “EM
o'”- o'”f o o'” , (5.1)

where a'?; and o’?; are defined by (2.®) whereas 3'::: follows from the fol-
lowing elasticity problem

(™+ o™ +b=0 & =0 in Vv,
(crn'-r ;E')n =t o*n =0 onsS,
- (5.2)
(a’“+ crm\‘)n =0 on = t°9 onsS_ ,
1) 1)) 1 ) K
u“+ GE' =0 uEx =0 on S

1 1 1 v’

Let us define a new boundary surface §T= ST+ Sx' In this case the
shakedown problem is recognized as the classical one.
In view of the Melan static shakedown theorem, the shakedown condi-

tions would be read in this case:

there must exist a time-independent residual stress field ‘;U(X) so

that the following relations hold true:

p =0 inV, pn=0 . on S+S ,-
13,1 13 ) . T K
(5.3)

EM EK v “EM . 7 <
f[s (cr”(x,t)+ o'”(x.t)+ cr”(x.t)) + p”(x)) ] =k.

One can easily see that (5.3) differs from that condition formulated in
section 3.

On the other hand, if considering this problem in the kinematical for-
mulation, cf. section 4, we see that in the case of "equivalent" load the
set of possible inadaptation modes (4.1) is greater than in that case of

imposed displacements.
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6. Example

Let us consider a two-span continuous I-beam, Fig. 1a, subjected
1° to variable repeated concentrated load Pl(t) and, to imposed displa-
cement ua(t), Fig.1b, so that

0sP(t)sP , 0su(t)su , (6.1)

where P, and ﬁa are given constants,
2° to variable repeated concentrated loads Pl(t). Pa(t), Fig.1c, indepen-
dent of each other so that

0s P1(t) s P1 ) 0s Pa(t)" s Pa . . (6.2)

Let the magnitude of Pa be re-

e 2 3 : al lated to ﬁa so that, in the case
a P é a of perfectly elastic response of
iz, 2 M2 g /2 - the beam, the bending moments re-
sulting from external actions
Rit oy .
u(t), P.(t) are equal to each
a a A e |
A 103“) = other. It takes place if
Rit) : l {t) c) =
1 2
: §5 i=2_Pp1 /(E)) , (6.3)
a Q A 3 1538 3
where 1 is the span length, J
Fig. 1. inertia moment of the beam cross-

, section and E is Young's modulus.
In Fig.2 there are shown the results of the shakedown analysis for the
case 1° performed in accordance with theorems presented above (sections
3,4) and for the case 2° obtained by means of the classical analysis. The
difference between the shakedown domains results from the smaller number
of inadaptation modes existing in the case of imposed displacements (case
1°) in comparison with the case of "equivalent® load (case 2°).
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Fig.2. Shakedown domains and modes of inadaptation.
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Summary
WYMUSZENIA KINEMATYCZNE W ANALIZIE PRZYSTOSOWANIA
Przedstawiono rozszerzenie twierdzen teoril przystosowania na przy-
padek wystepowania zmiennych w czasie wymuszen kinematycznych na brzegu

ciala. Porownano na przyk} ..ie belki clagle] powyzszy przypadek
" obciazenia z przypadkiem "rownowaznych" obciazen statycznych .



