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1. Introduction

1.1 Geometric and material nonlinearities. Collapse and bifurcation
buckling analysis needed for design and evaluation of nuclear power plant
piping systems, offshore pipelines, flexible piping components such as
elbows, bellows and expansion joints is the most important motiva‘t.lon for
recent works on the nonlinear analysis of thin-walled toroidal shells.
Both, geometric and material nonlinearities interact to precipitate limit
loads and critical states of these structures when subject to various
combinations of external forces. These are: in-plane and/or out-of-plane
bending of elbows, in—pla.he bending of pressurized curved tubes, "bending
of large diameter curved pipelines in the presence of external hydrosta-
tic pressure, thermal and pressure expansion of bellows of various shape,
bending deformation of bellows. In all cases under consideration the
theory of rotationally symmetric toroidal shells with either closed or
open—croéé section is abplicable for either curved pipes and elbows or
toroidal-shape bellows, respectively.

1.2 Critical states and collapse in the presence of changes of geome-
try. 'l'he classification of the possible critical states of elastic-
perfectly blastic toroidal shells, if geometric and/or material nonline-
arities ai_-e accounted for, was discussed by Bielski and Skrzypek (1989}.
' In a general sense, critical states may correspond either to instability
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or to decohesion (failure). Instability may occur if the bifurcation
point (BP) or the limit point (LP) is reached. Bifurcation may correspond
either to the rotatlonaliy symmetric buckling (SB) of a cross-section or
to the longitudinal rotationally nonsymmetric buckling (NB). Meridional
buckling of toroidal sheils under predominant outer hydrostatic pressure
or longitudinal buckling of subsea pipelines under predominant bending
may ‘illustrate both cases considered. The limit point may be understood
as the exhaustlion of the maximal carrying capacity connected with: i) the
flattening of the cross section (MCCf), 1ii) the bdulging of the wall
(MCCb), 1ii) the snap through (MCCs). Beyond the elastic 1imit other cri-
tical states can be defined. These may correspond either to the classical
limit carrying caﬁacity (LCC), or to the formation of the local displace-
ment discontinuity, if the ’stress profile’'reaches one of two parabolic
points at the HMH yield ellipse. In the latter case the corresponding lo-
ading parameters may be recognized as the decohesive carrying capacity
(DCC) in a sense proposed first by Szuwalski and Zyczkowski in 1973. For
a more realistic hardening model the phenomenon of decohesion ylelds to
formation of plastic hinge and collapse mechanism; Winter (1981), Lang
(1984, 1985).

‘2. Toroidal ﬁhﬁll énalysis 2
2.1 Elastic models.

(2).Reissner’s models. The geometrically nonlinear thedby of elastic to-
roidal shells, considered as a particular case of the notatiénally sym-

metric shell problem, Fig.1, was fOrmulated and ‘explored during three de-
cades by Reissner (1949a, 1949b, 1950), Clark and Reissner (1951), Clark
{1958), Relssner (1958, 1963a, 1963b, 1969, 1972, 1974, 1981). Governing
equations, which describe the problem of bending of a torus, retain the
‘rotational symmetry in a broader sense‘ (ordinary differential equa-
tions) even in the case if a displacement field is rotationally nonsym-

metric of a type
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U =U (@, U =U(), U= LkeR(®). (2.1)

Ur. U. U, denote radial, axial and circumferential displacements, whe-
reas &, O, angular, meridional (hoop) and longitudinal coordinates, res-
pectively. Tueda, in 1934, was the first to recognize this fact, also ex-
plored later by Reissner (1949b), Clark and Reissner (1951), Clark
(1958), Reissner (1981). ; FEk

-a)

ROTATIONALLY
SYMMETRIC

ROTATIONALLY
NONSYMMETRIC

Fig.1. Geometry of toroidal shell and convention '
for generalized stresses. .

General finite deflection equations for the axisymmetric deformations
of thin shells of revolution were derived by Reissner (1950, 1963b). A
set of equilibrium, stress-strain, and compatibility equations, was redu-
ced to two simultaneous, second-order coupled differential equations for
‘the unknown meridional angle of slope of normal ¢(®) and the stress. func-
tion ¥ defined in terms of the horizontal stress resultant H by ¥=rH.
These equations are valid for arbitrarily large deformations (finite va-
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lue of the difference B=¢—®). Linearization reduces them to the Reissner
-and Heissner. equations obtained in 1812 -1913. Retaining ﬂz' terms in ex-
pansions of sing and cos¢ the Reissner small-finite deflection equations
for axisymmetric de‘f'orma:tion are obtained. Small deflection eqﬁatlons
(retaining B‘.‘terms). in the case of the ’'rotational symmetry in broader
sense’, were obtained by Clark and Reissner (1951). for the elastically
‘orthotroplc or lisotropic tube under bending. For thin shells (h/b<<1j
these equations may be . reduced to a simpler form, and finally, setting
b/a=0 (tubes with the small toroidal curvature), the fundamental simpli-
fied Clark and Reissnér's equations are obtained. To solve these lineari-
zed equations Clark and Reissner (1951) and Clark (1958) proposed either
the trigonometric series or the asymptotic solutions. In both cases ova-
‘1ization of initially curved tubes under bending is assumed to be sym-
metric about a tube diameter normal to the plane of the principal toroi-
dal curvature. For particular cases. the trigonometric series solution may
be reduced to the Lorenz, Karl, Beskin and Karman results obtained in
1911- 1945 on the bases of a simplified energy approach. An extension of
the theory of finite deflections vto the case of finite strains was done
by Reissner (1972, 1981). It was_'shown that the derived toroidal shell
equations follow from the general nonlinear -shell theory formulated by
Simonds and Danielson (1972) and developed by Reissner {1974). The exten-:
sion of the above results beyond the range of validity of the Love hypo-
thesis was also done by Reissner (1969, 1972), who considered the addi-
tional effect of the transverse shear deform;atioh ¥, as well as the addi-
tional straln component A due to the effect of moments turning about the
normals to the middle surface of the shell.

The more accurate equations formulated within the frame of Relssner-
type finite deflection theory, with (1+c¢'9
brium equations and a variable shell thickness along the meridian allowed
for, were derived by Skrzypek and Blelski (1988-1989) for thin-walled
sandwich toroidal shells with arbitrary merldional section, subject to

) terms retained in equili-

bending and external pressure

yl'= fl[yJ(O). h(®), ], i,J=1,...,6. (2.2)
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The besic set of six quasi-linear first order ordinary differential equa-
tions, for the three Ageometrlc (¢, Ur, Uz) and the three static (HO' N¢,
S) unknown functions of coordinate &, Fig.1, may be reduced to Reissner’'s
equations 1in Cauchy’s form, by setting 1+c¢'e~1 and by neglecting
(I/RB-I/R ¢) etc. terms in secondary relations. The explicit formulae were
derived for circular, elliptical-symmetric and elliptical-nonsymmetric
cross-sections. To solve the basic set of equations for the' case of sym-
metric or asymmetric forms of deformation Bielski (1985-1986), and Skrzy-
.pek and Bielski (1988-1989) discussed the .two types of boundary condi-
tions: the symmetry conditions

B (X )=0 , . ‘ ' (2.3)
8 8 .
or the periodicity conditions
B (X)=0 . : (2.4)

The values of ithe vector functions B' or BA are determined, for a given
x' or xA by the direct numerical integration (DNI) method. In both cases
a numerical method of solving must be appropriate for the two-point boun-
dary value problem of the type 3x3 or 5x5, respectively.

(b). Axelrad’s model. The above discussed models are formulated under the
fundamental assumption of rotational symmetry of deformation, in ‘narrower

or broader sense. To consider problems for which deformations do. not sa-
tisfy assumption of rotational symmetry (e.g. longitudinal bending- type
buckling of curved tubes, bending of elbows with end effects accounted
for. ‘bending of bellows, etc.) a general two-dimensional shell theory
must be applied (partial differential equations). The ’semi-momentless’
nonlinear, flexible shell (FS) theory was developed by Axelrad (1965,
1867, 1976, 1978, 1985), as an extension of the ’'semi-membrane’ theory,
originated in 1832 to 1950 with Vlasov, Goldenveiser and Novozhilov for
cylindrical shells. Axelrad’'s FS theory is based on simplifying assump-
tions: : .
i) the extensional strain in the hoop direction c¢ and bending moment



in longitudinal direction M, are ignored in the strain and equili-
brium analysis;

ii) shear strain y and torsional moments H and H¢ are ignored;

ii1) the Poisson factor terms are neglected in the Hooke relations

c¢=He=O FH H¢=0 € Hx'-’N vN¢§N9. M¢/D=x¢+vxeix¢ (2.5)

With these assumptions taken into acconmt. the nonlinear eqﬁations of the
FS theory may be reduced to the basic set of six partial differential
equations, the equilibrium and the compatibility, for the unknowns
N¢,NO,S¢6,K¢ KG"&O' Fig.1lc. The transverse shear stress S¢ may be obtai-
ned from the additional equilibrium equation whereas M¢ ¢, from the Hooke
law. The Iinearized FS equations can be obtained through an appropriate
elimination of the unknowns from the basic set of equations which finally
leads, if constant thickness is assumed, to the two forth-order lineari-
‘'zed equations. Next, the Fourler series solution is applied (Axelrad
1976, 1978) for the two basic unknowns: the meridional (hoop) curvature
n¢ and the longitudinal (circumferential) force Ne.. In the case if -finlt}e
displacements are allowed for, the perturbation method is used. Expres-
sing all unknowns as a series of snall parameter proportional to applied
loading or displacement, the problem is flnally reduced to the linear so-
lutions for ‘each approximation. y i

A review of the existing computer programs for Stréss. buckling and
stability analysis of elastic shells: of revolution was done by Bushnell
(1984). For love’'s 'first approximation’ .shell theory. differences in the
basic kinematic relations for reference surface deformation as well as in
the expressions for force and moment resultants";were discussed from the

point of view of the computerized formulation (BOSOR).

2.2 Nonelastic models

(a). Rigid-plastic models. A nonlinear theory of large rotationally sym-
metric deformation (in broader sense) for a rigid-plastic sandwich toroi-
dal shell was formulated first by Skrzypek and Hodge {(1975) and then de-
veloped by Skrzypek (1879, 1980a, 1980b), Skrzypek and Zyczkowski (1983).




In the first paper the Levy-Mises theory of plastic flow end the HMH
- yleld condition were applied to obtain the basic set of six nonlinear
“equations for the following unknowns: the two stress functions w’,w”, the
_.shear force S and the dlsplapenents and angle velocities l'Jr.l'Jz,&. Both,

the Hencky-Ilyushin small strain theory and the Nadai-Davig theory for
large logarithmic strains were used by Skrzypek and Zyczkowski (1983). In
both cases the strain paths were compared for the in-plane bending or the
combined bending with internal pressure. Deformation was assumed to re-
tain the rotatlional symmetry and the axial symmetry with respect to the

plane of prmcipal curvat.ure

(b). Elastlc-plastic models. Acéordiﬁg to Bushnell (1981) there are three
basic approaches to elastic-plastic analysis of stralight and curved tubes
and elbows: ' : 4
1) an approxiuxate beam -type models in which the resultant forces and
moments are related to the tube a.xiqs strains and changes of curvatu-

re; . o
.M) a simplified shell models based on a one-dimensional discretizatlon
or ‘trigonometric expansion in the hoop direction (with the end
effect disregarded)
1ii) a brute force method based.on a t.wo-dimensional dlscretization (uwith
the end effects considered). :

Approximate beam type models were used by Spence and Findlay (1973,
1977), Touboul et al.(1988). Calladine (1974a) applied Clark and Rels-
sner’s elastic asymptotic analysis in conjunction with the lower bound
theorem of plasticity and the simplified HMH yleld condition to obtain
the approxlmate value of a-y for which a curved tube collapses for a given
value of bending moment.

Marcal (1967) recognized that axisymmetric shell theories can easily
be adopted for pipe-bend analysis. Hibbitt et al. (1973) developed a fi-
nite element method (FEM) for the nonlinear analysis of pipelines with
elastic-plastic and creep behavior. They introduced the special pipe-~bend
element into the MARC (1971) computer program (library element 17). MARC
E1.17 is basically a one-dimensional, axisymmetric isoparametric shell
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element modified through the addition of ’beam-type’ deformation modes.
This simplified analysis assumes that each elbow element deforms uniform-
ly over its axial length and it does not account for the end effects pro-
vided by the straight pipe portions. Each straight pipe portion‘ of the
piping structure is model'ed by one beam element (library element 14) with
s’(xitable constraint equations for Jjoining pipe-bend sections to straight
pipes (Fig.2a).

i ' - ol
i ; STRAIGHT
| | PIPE_PORTION -
e ' 7S
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L_I |
T T
\

Fig.2. Example of: a) elbow structure subject to In-plane moment (Sobel
and Newman 1986), b) elbow-element (Boyle and Spence 1980).

A more advanced element, called ELBOWGR, was described by Takeda et
al. (1979). A piping system is decomposed here into a number of finite
rings, ‘these idealized with quadrilateral elements a.round" the cross-
section. ELBOWGR are doubly-curved element, based on a shell theory with
transverse shear deformations including, consisting of four nodal points

at the corners of elements and two nodes at the centres of the two end

. sectionz (Fig.2b). A one-dimensional FEM model was used by Bushnell

~ (1981) for the elastic-plastic bending and buckling analysis of elbows.
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The modified BOSORS program was applied to stimulate a bending problem by
‘a problem of nonuniformly heated torus; the isotropic strain-hardening
and the HMH yleld criterion were assumed.

Muc (1985) and Muc and Skrzypek (1988) formulated the general theory
of elastic-plastic deformation of sandwich toroidal shells based on the
nonlinear geometric equations derived by Reissner and on the Prandtl-
Reuss theory of plva.sticity and the HMH yield condition. Deformation was
assumed as rotationally symmetric and, additionally, only the axially
symmetric deformation of a cross-section was allowed for. The baslic set
of equations was reduced to the six quasi-linear equations for the un-
known increments of the state functions: &¢, GUr.. 3u, 6N¢, 38, 6M¢.
Then, the one-dimensional discretization in the hoop direction, with the
symmetry condition assumed, was introduced and the Runge-Kutta IV method
of direct numerical integration (DNI) with the standard iterative techni-
que to solve the nonlinear two-point 3x3 boundary value problem was used
on each step of time. Bielski and Skrzypek (1989) extended this theory to
the case of a torus of arbitrary cross-section with variable thickness
and'asymmetrlc deformations of radial cross-sections conslidered, to end
up with the 5x5 nonlinear two-polnt boundary value problem.

For the ’detailed’ two-dimensional nonlinear analysis of elastic-
plastic curved tubes and elbows the new doubly-curved shell element was
developed for MARC {1979) computer program (library element 4). MARC El1.4
is based on bi-cubic shape function and Koiter-Sanders shell theory. A
two-dimensional FEM elastic-plastic analysis of elbows with the .end ef-
fects taken into account was done by Vrillon et al. (1975). Sobel and
Newman (1986) and Dhalla (1987) used MARC FEM program for both the ’sim-
plified’ one-dimensional (Element 17) or the ’'detailed’ two-dimensional
{(Element 4) analysis of the in-plane bending of elbows. "The Koiter-
Sanders shell theory was applied for the elastic-plastic deformation with
the strain hardening stress-strain curve used.

(c). Creep models. Boyle and Spence (1980) provided an extensive state-
of-art review of creep pipework analysis methods and ‘suggested a follow-

ing classification scheme:



226 J. SKRZYPEX

1) Primary methods based on a one-dimensional beam-type models.

11) Sécondary methods based on a two-dimensional shell-type models, usu-
ally discretized using FEM technique (MARC, ADINA, ELBOW).

111) Tertially methods based on two- or three-dimensional geometrlé model
using local constitutive relations.

The effect of creep in smooth pipe-bends was examined by Spence (1969,
1973), applying the one-dimensional model with the end effect ignored.
The power creep law and strain or complementary energy methods were used
to obtain lower or upper bounds for creep flexibility factors. Hibbitt et
al. (1973) used MARC)E1.17 for the one-dimensional FEM study of a com-
plex, spatial pipeline subject to creep under thermal cyclings.

A two-dimensional model of steady creep deformation of pipe-bends with
the end constraints, based on the thin shell theory proposed by Novozhi-
lov in 1964 and the Norton creep law , was developed by Chan and Boyle
(1984, 1986). Double trigonometric series expansions were used for dis-
placement rates and boundary conditions for the in-plane and the out-of-
plane bending. Direct minimization of the total potential energy rate
function with respect to the unknown coefficients in the strain field was
applied.The two-dimensional FEM analysis, using MARC El14 and the exponen-
tial Blackburn creep law, was applied for the creep analysis of elbows by
Sobel and Newman (1886). The simplified analysis of steady state creep of
pipe bends with the end effect taken into account is due to Thomson

(1980).

3. Curved tubes and pipe elbows

3.1. In-plane bending of curved tubes. Brazier (1927) was the first
who considered geometric softening of curved tubes when subj;ict to clos-
ing in-plane bending. Deformation of the initially circular cross-section
was determined from the minimum strain energy. Other solutions, based on
the principle of minimum potential energy, were obtained by Karl, Beskin
and Huber. Reissner (1849b) and Clark and Reissner (1851) 'applied the
theory of small-finite deflection to pure bending of curved tubes with
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the uniform circular or the elliptical cross-section. A concept of fully
stressed torus in deformed state, optimal from the point of view of the
Brazier effect, was Iintroduced by Skrzypek (1977-1978). The stabilizing
effect of internal pressure against the Brazier flattening of elastic to-
ri and curved tubes under bending was the subject of study of Hamada and
Nakatani (1977) (circular, incomplete toroidal shell; finite difference
method FDM), as well as Boyle and Spence (1977) and Boyle (1981) (curved
tubes with elliptic or circular cross-section; the DNI method applied to
Reissner’s equations for small finite deflections). Influence of the ge-
ometric effects on the plastic bending deformation of toroidal shells was
also analyzed by Afendik (1968), Bilobran (1976), Rozhdestvensky and
Cherny (1978).

3.2 In-plane and out-of-plane bending of pipe elbows. Pipe elbows are
the most flexible members in a plping system and, hence, are forced to
accommodate displacements arising from different movements, mainly, due
to the thermal expansions and the seismic and dead weight loads. Both the
in-plane (closing or opening) and the out-of-plane bending may appear he-
re, however, predominantly elastic deflections are admitted. Bolt and
Greenstreet (1972) determined experimentally the plastic collapse loads
for the carbon steel- or stainless steelelbows subject to bending with or
without internal pressure. The moment at collapse was increased, although
the load at the onset of nonlinear responce was decreased due to internal
pressure. Sobel (1977) applied the one-dimensional MARC pipe—bend'element
to the FEM analysis of 90 deg elbows suﬁJect to the in-plane closing ben-
ding (no account for ’stiffening effect’' provided by the straight pipe
portions). A comparison with the results predicted by the more limited
scope ELBOW computer program and with Clark and Relssner asymptotic for-
mulae was done. A displacement based FEM enhanced to account for inter-
a&tion effects between elbows and rigid flanges, elbows of different cur-
vatures and elbows joining straight pipe porsions was used by Bathe and
Almeida (1982). They explored the computer program ADINA, for both the
in-plane and out-of-plane bending.

Elastic or elastlc-plastic bending (opening or closing) or bending
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combined with pressure (external or internal) of 90 or 180 deg piping el-
bows was analyzed by Bushnell (1881), who applied one-dimensional modi-
fied BOSORS FEM. A compa.blson with Relissner’s results (elasﬂc range) and
with the test results by Bung et al. (1978) showed a very good agx;eement.
The DNI- method was appiled by Skrzypek and Zyczkowski (1978, 1983),
Skrzypek (1978-1982), Skrzypek and Muc (1982, 1988) for the analysis of
the limi; curves of rigid-plastic or elastic-plastic toroidal shells sub-
Ject to in-plane bending and pressure (internal or external). The DNI me-
thod was also applied by Bielski and Skrzypek (1989) to extend these re-
sults to the case of ésymmetrlc deformations of a cross-section. Paths in
stress space followed by the inner and the outer layer points on the pla-
ne of symmetry as the externally pressurized elastic-plastic curved tube
was bent, exhibit a good qualitative agreement with Bushnell’'s (1981) re-
sults.

Dhalla (1987) used the two-dimensional MARC El4 to analyze the overalil
and local deformations of the 90 deg elbow joint to the two straight pipe
portions. The numerical results were compared with those obtalned experi-
mentally from tests performed at the room temperature or at an elevated
temperature (21°C and 513°C). At ‘collapse the analysis overpredicts the
measured deformation by as much as 30%. An extensive experimental study
of the ferritic steel elbows and the austenitlic steel elbows with ela-—
stic-plastic deformations accounted for was done by l-!llsenkopf‘ et al.
(1988). In-plane and out-of-plane bending moments as well as the influen-
ce of internal pressure, temperature and cyclic loadings were studied. A
comparison of one-dimensional and two-dimensional MARC finite elements
(EL.17 and E1.4) for elastic-plastic in-plane bending deformation of el-
bow, without or with end constraints taken into account, was performed by
Sobel and Newman (1986), (Fig.2). :

Furthermore, creep behavior of elbows was analyzed heré; using MARC
El.4 and comparing the numerical results with a test. The analysis signi-
ficantly overestimates the measured deformations. The E1.17 (one-
dimensional) occurred to be totally inadequate. The creep flexibility of
pipe bends with the end constraints (’flanged bends’ or "ta.ngent pipe
bends’) were analyzed by Chan and Boyle (1984, 1986). Both in-plane and
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out-of-plane bending were considered.

3.3 Stability of curved tubes subject to bending or/and pressure. The
instability of toroidal shell (curved tube) can be considered within the
frame of one of the three following symmetry restrictions, Fig.3:

a) rotational symmetry of a torus and axisymmetric deformation of a
cross-section, ; :

b) rotational symmetry of a torus but asymmetric deformation of a cross-
section,

c) rotationally nonsymmetric deformati.on of a torus and axisymmetric or

asymmetric deformation of a. cross-section.

a) I g b
H&NT POSTBUCKLING

'CLOSING®
OF PROFILE

Fig.3. Forms of instability of curved tubes with external pressure ar.)d

bending: a) limit point (LP) Instability, b) rotationally symmetric

buckling (SB), c¢) rotationally nonsymmetric buckling(NB); (Bielskl
1985/6, Axelrad 1976).
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(a).Limit point (LP) Instability of curved tubes subject to in-plane ben-

ding was first considered by Brazier. The simplified nonlinear Reissner’s
thin shell theory (A=0) was used by Emmerling (1982), who examined the
influence of internal pressure on the LP instability of curved tubes with
circular or elliptical cross-sections, subject to bending. A related pro-
blem was considered by Bielski and Skrzypek (1982). Symmetric instability
modes of the plastic toroidal shells and postcritical deformations were
analyzed by Skrzypek (1978-1982), Skrzypek and Zyczkowski (1978), (Bra-
zier effect or bulging of the wall; rigid-plastic model), as well as by
Muc and Skrzypek (1982), Skrzypek and Muc (1988), (pressure-curvature in-
teraction curves; elastic-plastic model). Symmetric deformations of a
plastic shell-arch with an open semicircular profile was analyzed by
Skrzypek and Skoczen (1988). The three types of boundary conditions were
bonsldered, for the shell subject to external pressure and bending, to

obtain surfaces of limit states.

(b).Rotationally symmetric buckling (SB) analysis of a toroidal shell

when subject to external pressure, under the additional assumption of a
membrane precritical state was done by Sobel and Flﬁége (1967), Jordan
(1973), Fedosov (1971). Fedosov noticed that, even in the case of a rota-
tionally nonsymmetric instability mode, the critical pressure is approxi-
mately the same as for a simplified rotationally symmetric analysis. How-
ever, the analysis based on the hypothesis of a membrane precritical sta-
te consliderably overestimates critical loads. To perform the meridional
buckling analysis the nonlinear system of equations, corresponding to
elastic or elastic-plastic models (p.2), may be used. When solving the
nonlinear governing equations, e.g. by means of the Newfon-Raphson algo-
rithm, it can happen that the matrices of derivatives [aBs/axsl or
[aBA/BXA]; are singular for symme;ric or asymmetric deformatlions respec-
tively. Finally, for the point of symmetric buckling the adjacent equili-

brium state is asymmetric:

det(8B /8X 1_ =0 and det[8B_/a8X_1_ =0, (3.1)
AT, s s
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whereas, for the linitlhoint,the adjacent equilibrium state is symmetric

det[bB'/ax-]‘;°=0; » . (3.2)

The method of detection of the singularity of nonlinear operator was
applied by Gaydaychuk et al. (1978a, 1978b), Gulayev et al. (1982), Bu-
lygin (1973, 1973-1874) to the stability analysis under external pressure
of curved tubes with circular or elliptical cross-sections and constant
or variable thickness. Kosheleva and Myachenkov (1971) considered stabi-
lity of toroidal shells subject to concentrated forces. Bielski (1985-
1986) applied the finite deflection and rotation Reissner type theory to
analyze the critical and postcritical deformations of toroidal shells
subject to external pressure.

Using Pontriagin’s formalism Skrzypek and Bielski (1988-1989) solved
the problem of optimal design of elastic toroidal shell subject to buc-
kling under external pressure. The optimal design problem was formulated

to maximize the lower of the critical pressures, p Or p_ .+ within the

bif
constraint of constant volume of material of the sandwich core where wall

thickness h(®) was chosen as a control variable:

max min {p%l;[h(¢)], [h(®)]} ,

p-nx
(3.3)
V[h(0)~]/vo=1, h = h(®) = hmp I ;

Both unimodal and bimodal formulation were performed to obtainnan incre-
ase of critical pressure by more than 30%. Bielski (1990) showed, how-
ever, that optimal shell is more sensitive to geometric 1ﬁpe;fections
(out-of-roundness) then the original shell of constant thickness. A rela-
ted problem of stability and postcritical analysis of toroldal shell-
arches subject to external pressure, considered as rotationally symmetric
toroidal shells with open profile, was analyzed by Skoczen (1990). A dou-
ble-step parametric optimization was performed to obtain the middle sur-
face shape and the thickness distribution, for which the critical pres-

sure is maximized.
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(c).Rotationally nonsymmetric buckling (NB) analysis was performed by
Axelrad (1978). The Fourier series solution with the cosj® and sinj® fun-
ctions was used for the é.nalysls of buckling of short tubes wlth trans-
verse ribs, tubes with t?uilt—in ends, toroidal shells without ribs and

toroidal shell out-of-plane flexure, all subject to external pressure. A

local stability concept was formulated and applied by Axelrad (1976,
1985), Emmerling (1982) and Axelrad and Emmerling (1985-1886) to consider
the buckling of toroldal shell under bending. This approach is based on
the observation that the nonsymmetric bifurcation buckling instability is
determined by the stn.ass state and the shape of the shell inside the zone
of the initial buckle. Functions describing stress state and the shape of
the shell outside the buckling zone may be extended analytically in any
way with a negligible effect on the critical loads. The approximate sta-
bility condition, hence, contains only the stress and strain resultants
at a point of the shell. Using this hypothesis Axelrad (1985) proposed
the asymptotic stability condition in the form

INg| = Ne", N_ = EnZ/{r

2. 11/ .
o . ._[au.-» )1_2). (3.4)

vwhere r P represents the deformed normal section curvature at the ’buc-
kling point’. In all cases under consideration the nonsymmetric buckling
(NB) 1instability occurs before the maximum bending moment could be re-’
ached and, hence, the limit point instability (LP) is‘out of practical
significance. : ; P : i o
Elastic-plastic bucking and collapse considerations of lai*ge diameter
subsea pipelines has recently become the aim of an increasing number of
papers. Plpelline operations involve a combination of the circumferential
buckling due to hydrostatic pressure and the buckling due to the longitu-
dinal bending; Haagsma (1976), Palmer (1981), Jinsi (1982), Johns and
McConnell (1984). The authors presented simple empirical buckling rela-
tionships for pipes which are subject to both hydrostatic pressure and
bending, lnéluding the effect of out-of-roundness (Jinsi, John; and
McConnell). An approximate method of collapse analysis of submarine pipe-
lines, based on simple kinematical models, was proposed by deWinter
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(1881). The models were based on the observations that deformation in tr:
collapsed cross-section of a pipe is localized in four plastic hinges
The critical points for plastic hinge formation have been also examinecz
by Lang (1984, 1985) on the basis of the fully three~dimensional elasti-
.city applied to a toroldal geometry. A transition curve between the two
yleld mechanisms (first ylelding in the 'shell crowns’ or in the ’intra-
dos’) was derived. This curve corresponds to the transition curves also
obtained by Blelski and Skrzypek (1983) who considered the two types of
collapse of elastic-plastic curved tubes: the ’instantaneous decohesion’

in the shell crowns or a 'beam type’ plastification.

4. Axisymmetric bellows

Structurally bellows can be considered as thin shells of revolution
(toroidal bellows), which usually can be described by the two circular
segments of a toroidal shell of the angle ¥ (convex and concave) joined
by a straight segment of an annular plate or a conical shell. The majori-
ty of effort was done to C-bellows (y=80 deg), S-bellows (¥>380 deg).
Q-bellows (one toroidal segment), in the absence of stré.ight segments,
and on U-bellows, in the presence of plate segments, Fig.4. A critical

review of models used for the bellows analysis was done by Wilson (1983).

Rp .C-SHAPED Q-SHAPED

_]___ MAIN_PIPE AXIS

Fig.4. Representative bellows configurations:
C~, S-, U- and Q- shaped.

The models can be classified according to the two basic approaches (Chand
and Garg (1981)):



2 e e R

a) toroidal shell analysis in conjunction with the a;nnula.r plate a.nd cy-,
lindrical shell theory, :

b)) approximate beam type or plate type models..

Clark (1950) was the first to apply the linear elastic. theory of thin
shells of revolutlon with the method of “asymptotic _1nteg_r_ation of dif-
ferential equations to the analysis qf;ﬂ—be-ub\és sﬁbJect to axial load as

. PRI

well as the corrugated pipe subject to axlal! load and internal pressure.
Clark and Relssner’s small deflection thecry of thin-walled toroidal
shells, with only linear B terms retained, was adopted in the sixties and
_early seventies by Ota and Hamada (1963) and Hamada and Takezono (1984,
1965, 1966a, 1966b, 1967a, 1967b) to the analysis of U-bellows. A more
extended model, consisting of toroidal shell, annular plate, and cylin-
drical shell, was employed by Hamada et al. (1970) to calculate stresses
and displacements in U-shaped expansion Jjoints of pressure vessels.'i‘he
accuracy of the method proposed was confirmed by comparing with the ex-
perimental results of Turner and Ford (1957). The problem of limitation
of linearized approach was considered by Hamada et al (1968). A~rigoroixs
numerical analysis, based on the small-finite deflection equations deri~-
ved by Reissner (1950, 1863a) (with g% terms retained) and on the FDM,
was applied in ‘Hamada's paper to the “large deflection analysis of U-
bellows and of the corrugated diaphragms. A numerical method for problems.
of unsymmetric bending deformation of the axisymmetric U-bellows was pro-
posed by Hamada et al. (1871), The dependent variables‘_were' expanded in
the Fourier series In the circumferential direction to reduce a partial
differential equation problem to a one-dimensional problem of the meri-
dional independent variable, next solved by the ise of the FDM. Later,
Hamada et al. (1976) employed the FEM to solve the - thin shell equat.lt.ms».
for the U-bellows. _ Mt o :
Recently, Singh (1988) examined the accuracy and validity of the ap-
plication of the axisymmetric curved thick-shell isoparametric. element
for the linear elastic analysis of U-shape expansion bellows, having an
arbitrary profile, subject to axial load and internal pressure. A compa-
rison of numerical results with those from Turner and Ford experiments
“‘illustrrates accuracy of the px;oposed method. Boyle and Spence (1984) de-
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veloped the large-deflection analysis procedure, baben on Relssner’s fi-
nite-deflection equations, for the rotationally symmetric bellows of ar-
bitrary section under axial loadings and internal pressure, with the to-
roidal arcs and the thickness variations represented by a Fourier series.
The solution of a nonlinear two-point boundary value problem, was based
on the DNI method and a nonlinear shooting technique. The similar method
was employed by Bujar and Skrzypek (1990) for the analysis of effect of
various boundary conditions at a Junction between the S- or fi-bellows
-unit and the main pipe. The pipe has been alternatively taken as a rigid,
rigid and hinged or flexible to obtain elastic interaction curves of bel-
lows when subject to axial load and internal pressure. An optimal design,
‘to assure the maximal axial flexibility of S-shaped bellows, described by
the two circular segments, with y considered aé the optimization varia-
ble, was done by Calladine (1974b). The extended and a more rigorous ana-
lysis was performed by Skoczen (1990), who considered the influence of
pressure and temperature on the axial filexiblility of the ’optimal’ bel-
lows. A numerical approach based on the FDM was established by Hamada and
Tanaka (1973) for the large~deflection problems of elastic-plastic shells
of revolution. A low-cycle fatigue life was estimated for U-bellows sub-
Ject to a deflection controlled cyclic loading by Hamada and Takezono
(1974). _ /

For engineerlng applications simple beam or plate models can be ap-
plied to predict the maximum stress levels and deflections in toroldal
bellows. Theoretical results for the equivalent beam or ring pléte (ha-
ving identical geometric relationships with the bellows) are usually cor-
related with the experimental stress and deflection behavior for half
convolution of bellows. Such an approach was used by Feely and Goryl
(1950), who applied a beam theory for stress and deflection analysis of
disc-type U-shaped, bellows subject to axial loading and pressure. A more
general proposals to apply a concept of equivalent beam or annular-plate
models for S- or U-bellows subject to axial loading were presented by
Chand and Garg (1981). They were based on Clark’s and Hamada’s solutions
for S- and U-bellows, obtained from the rigorous toroidal shell theories.
The proJected distance between the points of the maximum stress at the



236 > J. SkRzYPEX

inner and outer convolution was assumed equal to the width of the annular
plate. Finally, the constant factor was used to modify the plate stress
and deflection results.

A critical review of papers dealing with the computer'alded hellows
models: beam model, streﬁgth of material shell model, plate model, plate
and cylindrical shell model and shell model based on classical shell
theory, an approximate energy method and on finite element analysis, was
done by Wilson (1983). A discussion of solutions based on the energy ap-
proach, was performed by Findlay and Spence (1979). The existing Clark’s,
Dahl’s and other’s results, were used to demonstrate that the application
of the theorem of minimum potential energy leads to lower bounds for
flexiblility factors, whereas, the analysis based on the theorem of mini-

mum complementary energy provides upper bound flexibility factors.
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- Summary !

TOROIDALNE KONSTRUKCJE POWLOKOWE - ROWNANIA PODSTAVOWE

ORAZ KOMPUTEROWA ANALIZA RUR ZAKRZYWIONYCH, KOLAN I ~KOHPENSATOROH

W pracy dokonano przegladu ponad 100 publlleach poSwleconych-niellnio-
we) anallzie cienkosciennych konstrukcji w ksztalcie powlok toroldalnych.
Omowiono podstawowe teorie, modele 1 metody obliczeniowe oraz programy
komputerowe usystematyzowano problemy anallzy_naprezen, uglie¢ oraz stanow.
krytycznych zwiazanych z utrata statecznosci, badz tez z powstawaniem
niedopuszczalnych nieciaglosci kinematycznych.  Omowiono : rozwiazania
inzynierskie dla kolan rurociagow { kompensatorow toro‘ldaln'ych. poddanych
dziataniu rdznych obciazen (zginanie w plaszczyznie lub z ptaszczyzny ko-
lan, zginanie 2z udzialem cisnienia wewnetrznego, ”wyboczenl'e pod
dziataniem cisnienia zewngtrznego i zginanla, osiowe obciazenie kompensa-
torow).



