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1. Introduction

The aim of the paper is to outline an approach which enables one to
describe the macro-properties of certain nonelastic (for example elastic-
plastic) micro-periodic material composites. This problem has been stu-
died, among the others, by Suquet (1985) and Marigo et al. (1987) via the
general (asymptotic) homogenization method. The method outlined in this
paper is based on the concept of the ideal constraints for stresses,
Wozniak (1984) and takes into account. the ideas of the nonstandard (mi-
crolocal) homogenization approach developed in a series of papers by
Wozniak (1987, 1989), Kaczynski and Matysiak (1888), Matysiak and Nagorko
(1988), Naniewicz (1987), Wagrowska (1988) and others. The main feature
of the method is that it is relatively simple compared with the general
(asymptotic) honogenléation method and hence can be succesfully applied
in the engineering practice. On the other hand it is an approximate met-
hod which makes it possible to 'obtaln different, more or less approxima-
te, macro-models of micro-periodic nonelastic material structures. The
approach can be divided into the local (constitutive) and global model-
ling. In the local modelling we deal exclusively with one representative
(heterogeneous) volume element and 'we describe the overall properties
(macro-properties) of this element in term of certain macro-quantities.
The global modelling constitutes an avenue leading from the laws of
motion for the fields in the micro-periodic structure to the laws of mo-
tion for macro-fields introduced via the local modelling. In the present
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paper we restrict ourselves to the local (constitutive) modeliing. All
considerations are carried out within the range of infinitesimal stx"ainsr.

Notations. Indices i, J,k run over 1,2,3 while indices a and A run ovei
1,...,nand 1,...,N, respectlvely; summat ion condition holds. For‘ an ar-
bitrary -integrable function f(.) defined a.e. (almost everywhere) on the

region V in R3 we denote

. 1
<f> = v—o-l—v i f(y)\dy

where dy = dyldyzdys.. For every symmetric tensor with components kl 3 we

B8
define k = (li) = (kll’k22'k33'k12’k23'k31)- as an element of R.
Similarly, the N-tuple of symmetric tensors with components K‘:J K‘;-l is

denoted by K = (KJ.....K") where l(A = (l(A ) = (K':l.éz.Kga.K':z.K;a.Kgli.

2. Foundations
Let V& (-1,/2, 1,/2) x (-1,/2, 1,/2) X (-1,/2, 1,/2) be a representa-
tive volume element (r.v.e) of the micro-periodic bedy, which is referred
to the cartesian “"micro"-coordinate system Oylyzya. It is assumed that V
is occupled by the heterogeneous, nonelastic material, governed by the.:
constitutive relations the general form of which can be wr'it_tgn down as:

§y) € Fly; o(y), o(y)), forameiyeV, . (@1

where e(y) = (e, ,(y)), oly) = (o (y))," oly) = (o J(y)) stand for the
constitutive strain rates, stresses and stress rates, respectively, and
vhere Fly; o, o) for every o, o stands for a certaln closed and convex
(possibly empty) set in the strain rate space R°. It can _be observed
that elast.lc-idea.l plastic materials belong to the class of materlals ob-
tained via a specification of F(y;.).

Let on 8V be given the stress boundary conditions

o'u(y) nJ(y) = TU J(y) for a.e. y € 8V, r | (2.?)
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where n(y) is a unit normal to 9V at y and TiJ are components of 3x3 sym-
metric matrix called macrostresses. The principle of virtual work for
r.v.e. will be postulated in the form:

5 o-u(y)v“.d)(y)dy -85 'l'iJnJ(y)vi(y)da(y). (2.3)

which is assumed to hold for every Vi( ) such that
3 . a
.vi(.y) 61 + elJyJ + EinJ + h&(y)qi » Y € v, (2.4)

a
Me 61, €, " *Ji' EU EF-”' q; are arbitrary constants and ha( )
are given a priorl sufficiently regular displacement shape functions de-
fined such that

<ha > =0, ha(y'.) 20 for a.e.y « 8V.

» 1
It means that the velocity field u( ) defined on V 1is constrained by
means of the formula :

. .

- - ' “
§i(y) = 61 +. einJ + Ei.JyJ + ha(y) q;

” » . . -1 - - 8
for some -61, eu_- .‘Ji' EiJ EJi' q T Hence

. - S T
Uy, p@ =Eyth 9y (2.8)
is the kinematical strain rate field in the r.v.e. For the particulars
the reader is referred to Wozniak (1887).

Now assume that independently of the strain rate constrains (2.5) we
also introduce the stress constrains given by

A
Q'U(y) = q i.jkl(y) ZAkI , _ (2.8)

: | ' A oA
where EAkl = zAlk are arbitrary constants and 7 iJkl( ) =9 kllJ( )
are sufficiently regular stress shape functions defined a.e. on V, sym-
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