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DYNAMICS OF THE HUMAN VOCAL CORDS

JAN AWREICEWICZ

Technical University of Lodi

A systematic, global numerical analysis of the human vocal cords dynamics
described in terms of the 5-th rang nonlinear diflerential equation system is
presented in the paper. The state of equilibrium position of the vocal cords
and the parameter space have been calculated first. By solving the boun-
dary problem, the periodic trajectories creating by the equilibrium positions
obtained from the Hopf bifurcation have been found next. The stability and
possible bifurcations of the mentioned trajectories were followed by the ob-
servation the characteristic multipliers values variations. The influence of
the parameters on periodic or quasiperiodic sound has been illustrated. The
phenomenon of the register of a voice changes has been also discussed.

1. Introduction

This paper is based on a work of Cronjaeger [1], using extenstive references
given over there to help introducing a mathematical model of the human vocal
cords. An important reference, in which the attempt to explain the phenomenon
of voice production in the human larynx based on the myoelastic-aerodynamic
theory has been given, belongs to Van der Berg [2-4] and Flanagan [5-8]. The
human lungs produce a necessary air flow required for voice production. The air
pressure causes a glottis to open. The glottis continues to open as a result of
inertia until the elasticity of the vocal cords forces it to close. When the glottis
closes, the airstream is expelled according to the Bernoulli suction eflect and the

_pressure decreases. However, when the distance between the vocal cords is small
enough, the vocal cords start to close as a result of intertial forces. Thus, the
overpressure arises again and the above mentioned cycle of vibrations repeats.

The description of anatemy and physiology of the human larynx may be found
in many works (c.f. Benninghoff-Goertteler [9], Lullies [10], Luchsinger [11] and
Zollner [12], Rohen, Tautz and Heckemann [13], Wustrow [14,15]). The myoelastic-
aerodynamic theory which explains the production of sound was presented in va-
rious works by Van der Berg. Lullies, Lottermoser and Damste [16-18] showed that
voice in the human larynx is produced analogously to some wind instruments rule
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of action (haut-—boy, clarinet, saxophon«, accordion). Basing on these theoretical
investigation, Cronjaeger formulated the nonlinear mechanical model describing
the dynamics of the vocal cords. A mode} of the vocal cord was presented in his
work as a two—degree—of-freedom nonlinear mechanicai oscillator, consisting of an
elastically supported point mass. The stiffness and damping characteristics of an
anisotropic support of the mass correspond to real properties of the vocal cord.
In order to describe the possibility of contact (impacts) of the vocal cords the
additional elastic element (nonlinear spring) was used in the model. The stiffness
of this element was chosen in such a way that for horizontal displacements of the
mass approaching point 0 (in the given coordinate system) the force in the spring
increases to infinity. Additionaly, it is assumed that the air flow from the lungs
is adiabatical and the Bernoulli effect is neglected. Lungs and air passage were
modelled as a kettle with stiff walls. The real eiastical properties of the lungs and
air passage were additionaly considered in the elastical properties of the air. The
escaping air flow is proportional to the horizontal deflection of the vocal cords and
to the fiow rate of the air—stream in the kettle. Pressure in the kettle creates,
approximately, identical forces both in the vertical and the horizontal directions
of displacement of the vocal cords. Further details, concerning the construction
of the model and the discussion of advantages and faults of it, are described by
Cronjaeger. His mechanical model describing the dynamics of the vocal cords is
governed by the fifth order system of nonlinear ordinary differential equations.

This paper aims at the systematical numerical approach to the study of the
global behaviour of this system. The evolution of the system is traced by chan-
ging one freely chosen parameter. Beginning with the calculations of steady—state
solutions the new periodic solutions which are born after Hopf bifurcation are
discovered. Then, by tracing the evolution of the characteristic multipliers the
changes of stability and the further bifurcation points are calculated. The paper
focuses on the analysis of the equations of motion of the model in the space of
parameters corresponding to those in the human larynx.

2. The mechanical model and the equations of motion

The lungs and the air—passage are modelled as a small kettle with the volume V
{fiz.1). The air flow ¢ is introduced into this kettle. Using this model, Cronjaeger
assumed that the volume of the vibrating lung is constant. The air from the kettle
escapes passing through the vocal cords, which are modelled as two symmetric
independent oscillators. The symmetric vibrations of the two oscillators are caused
by air pressure. The ccordinate system (z,y) describes horizontal znd vertical
displacements of the one of the oscillators. The equilibrium point for each of the
oscillators is (zo,0). and f is a distance between the centre of the mass and the
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Fig. 1. Cross—section of larynx and the adequate mechanical model with marked
dimnensionless parameters (from Cronjaeger [1]).

edge of the vocal cord. The horizontal and vertical forces caused by air pressure
are assumed to be equal. The air viscosity and inertia are neglected. Oun the basis
of the assumptions presented above, Cronjaeger obtained the following system of
equations governing the dynamics of the human vocal cords

mi + cz + {kz + kpl(z — z0)* + "1}z — z0) +
—koyy — k2T — 68) = %Ap,
. . 1 .
mj + ¢y + {ky + kp[(z — z0)* + ¥’ ]}y — koy(z — z0) = sAp,  (21)
. —__’II B —-%L,n,,h(z~f),/;2;p for z > f,

P2V o for z < f,
where:
m - mass of a vocal cord = 0.24 - 10~3 kg,
¢ - damping of the vocal cord < 41074 Ns/m,
k, - stiffness of the vocal cords (when brought together)
< 0.1k frHE,
k; - Thorizontal stiffness of the vocal cord 20 + 2000 N/m,

k, - vertical stiffness of the vocal cord = (0.7 +0.9)k.,

v
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kzy - stiffness of the couplings between two directiont of motion =
(0.3+0.5)k,,

kp ~ the Duffing type stiffness < 0.1c./f2.

¢, - additional damping of the vocal cords (when brought togeiher),

8 ~ exponent = 4,

A - the vocal cord surface = 6 - 103 m?

@ - average subglottis air density = 1.3 kg/m?>.

¢a ~— average atmosphere density = 1.25 kg/m?,

7 ~ average subgjottis pressure = 1.01 <+ 1.1 bar,

h ~ length of the vocal cord = (12 +18)-107° m,

f ~  distance from the point-mass to the edge of vocal cord = 3.1073
m,

¢ — intensity of air flow < 6-107¢ m%/s,

VvV — volume of the subglottis reservoir < 31073 m3,

K ~ adiabata exponent = 1.4.

In order to obtain the dimensionless equations set, the following transforma-
tions are used:

T d '-d 3 ’
t= =, —E('“) = 375(---) = 8.,
z(t) = aX(r) (2.2)
Wty = FY(r),
p(t) = @P(r).

From eq.(2.}) we cobtain:

kﬂ ~2 2 a2y, 2%

X" +—Tx +{m92 —la (X -2 =P+ B }(X-—-,+
k,,, 3 a1 1 ApF
Y LY ke X n — .,
—FY — ke XM - ac,2x = Sz=5

b k, z
AT T =2 0\‘ 72 2]
e +{——-Fm92+—-=-m02[0 (X - + 5%y }} +
kzy &X _ 1 Agp
mO2 3T T 26mT’
. K i 2 3-5—‘5’;%ha(x 1)‘/ Lip for X >
2V 0 for X <

(2.3)

R SNl N

Following relations are taken between the dimensional coefficients of the system
(2.3)

_=B=f1
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2= (2.4)

K,= —~f™*1, (2.5)

Finally, the dimensionless system of equations is obtained

n

X +C X +{ K + Kpl(X - Xo)* + Y?) (X — Xo) +

-K.,Y - K,X™*(1-C, X)= EP, (2.6)
Y +C Y +{K, + Kpl(X - Xo}* + Y?|}¥ = Koy(X — Xo) = EP,
) X=-1VP for X >1
P‘Q'{o for X<1°

where:
C - damping of the vocal cords < 1,

K, - vertical stiffness of the vocal cords (0.7, 0.9), (horizontal di-
mensionless stiffness is equal to 1),
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K., - stiffnese of the couplings between two directions of moticp
(0.1,...,0.5},

Kp - the Duffing type stiffness {< 0.01},

K, - stiffness of the vocal cords when brought together (< 0.01},

s - exponent (= 4),

C. - damping of the vocal cords when brought together (< 1),

Xo ~— the equilibrinm pcint, position of cartilage, (0.1....,0.2),

E - average pressure, the vocal cord surface (0.1,...,10),

Q - intensity of airflow (0,...,100).

The vibrations of the vocal cords are governed by the nonlinear self-excited
system of equations (2.6) with nine parameters. The presented intervals of the di-
mensionless variations of the parameters correspond to the actual values in humaxn

larynx.

3. Constant solutions and Hopf bifurcations

The system of equations (2.6} is of the form

f(Z,m)=¢, (3.1)

where: Z' = [X,Y, P] is the vector of the sought solutions
and 9' =[C, K., Kp, Xo, Kzy, K,,5,Cs, E, K, Q] — the vector of parameters.
Generally, nonlinear systems of algebraic equations (3.1) may only be solved
numerically. To this end, the Newton method will be used (see e.g. [19,20]). When
the first approximation of the exact solution Zg is known, the final solution may
be determined very accurately. For the approximate value of the solution Zy, the
equation (3.1) ic not identically satisfied and the solution is determined with an
error AZy. Newton’s method consists of the substitution of the nonlinear system
of equations (3.1) for the linear nonhomogeneous system of equations at every
consecutive point determined by consecutive iterations. Solving it, the consecutive
errors AZg which finaly approach 0 are determined.
Linearization f(Z) in the neighbourhood of Zg results in

0f(Z) o
'—a'Z_IZcAZ. .3.2

H(Z) = f(Zo) +

The correction of the solution is equal to

AZ=F7, (2), i3.3)
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where:

_ 9 -
F=22 [flZ0)=0.

Generally, we may present the iteration scheme of Newton method as
z¥ =7 - F 7 1(Z). (3.4)

Practically, we do not invert the matrix F in the equation (3.4), but we solve
the nonhomogeneous system (3.2) and having the solution AZ;, we obtain the
improved solution

ZH = Z' - AZ'.

The iterations are performed until the desired accuracy is achieved. In order to
estimate the stability of the state of equilibrium, we reduce the system of equations
(2.6) to the equivalent system of equations of the first order

Z = k(Z,n), (3.5)
where:
Z' = [X,X,Y,Y,P)
From the equation (3.5) we obtain the variation equations
Z=-HAZ, (3.6)

where the constant Jacobian matrix H is taken at (Z,2,9) = (0,2,9) and Z,
is the vector of equilibrium points. The eigenvalue nrobiem

(M - H)¢ = 0. (2.7)

yields the five eigenvalues and corresponding eigenvectors. As a result of computer
calculations, these values are obtained by reduction of the réal matrix to the
sHassenberg form. Eigenvectors are normalized in the way that the sum of squares
of moduli of the elements is equal to 1 and the element of the largest modulus is
real. This ensures that real eigenvalues have real eigenvectors. Cronjaeger showed,
using an analytical method, that in this case neither the real positive eigenvalue
nor A = 0 exist. The matrix H possesses only the negative of conjugate complex
eigenvalues. The system (3.6) has two couples of complex conjugate solutions

Az, = {:eA"v
which have the real form

Az, = c,e‘s‘("_"){cos wy(T — 75)Rek, +
sinw,(T - 75)Im§, }, (3.8
Ay = b6y 4wy, &, = Rel,, w, = ImA,,
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where ¢, and 7, are the constants of integration.

In numerical calculation the Newton method converges quickly even if the
first approximation of the sought constant solutions diverges considerably from
accurate values. In the case when one of the damping coefficients 4, changes its
value from the minus one through 0 and assumes the positive value (the other
damping coefficients are negative), Hopf bifurcation ([21,22]) takes place and the
new periodic solution of the frequency w, occurs.

For the arbitrarily selected fixed parameters K, = 1, Kp = 0.001, X = 0.6,
K =03, K, =0.001, C, = 0.5, E =1, K, = 0.9, numerical calculations were
performed. .
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Fir. 2. States of equilibrium of vocal cords marked with broad solid line obtained from
the system of equations (2.6) with the use of Newton’s method

The diagrams in fig.2 present results being obtained. In the plane of the para-
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meters C and @, the limit curves of the loss of stability for constant solutions were
determined. At the arbitrary point of one of the curves X;2 = Fiw and, after
Malkin [23), this case belongs to the critical ones. This is a boundary point separa-
ting the stable and unstable steady-state solutions areas. The occurence of Hopf
bifurcation was indicated in the figure by direction arrows. The constant stable
solution, e.g. for the determined value C, after passing the critical value, loses its
stability and the new periodic solution appears. Let’s determine the eigenvalues
a8 M2 = 8; iwy, Agyq = 82 £ iwy, A5 = —7, where ¥ > 0. The real and imaginary
. parts of the eigenvalues depend on the parameters D, Q i.e. §(C,@Q), w;(C,@),
i = 1,2. On each of the boundary curves, one of the values, §;, is equal to zero. In
fig.2, the limits of the loss of stability were marked by the solid line. For the set
of parameters C, @ lying between these two curves (where §; < 0), the constant
solutions Zg are stable. At the point of the two curves intersection, there exists
a pair of imaginary coupled eigenvalues and for the parameters C, Q lying below
this point there appears a torus with two frequences. In this case, the solution may
be periodic if only kw; = lwq, where k and [ are integers. The limits of the loss
of stability were determined with in the damping sphere 0.51 < D < 0.73, which
corresponds to the real damping values of the human vocal cords. On the basis
of numerical calculations, the influence of some essential dimensionless parameters
on the position of the loss of stability limits will be considered.

4. Influence of the intensity of the flow Q and the position of the
cartilage X,

According to fig.3, for the parameters set lying above the marked line, only
steady state solutions are possible. Vocal cords are in equilibrium state. When
parameter C, crosses after all these curves with increased damping (for fixed Xq
and @), the previously stable equilibrium becomes unstable and a new periodic
solution emanates from "Hopf bifurcation. If X < 1 i.e. the glottis is closed, the
vibration can easily appear, particularly if the values of intensity of the air flow
are low. As the parameter Xy grows, the vibrations take place only for low values
of damping C. Let us consider the fixed value C and X, and suppose that for a
small value of @} the vocal cords oscillate. Then, with an increase of @ when the
solid line is crossed (fig.3a), the vibrations suddenly stop.

For Xp > 1, i.e. when the glottis is open, the situation radically changes. For
the low values of Q, the vibrations may take place only at low values of damping
C. Practically it means, that for real human damping (0.5 < C < 1) the vibrations
can appear only for values of () large enough. Considering, for the fixed values of
Q and X, the behaviour of the svstem when the coefficient C decreases, starting
with a very high value. At a certain value C; we will pass the limit of the loss of
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fig. 3. Limits of the loss cf stabilizy of equilibrium of the vocal cords in the space of
parameters C, 4, .Yo. The other parameters: K. = 1, Kp = 0.001, Kz = 0.3,
K,=00001 C, =035, E=1 {a) K, =08, (b} K, =06

stabiliry v . means that & > 0. Continuining the changes to the lower damping
7 we tome arross another line marked in the figure. Having crossed it we have
d: > 0. and é; > 0. The frequencies corresponding to these values {&;, i = 1,2) are
equal to wy and wo respectively, with wy < we. In the fig.3 it is shown that with
the growth of tie value of X;, iwo marked in the same way curves being limits of
stability apprcach each other and at certain values of parameters they may cross,
{t means the frequency of the vibrations changes (change of voice register] and
this case is presented in fig.3b. As can be seen in this figure, such a variatior of
frequency may also azcompany the change of parameter X (other parameters are
fived)

For a very high value of Xo (Xp = 1.8), in a cersain sphere of changes of ihe
parameter (J, strong noslinear effects are ohserved. The growth of @ is accompa-
nied firsi by the rapid decrease and then the growth of the limit of stability. If
only O < € < " and the other parametrs are fixed, then three different valtues
af ¢ correspond to the same value of £

5. Influvence of the parameter F

in fig.4. the diagrams of the lUmits of the [oss ot stability in the space of
parameters €. £, {/, are presented. Similarly as in the above case. the rapid change
of vibration irequency is possible. The change of vibration freguency fraro the low
one to toe higher one takes olace when for the fixed value @ {EY the paramerer E
(@) will exceed & certain critical vaiue. Some nonlinear effects introduced %y the
ncnlinearity of the Dufling type { A # 9+ are evideni. The curve  {Q) weing
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Fig. 4. Damping effect on the limits of the loss of stability against the intensity of flow
5 and the surface of the vocal cord E. The other parameters: K, = 1, Kp = 0.001,
K,=0.001, C, =05, K, =03, Key =03, Xo =04

the limit of the loss of stability (for the fixed value E) first decreases, achieves the
minimum, and with further growth of @, increases monotonically. Additionaly,
numerical calculations have proved that frequency of the vibrations is essentially
influenced only by two parameters: the linear stifiness K, and the parameter E.
The growth of these two parameters increases the frequency of vibration.

6. Influence of elastic coupling K., and parameter Kp

B i e 8 e e e
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Fig. 5. Damping influence on the limits of the loss of stability versus the coefficient of
elastic coupling of vibrations K.y and the intensity of the flow Q). The other parameters:
K:=1 Kp=0001 K, =0.001,C, =05, K, =03, E=1, Xo =06

For small values of K, (see fig.5) the jump of the frequency of vibrations at
the points of the loss of stability is not possible (lines marked in the same way in
the figure do not cross). This effect takes place only in a certain narrow interval
of variations of this coefficcient {0.35 < &, < 0.45). Moreover, with the growth
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of this coefficient, the positior of the limit of zhe loss of the stability decreases
quickly. This means that the vibrations easily appear at small valuer of K. The
influence of the parameter K, on the position of the limits of the loss of stability
is presented in the figure 6, however this influence has an insignificient effect on
the limit positions.

02 o4 a8 28 ¢ 28 3

Fig. 6. Damping on the iimits of the loss of stability versus the stiffness coefficient K,
and the flow intensity Q. The other parameters: K, =1, Kp = 0.001, K, =03, E =1,
Xo=106, Key =04,C, =05

7. Calculations of periodic solutions

In order to determine periodic orbits occuring as a result of Hopf bifurcation,
we shall introduce the dimensionless frequency w and the relative time 7 = wi
into the system of equations (2.6). w enters the equations as a fixed parameter
when examining special solutions. The family of periodic solutions z(t) of a pe-
riod T corresponds to the family of periodic solutions 2(7,.) of a period 2r.
The m thod of determining periodic orbits in the autonomous initial system of
equations (2.6), due to the introduction of the parameter w, is analogous to the
one applied in non—-autonomous systems. A new periodic solution is now sought
with the a priori known period 2r. The corresponding frequency w, however, is
numerically determined. Since the analysed system of equations is smooth, its li-
nearization can be easily performed with the assumption that disturbances of the
variation Az are small. Then we apply the theory of linear differential equations
with periodic coefficients (see e.g. [23,24]).

For the determination of periodic solutions we shall use Newton's method ou-
tlined in chapter 3. The approximate values of the vector Z" = [X ,w,Y,Y,P]
being known, we perform the numerical integration of the analysed system of equ-
ations in the time interval 0 to 27 (for z = 0). Then, the shooting method is
used and the values of coordinates for the time 2n are considered as new initial



DYNAMICS OF THE HUMAN VOCAL CORDS 569

conditions. The use of the Newton method makes the differences between thus
iteratively determined solutions, approach 0. The desired precision having been
achieved, the calculations are interrupted. Caiculations have proved that as far
as the numerical integration methods are concerned, the procedures basing on the
Runge-Kutta method are not sufficiently accurate. During vibrations, as X tends
to zero can not become negative, an infinitely high repulsive force arises. In the
equations (2.6) the term following the coefficient K, describes it. However, the
coordinate X assumed negative values while these methods were used. For cal-
culations, then, a variable order, variable step Gear method was applied and the
calculations were carried out with the step 10~8 and with double precision.
Let’s now consider two consecutive, iterative steps:

2(29, 7o), (7.1)
2(z9,70 + 27), - (1.2)

g
h

where 2q is a certain approximation of the sought values.

If for a certain 2y the difference g — A = 0, then z( determines the solution
of the problem. K-iteration step determined by Newton’s method allows as to
determine the correction Az* from the equation

(1= 3YAZW = 20N Z, 1o + 2x) + 2P (24, 1), (7.3)

where:
ZG+1) — Z2() 4 A Z()

The Jacobian matrix J = Oh/8Z is numerically determined for Z = Z).
The initial point of Newton’s method results from the calculations carried out
in chapter three. where also the frequency value w at the critical point during
Hopf bifurcation is given. Let z*(7) be the determined periodic solution and the
problem of examination of its stability be reduced to the analysis of the system of

equations
Az = H Az, (7.4)

where:

H*(t + 27) = K"(7)

and Az is the vector of disturbances.
The arbitrary solution of equations (7.4) is

Az(t) = ®(r)AZ(0), : (7.5)

where the matrix &(r) is the fundamental matrix of solutions. Acccrding to
Floquet theory, the solutions (7.5) fulfill the relationship

AZF(r 4 27) = 0 AZF (7), (7.6)
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»

where o are the characteristic multipliers.
Then the problem of the analysis of the stability of solutions reducee to the

eigenvalue one
&(27)b = olb, (7.7}

with the characteristic equatior
det (®(2r) — of) = 0. (7.8)

Equation (7.8) aliows for the calculation of characteristic multipliers o, and
from the equation (7.7}, the corresponding eigenvectors b, can be obtained. Since
®(27r) is a real matrix, the characteristic multipliers are real or complex coupled
ones. Numerical calculations make it easy to determine these values, thus to esti-
mate the stability of the previously found periodic solutions. Such a formulation
of the problem allows for a complete insight into the neighborhood of the known
periodic solutions. One may also easily observe the behaviour of solutions while
parameters are being changed. The main advantages of such a formulation is bo-
wever, the possibility of observing the changes of stability of analysed solutions
determination of the bifurcation points or the possibility of finding new solutions
arising after bifurcations.

Because the system (2.6) is autonomous, a phase condition # = 0 is prescribed
in order to fix the uknown frequency w. If the solution is unfavorably stated (not
uniquely solvable for z(w} ), an exchange of the fastest varying values of z; removes
the numerical difficuities {2 is chosen, w calculated).

A similar method, based on the Urabe procedure [25.26] was already succes-
sfully applied to the computation of bifurcation points and periodic orbits of the
rotor vibrations by Brommundt {27,28)

.
H

B. Examples of self-excited periodic oscillations

The theoretical results of the previous section will now be used to obtain the
branches of seli-excited oscillations. The calculations were carried out for damping
of C =0.61, which corresponds to the real damping coefficient of the human vocal
corés. Numerical integration yields the fundamental matrix eigenvalues of which
are the characteristic multipliers. As the system of equations (2.6) is autonomous,
one of the characteristic multiplier must be equal to 1. If the other four eigenvalues
are inside the unit circle of the complex plane, then the considered periodic orbit
is stable. If one real, or the pair of comviex conjugate eigenvalues crosses the unit
circle. brancuing of the periodic solutions occurs. Following Arnold {291 one can
expect birth or annihilation of the limit cycle. transcritical or pitehfork bifurcation
if one eigervaiue cros.es ihe umit circie at +1. period doubling if one cigenvalue
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crosses this circle at -1 and finally nonlinear resonance or bifurcation intc torus if
a pair of eigenvaiues with nonzero imaginary parts crosses the unit circle.
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Fig. 7. Bifurcations of periodic solutions determined by the shooting method and
Newton’s procedure with marking the bifurcation poicts for the parameters: X, = 1,
Kp =0001, Xu =06, ,, =03 K, =0001,C, =05, E=1, K, =09

Figure 7 shows the branching diagram for C = .61 and Xo.= (.6. There are
two Hopf bifurcation poiuts from which periodic orbits emauate. From the point
H2 emanates a stable periodic solution. while from the point H1 an ustable one.
The latter becomes stable when, as ¢ increases PD {period doubling) point arises.
At this point the new subharmonic solution is born.

The exemplary results of calculations of pericdic orbits are given in the figures
8 and ¢. Generaly system of equations (2.6) can be projected on the (y;,y;) planes
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Fig. 9. Periodic motion of the vocal cord for the parameters as in ﬁg 7 with C = 0.61
_and Q = 40: (a) time history; (b) phase portrait y2(y1); (c) phase portrait y4(ys); (d)
trajectory of the vocal cord yz(y1)
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- where 4,7 = 1,...,5 in ten different ways. In the figures are presented only three-
two phase portraits ya(v1), y4(y3) and the trajectory of the vocal cord y3(y1). The
new variables y; are defined: 1y =X, 3%, =X, y3=Y,ys =Y, y5s = P.

Let us consider the first one of the periodic orbits which belongs to the left
branch in fig.7 (Q = 0.282). To the small value of the flow intensity Q corresponds
a relatively small value of preasure P. In this case the impact phenomena between
vocal cords do not appear. Amplitudes of horizontal and vertical vibrations of
the vocal cord are approximately of the same order. The nonlinearities of the
system, because of the small amplitudes of vibrations, cause small deformations of
the time histories and phase portraits. The situation changes however, when the
periodic orbit belongs to the right bifurcation branch in fig.7. For large values of
Q (Q = 40) the impact phenomenon is observed (fig.9). It is clearly visible that
for y; close to zZero, the phase curve y;(y;) has a vertical part. For these reasons
the standard Runge-Kutta methods are not sufficiently accurate for integration of
the stiff equation system (2.6). A variable order variable step Gear method with
the small step was used and integrations were carried out with double precision.
The amplitudes of vibrations are wide and the deformations of phase portraits and
time histories are clearly visible.

Finaly, let us consider the behaviour of the vocal cord for the parameters as in
fig.4 and for E = 0.2 and @ = 0.5. Starting with high values of damping C and
then decreasing them we cross the first limit of stability and after Hopf bifurcation
the limit cycle appears. It is presented in fig.10, for C = 0.28666 (w = 0.5517).
With the further decrease of damping we cross the second limit of stability and
the another bifurcation cycle emanates from the second Hopf bifurcation point.
It is presented for C = 0.07321 (w = 1.07674) in fig.11. As can be seen from
these figures, two presented periodic orbits differ from each other not only in the
frequency, but also in the normal modes (see the trajectory ys(y:) ) of the vocal
cord.

8. Concluding remarks

" The numerical analysis of differential equations governing the dynamics of the
vocal cords enables us to draw the following conclusions.

1. For the arbitrarily chosen parameter set (see fig.2) there exist two limits of
the loss of stability on the parameter plane (C, Q) which intersect each other. For
the parameters set C, Q lying between these two limits (where §; < 0,1 = 1,2) the
steady—-state solutions are stable, while in the other region after Hopf bifurcation
these solutions become unstable and periodic orbits appear. The region of stable
steady state solution becomes wider as damping C and intensity of air low @ are
increased. If for a certain value Qg the vocal cords are in the state of equilibrium,
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- both the increasing and decreasing of @ cause the appeareance of periodic orbits
after Hopf bifurcation (with different frequencies).

2. As it can be seen in the fig.2, where bifurcation curves are crossed, there
appear two frequency vibrations. Depending on the relationship between these
frequences the motion of the vocal cords may be periodic or quasiperiodic.

3. For the closed glottis (Xg < 1) the vibrations occur already at low values
of the flow intensity Q. However, for high values of @, for vibrations to take
place, damping C must be low enough. Thus for the given value C, "breaking” of
vibrations may be caused by the growth of @ (fig.3).

4. When the glottis is open Xg¢ > 1 the vibrations may arise only for high
values of Q.

5. Changing Q or X to a certain extent causes jumping from one voice register
to the other one possible (fig.3b).

6. As shown in fig.10 and fig.11, the change of voice register is also possible
when the parameters Q and E are varying (fig.4). Voice registers differ first of all
in frequency and as it is proved by numerical calculations also in the corresponding
model] forms of vibrations.

7. Parameter K, and E exert considerable influence on the vibration frequency
and in this way on the sound. In particular, their growth brings about the growth
of vibration frequency.

8. In certain intervals of the coeflicient K, the change of voice register is also
possible. Vibrations may occur only at low values of this coefficient (fig.5).

9. The steady - state solutions equilibrium position of the vocal cords lose
their stability with the change of intensity of the flow . Then with the further
changing of this parameter the stability of these solutions changes and new sub-
harmonic solutions appear (fig.7).
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Streszczenie

Praca przedstawia systematyczna globalng analize numeryczng dynamiki ludzkich
strun glosowych, opisanej ukladem rownan rézniczkowych nieliniowych zwyczajnych
piatego rzedu. Najpierw wyznaczono w przestrzeni parametréw polozenia réwnowagi strun
glosowych. Nastepnie, rozwigzujac problem warunkéw brzegowych znaleziono orbity okre-
sowe powstajace z polozefi rownowagi w wyniku bifurkacji Hopfa. Statecznoéé i mozliwe
bifurkacje tych orbit sledzone byly poprzez obserwacje zmian wartosci mnoznikéw charak-
terystycznych.

Zilustrowano wplyw parametr6w na pojawienie sie dZwicku okresowego jedno- i
dwuczedciowego lub quasiokresowego. Ponadto przedyskutowano zjawisko zmiany reje-
stru glosu.

Y

Praca wplynela do Redakcji dnia 16 stycznia 1990 roku



