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The essence of the reported method lies in the partition of system configura-
tion space into the orthogonal and tangent subspaces, defined relative to the
constraint hypersurface. The projection of the initial (constraint reaction-
containing) dynamical equations into the tangent subspace gives the constra-
int reaction—free (or canonical) equations of motion, whereas the orthogonal
projection determines the associated constraint reactions. The proposed ma-
trix/tensor /linear algebra mathematical formulation is suitable for the ana-
lysis carried out in generalized coordinates and/or quasi-velocities, and for
systems subject to holonomic and/or nonholonomic constraints. Simplifica-
tions due to the use of independent coordinates/velocities are also discussed.,
An example illustrating these concepts is included.

1. Imtroduction

In [24] an alternative technique, called the projection method, for deriving the

. differential equations of motion for certain problems in classical mechanics is pro-
posed. The crux of the technique is the projection of Newton’s laws into the
tangent and orthogonal directions relative the constraint manifolds. The tangent
projection gives the equations of motion, whereas the orthogonal projection de-
termines the constraint reactions. The technique is compared with Lagrange’s
equations and the advantages of the method, simplicity of derivation, an intuitive
nature, the physical insight it gives; and the fact that it is somewhat more general
than Lagrange’s equations, are emphasised. The method has then been discus-
sed by Storch and Gates [27], and the equivalence of the approach and Kane’s
method (cf [9,10]) was demonstrated. As will be shown in this paper, the pro-
jection technique is a variation of many other methods which have been around
for many years in classical mechanics, e.g. Appell’s equations or Maggi’s equa-
tions (cf [4,12,15,19+-21]), and is comparable to the recent techniques dealing with
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the formulation of constraint reaction—free équa,tions of motion, e.g. the ortho-
gonal complement method (cf [5,6,8,23]), the coordinate partitioning methods (cf
[1,11,13,14,25,28]), and some other methods discussed elswhere (cf [13,16+18,29]).

In this paper a generalized projection method is proposed which gives a unified
approach to the dynamic analysis of systems subject to any particular set of in-
dependent ideal constraints, including geometric (position), first~order kinematic
(velocity), and/or second-order kinematic (acceleration) constraints (these linear
in accelerations only). The formulation allows one to carry out the analysis in
quasi—velocities and/or generalized coordinates. As a result of the analysis, con-
straint reaction—free equations of motion are obtained, as well as the formulation
which enables one to determine the associated constraint reactions as functions of
the current state of system motion. Some simplifications in the analysis following
the choice of independent coordinates (for holonomic systems) and independent
quasi-velocities (for systems subject to linear velocity constraints) are also demon-
strated.

No virtual formalism is used throughtout the paper. Instead, tensor algebra
analysis (in matrix notation) and vector space analysis are applied. The analysis is
carried out in the n—dimensional space of the system configuration and intuitively
appeals to a generalized particle motion on a smooth constraint hypersurface. The
essence of the proposed approach lies in the partition of the system configuration
space into an orthogonal subspace, spanned by the so-called constraint vectors [8],
and a tangent subspace, which complements the orthogonal subspace in the n-
space. The projection of the constraint reaction~containing equations of motion
into the tangent subspace gives the reaction—free equations of motion, whereas the
orthogonal projection serves for determination of the associated constraint reac-
tions. A compact mathematical formulation, generality, and an mtuitive appeal as
a generalization of methods used in simple dynamic problems, are recommendable
advantages of the approach.

2. Definitions and background

For the purpose of facilitating the reader to follow the subsequent mathematical
formulation, let us review first some essential observations concerning the vector
space and tensor algebra formalism used in the paper, see also Appendix.

o The analysis is carried out in the n—dimensional system configuration space.
Many of the following mathematical transformations refer to the base trans-
formations in the space.

e Matrix notation is used. Vectors are represented by column matrices of their
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components, and are denoted by lower case letters. Matrices are denoted by
capital letters. ’

e In order to distinguish between the contravariant and covariant vector re-
presentations and base vectors, the covariant vector representations and the
contravariant base vectors are denoted by the superscript (*).

e All the position, velocity and acceleration vectors are represented by contra-
variant components.

e All the force vectors, as well as the dynamic equations (in matrix notation)
are described by covariant components.

The starting point of the analysis is the dynamics of an n—degree—of-freedom
unconstrained system whose position is determined by a vector z = x'e,, where
X = [%1,...,2,]7 are the system generalized coordinates, and e; = [€y1,...,€za]T
denotes a column matrix representation of the inertial base vectors. Let us intro-
duce then a vector of system quasi-velocities » = v'e,, where v = [v},...,v,]7,
and e, = [e,;. ...,e,,,.].r represents the base vectors of the frame (usually noniner-
tial) of the svstem quasi—velocities. The transformation between the generalized
velocity vector 2 = X' e;, X = [£1,...,2n) 7, and the quasi-velocity vector v is
described in the usual linear (matrix) form

x=Av+ag (2.1)

where A(x,t) is an n X n invertible matrix, and ao(x,t) is an n x 1 matrix. The
matrix A can be interpreted as the transformation matrix of a generalized rotation
between e, and e, bases, e, = ATe,, and the column matrix ag represents the
velocity of the origin of the base e, relative to the base e, and expressed in the
Jatter base. :

To be strict, wvj,...,v, should actually be called kinematical parameters, for
they may be either new generalized velocities or quasi—velocities. As is well known,
v; is a new generalized velocity if the corresponding :th component of the relation

v=Bx+bo (2.2)

where B = A1, and by = —A™'ay, is integrable. Otherwise, v; is a quasi-velocity.
In particular, for bg; = 0, the kinematic parameter v; = b;rf(, where b; denotes the
ith column of BT, is a new generalized velocity if the Jacobian db;/0x is a symme-

. tric matrix (cf [3,4,15]). It is worth noting, however, that the formulation of this
paper allows one to pay no special attention to the problem whether v containts
new generalized velocities or/and quasi-velocities. The relation (2.2) comprises all
possible cases, and the problem is referred only to the base transformation. For
brevity of the following, vy, ...,v, will be called quasi-velocities.
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Let us introduce now the dynamic equations of motion of the unconstrained
system in the following compact form

Mv = h* (2.3)

where M(x,t) is an n X n symmetric positive-definite matrix of inertia, v =
[91, .y D] " are the system quasi—accelerations, and h*(v,x,t) is a column matrix
representation of applied forces and gyroscopic terms. The dynamic equations (2.3)
are expressed in the contravariant base e}, and M is the metric tensor matrix of
the base e,, M = e,el and e, = Me} (see Appendix). In this paper, Eqs (2.3)
refer to the dynamics of an unconstrained system not only in the usual meaning
of this word; that is, a system consisted of unbounded particles and/or bodies.
The equations comprise also the dynamics of any internally constrained system
(interconnected-body system, for instance) dynamics of which has been formulated
previously in independent generalized coordinates and/or quasi—velocities. The
corresponding dynamic equations can always be manipulated to the form (2.3). On
the other hand, Eqs (2.3) may be considered as a generalized Newton’s formula
in the n-dimensional space, (~Mv +h*)"e: = (—v* + h*)Tel = 8 + h, where
8= (—Mv)Te; = —v*Te} is an inertial force vector.

Let us assume now that a set of m (m < n) independent constraints is im-
posed on the system, and introduce the constraint equations in the second—order
kinematic (acceleration) form

Chicg=0 (2.4)

where C{v,x,t) is an m X n constraint matrix (see [8]) of maximal rank, and
¢3(v,x,t) is an m x 1 matrix. If geometric (position) constraints, f(x,t) = 0,
and/or first—order kinematic (velocity) constraints, ¢(v,x,t) =, are considered,
they have to be transformed to the acceleration form (2.4) by differentiating with
respect to time twice and once, respectively. In these cases, C and ¢} can be
written as
%A forf(x,t) =0
C= (2.5)

%% forp(v,x,t) = 0

(%A)-" + (%éao + %{-) forf(x,t) = 0

%= (2.6)
%:‘(AV + 30) + %St‘l forp(v,x,t) =0

Obviously, appropriate initial conditions must be assured, i.e. f(zo,t0) = 0,
f(v0,Z0,t0) = 0, and ¢(vo, 70, 1) = 0.

With regard to (2.4), m independent constraint vectors e;,...,6, can be
defined in the n-space of system configuration [8], which are represented by
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covariant components, relative to the contravariant base e}, contained as columns
in CT, ¢ = erTe; (i=1,..,m), where ¢! denotes the ith column of C". Using
this definition, Cv expresses dot products of the constraint vectors ey,..., &, and
the vector # of system acceleration, ¢;09 = ¢}'v (i = 1,...,m). In particular,
for a time-independent position constraint f;(x) = 0, and on the assumption
that v = x, the corresponding constraint vector ¢; is simply the constraint
gradient, ¢; = (0f;/0x)e:. Therefore, in this case, ¢; can be interpreted as being
orthogonal to the constraint manifold f;(x) = 0. Though, for the time-dependent
position constraints, and the constraints of higher—order, as well as for the case of
analysis being caried out in quasi—velocities, such an intuitive appeal as a direct
generalization of simple dynamics problems cannot be strictly undertaken, an m-
dimensional subspace spanned by the constraint vectors ejp,...,&, Will be called
here an orthogonal subspace.

The analysis of this paper considers only the so—called ideal constraints. In
the mathematical sense, this means that the constraint-induced forces (constraint
reactions) on the system are postulated as collinear with the corresponding con-
straint vectors (8], r; = ¢A; (i = 1,...,m), where r; is the ith constraint reaction
vector and A; is the associated Lagrange multiplier. Obviously, for a specific state
of system motion, the value of a constraint reaction may achieve zero when the
applied and gyroscopic forces on the system in the direction orthogonal to the cor-
responding constraint are in balance and no additional constraint-induced reaction
is required to assure the constraint realization. This is regulated by the current
value of corresponding Lagrange multiplier. Using matrix notation, the vector of

m

constraining forces on the system, # = 3 r;, can be expressed in the base e} as

t=1
follows m -
rr= Zr: = ZC?/\; =C") (2.7)
\ 1=1 1=1 -

where r* and r} are column matrix representations of 7 and r; in the base e,
and A = [A1,...,Am]7 are Lagrange muitipliers.

The constraint reactions are not known & priori ( A are to be treated as a
set of m new variables), and during the constrained motion they take the values
such that to assure the system consistency with all the constraint conditions up
to the acceleration form (2.4). Hence, the final (constraint reaction—containing)
governing equations of the constrained motion can be written in the following form
of differential-algebraic equations (DAEs)

a) Mv=h"+C"A
b) x = AV + ag (2.8)

where the differential variables are vand x, and the algebraic variables are A. The
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dimension of the DAE system is 2n+m, and appropriate initial conditions must be
assured if Eqs (2.8c) are the differentiated forms of lower-order constraints. Note
also that Eqs (2.8a) can also be interpreted as d’Alambert’s principle generalized
to the n—dimensional space

(-Mv+h* +r*)Tet = (—v+h +r) el =s+h+r=0 (2.9)

The DAEs (2.8) can be treated as a generalized form of Lagrange’s equations of
the first-order [4], and this form of governing equations of constrained systems is
encoutered frequently in many applications such as robotics, dynamic simulation of
vehicles, and analysis of mechanisms, see e.g. [6+11,13+21,23,25,28,29]. However,
the numerical treatment of mazimal-rank equations (2.8) is often time—consuming
and dealing with DAEs leads to additional inconveniences. Thus, many methods
aimed at eliminating the constraining forces from the analysis and reducing the
problem dimension have been applied and described in the aforementioned pu-
blications. The reported projection method approach is another contribution to
these methods.

3. Projection method formulation

As stated in Section 2, the constraint vectors ¢y, ...,¢,, defined in the base e
by ¢; (columns of C7), i = 1,...,m, are independent in principle (rank(C) = max
= m). Hence, the vectors sparing an m-dimensional subspace in the n-space,
called an orthogonal subspace lateron, can be considered as the base vectors of
the subspace, denoted as e. = [e;,...,6,]7. Then, k (k = » — m) additional
independent vectors dj, ..., d, assumed to be orthogonal to ., can be chosen. Let
us call the k-dimensional subspace spanned by these vectors a tangent subspace,
and ey = [dy,...,d,,]" is the base of the subspace. The orthogonality condition,
ede;r = 0, means that the orthogonal and tangent subspaces are complementary
in the n-space. Denoting that the contravariant components of di,....d; in the
base e, are gathered as coluns in a matrix D' (D(v,x,t)is a k X n matrix of
maximal rank), this can be written as follows

DCT =0 (3.1)

In other words, D is an orthogonal complement of C in the n-space (refer also
to e.g. [5,6+-8,18])

Since the vectors ey, ...,6m,d), ...,d; are linearly independent, they form a new
base in the n-space, e, = [e;r,e;r T. Then, considering that e, = Ce: = CM™'e,,

the following transformation formula can be written

¢ = [ :: ] = [ Chl‘)— ] e, = TTe,, (3.2)
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and the metric iensor matrix M, of the base e; can be expressed as

cMICT 0 ]z[mc o]

P T —
M, =T MT= 0 DMDT 0 M,

(3.3)
where M. and M, are the metric tensor matrices of the orthogonal and tangent
subspaces, respectively.

As the dynamical equations (2.8a) are represented in the base e}, their re-
presentation in the base e} is equivalent to the left-sided multiplication of Eqs
(2.8a) by the transformation matrix T' defined in (3.2) (see Appendix). This
yields the following decomposition of the dynamical equations (projection into the
orthogonal and tangent subspaces)

a) Cv = CM~1h* + M.
(3.4)
b) DMv = Dh*

Using the tangential projection (3.4b), and (2.8c) and (2.8b), the following
constraint reaction—free governing equations can be obtained

a) T 'Mv =h;
(3.5)
b) X = Av + ag
where h; = [~¢3T,(Ph*)T]T, and the dimension of Eqs (3.5) is reducec to 2n as

compared with the dimension 2n 4+ m of Eqs (2.8). Note also that Eqs (3.5) are
conceptually equivalent to the results obtained by using the orthogonal comple-
ment method [5,8].
The orthogonal projection (3.4a) may then serve for explicit determination of
A as functions in v, xand t,i.e. for the determination of the constraint reactions.
"Namely, considering (2.8c), it can be shown that

A= —MZ1(c3 + CM~h*) = A(v,x, ) (3.6)
Following (2.7), the reaction of the ith constraint can be expressed as
¢ =k = H(v,x,1) (3.7)

which is a representation of the ith constraint reaction vector r; in the base e;.

4. Projection method ~ holonomic case

In many applications, and in particular for holonomic systems, the analysis car-
ried out in the initial (dependent) generalized coordinates/quasi-velocities may be
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inconvenient. Thus, very often, the analysis in independent variables is underta-
ken. There are at least two reasons for doing this. Firstly, the dimension of the
problem reduces to the number of degrees of freedom of the system, which may
greatly simplify computational analysis in problems of large systems with many
constraints (inter—connected multibody systems, for instance). Secondly, the direct
integration of the governing equations (3.5), when the constraint equations (3.4)
(the first m equations of (3.5a)) are differentiated forms of lower-order constraints,
may yield violation of the constraints due to the numerical errors of integration.
Though there are different techniques based on monitoring the constraint viola-
tion at every step of integration and aimed at reducing the violation value, see e.g.
[2,17], the appropriate choice of independent coordinates/velocities releases the
analysis from this inconvenience. Herein, these aspects will be discussed from the
point of view of the projection method. It will be shown that the results obtained
using this technique are equivalent to Kane’s form of Appell’s equations [9,10,15],
often referred as Kane’s method.

The analysis of this section begins again with the governing equations (2.8)
expressed in the initial (dependent) quasi~velocities v and generalized coordinates
x. In the case at hand, however, the m constraints imposed on the system are
geometric (position, holonomic) constraints

fx,t)=0 (4.1)

The number of degrees of freedom is thus reduced to k = n — m, and the con-
figuration of the system can be described by using - k independent coordinates,
denoted as q = [q1,...,qk]7. The independent coordinates are usually chosen &
priori for a particular system and, very often, without introducjng the constraint
equations (4.1) at all as being satisfied in principle in q (the constraint equations
must be introduced, however, if the constraint reactions are to be determined).
The interdependence between the initial and the independent coordinates can be
written as follows

x = g(q,1) (4.2)

For the purpose of generality, let us introduce also k independent quasi—
velocities, u = [uj,...,u;] T, and define a relation analogous to (2.1)

q=Av+i (4.3)

where A(q,t)is a k X k invertible (transformation) matrix, and ap(q,t)isa kx1
matrix. As before, u may contain quasi-velocities and/or generalized velocities.
Differentiating (4.2) and introducing (2.1) and (4.3), it is easy to find that

v=A""JAu+v, (4.4)
v=A"1JAi +a, (4.5)
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where J(q,t) = 0g/0q is the n x k Jacobian, w,(q,t) = A” YJag + g, — 30),
a,(u,q,t) = (A"lJA) ut A" (JEp+ g, —a0)] ,and g = 0g/0t. As q, uand ware
independent coordinates, quasi-velocities and quasi-accelerations, respectively, all
the constraint conditions, f =0, f =0and f = 0, expressed in the independent
variables, are satisfied in principle. In particular, the acceleration form (2.4) of
(4.1) leads to :

CAMAd+Ca, +¢;=0 (4.6)

where C and ¢j are defined by (2.5) and (2.6), and according to (4.2) and (4.4)
are functions of -4, q and £. Since the values of U are not restricted by the
constraints, the identity condition (4.6) requires that

CA-YJA=0 (4.7)
Ca,+¢,=0 (4.8)

Note that (4.7) is usually obtained using the formulae
(CA"1JA)6u = 0 or (CA~1JA)60 = 0

where du and 6u are column matrix representations of variations of the system
quasi—-velocities and quasi—accelerations, respectively. _

The critical observation following from (4.7) is that A~*JA contains the con-
travariant components, referred to the base e,, of the vectors which span: the
tangent subspace with regard to the constraints (4.1), that is

DT = A"1JA (4.9)

Now, substituting (4.9) and (4.5) into (3.5a), the first m equations leads to the
identity (4.8), whereas the remaining k equations form the ca.nonlca.l (reduced-
dimension) dynamic equations

M.i = D(h* — Ma,) = h’ (4.10)

where Mg(q,t) = DMDT = (A"1JA)TM(A~1JA) is the metric tensor matrix of the
base e, of the tangent subspace, e, =[dy,...d;]", d; = de, (i=1,..,k), and
d; is the ith column of DT = A"1JA. Since h; = D(h —a,) can be expressed'as a
function of u, q ant ¢, the dynamic equations (4.10) are conceptually equivalent
to (2.3).

The dynamic equations (4.10), combined with the kinematic equations (4.3),
form the the governing equations of the problem at hand, and the dimension of
the equations is 2k. Note also that the constraint equations (4.1) do not have to
be introduced explicitly for derivation of (4.10); an appropriated choice of q:and
u, and the definition of (4.2), are sufficient. The constraint equations have to be
formulated explicitly, however, when the associated constraint reactions are to be
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determined. In this case, the substitution of (4.2) and (4.4) into (3.6) and (3.7)
enables one to determine A; and r; (i = 1,...,m) as functions of current values

of u, q, t.
The dynamic equations (4.10) can also be treated as a modified form of Kane’s

equations [10], or one of the forms of Appell’s equations (see Chap.IIL.8 of [15]),
which, in fact, consist also in the projection of the initial equations of motion into
the tangent subspace. From (4.4) and (4.5) it comes evidently that

U, A

T=A"MA=—=_—-=..
D =A"JA= ou Odu

hence, D is a matrix of so—called partial velocities [9,10]. Now, the projection of

the initial dynamic equations (2.3) (or (2.8a)) into the tangent subspace leads to

the following matrix form of Kane’s equations
D(—MvV + h*) = D(—v" + h*) ' (4.12)

where —v* denote the inertial forces. Introducing (4.2), (4.4) and (4.5), the Eqgs
(4.12) can easily be manipulated to the form (4.10).

(4.11)

5. Projection method — nonholonomic case

Assume now that the system is subject to m first-order kinematic (velocity
or nonholonomic) constraints, and let start the analysis on the linear case of the
constraints

p=Cvin (5.1)
where C(x,t) is an m X n matrix of maximal rank, and 1(k,t) is an m x 1
matrix. As opposed to the differentiated form of geometric constraints, Eqs (5.1)
are supposed to be nonintegrable (nonholonomic), for details refer to the discussion
following (2.2). It is worth noting also that the nonholonomic constraints do not
reduce the number of degrees of freedom of the system. The position of the system
is still described by the initial generalized coordinates x = [zy,...,z,]'. The
restrictions are imposed, however, on the initial quasi-velocities v = [v1,...,v,]",
which are now dependent. In other words, only k£ = n — m independent quasi-
velocities exist, denoted as u = [ul,...,uk]T.

Since Eqs (5.1) can be considered as a set of m new quasi-velocities which, due
to the constraints imposed, remain zeros at every instant of the constrained motion,
the independent quasi-velocities can conveniently by defined as being represented
only in the tangent subspace. To this end, the following transformation formula
of quasi-velocities can be proposed to define u

o[ ][] rwee 3] o
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where M;, My, M, D, and T refer to the notation used in Section 3, and are
functions of x and ?. From Eqs (5.2), after some manipulations, the following
inverse relation can be found

v=DTu+v, (5.3)

where v, = —M™1CTM 5. The differentiation of Eqs (5.3) with respect to time

leads to
0] [ o] [ Goe | wre.[c
M‘[a]_‘[MduJ‘[omndg]‘T M”[dg] (5.4)

where ¢§(u,x,2) = C(DTu + v,) + 5, and d(u,x,t) = (DM) (D u + v,) + Mou.
Now, v can be determined from Eqs (5.4) as

v=DTi+a, (5.5)

where a,(u,x,t) = — [(M_ICTM—ICB)T,(DTMglda)T]T-

c

The substitution of (5.5) into (3.5a) yields that the first m of these equa-
tions transform to the identity c¢f = ¢3, and the remaining k equations become
the minimal-dimension dynamic equations expressed in the independent quasi-
velocities

Mi = Dh* + d = b’ (5.6)

Though Egs (5.6) look in their symbolical form like Eqs (4.10) obtained for the
system subject to holonomic constraints, in this case Mgy(x,t} and hj(u,x.1).
Moreover, in order to form the governing equations of the motic::. Eqs (5.6) are
to be combined with the differential kinematic equations in the form

x=ADTu+¢ : (5.7)

where £(x,t) = ag + Av, = ag = AM'CTM7!y. The dimension of the governing
equations is n + k.

As in the previous section, the reactions of the constraints (5.1) can be deter-
mined from Eqs (3.6) and (3.7). After substituting (5.3), A and rf (i =1,...,m)
will be functions of current values of u, x and ¢. One can easy deduce, also,
that the presented projection method approach to the dynamic analysis of systems
subject to linear velocity constraints (5.1) is conceptually equivaient to Maggi’s
approach (cf [4,12,15,19,21]). As compared with the previous formulations, howe-
ver, the present formulation seems to be more intuitive as well as compact. The
geometrical insight into the problems concerned is also commendable.

Unfortunately, for nonlinear velocity constraints, ¢(v,x,t) = 0, the definition
of independent quasi-velocities « is not so evident, if feasible in practice at all.
The constraint equations ¢ = 0 may still be treated as zero quasi-velocities and
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the following transformation between independent and dependent quasi—velocities
may be proposed
0 (v, x,1)
= ! 5.8
[ u ] [ (v, x,1) (5-8)

where rank ((3(,0/3V)T,(37/3V)T) = max = n is required. However, the & priori
determination of the functions % is most often unpracticable. The same refers
usually to an a priori determination, basing only on the equations ¢ = 0, of an
inverse to (5.8) relation (referring to Eqs (4.2)), that is

v = g(u,x,1) (5.9)

Hence, in the case of nonlinear constraint equations, ¢(v,x,t) = 0, a general
projection method approach reported in Section 3 is recommended.

6. Example

To illustarate the concepts introduced in this paper, consider the classical pro-
blem of dynamic analysis of a homogeneous disk of radius r and mass m that
rolls without sliding on the horizontal plane (see Fig.1). Let the generalized co-
ordinates of the unconstrained disk be as follows; zp, yp, zp — the coordinates
of the point P in the inertial reference frame O0zjyrz;, ¢ — the angle between
the contact tangent and the positive 0z axis, # - the angle of inclination of the
disk to the vertical, and 4 — the angle of rolling. The condition of pure rolling of
the disk on the plane 0zjyr leads to the following constraint conditions, see also
[4,15]

a) J.‘:p+T1Z)COS¢;;‘0
b) ip + rising =0 (6.1)
c) zp=10

The constraints (6.1a) and (6.1b) are linear nonholonomic (velocity) constraints,
and (6.1c) is a holonomic (geometric) constraint.

Let us define as initial quasi-velocities the components v, vy, v3 of the linear
velacity of G in the G&n( coordinate system, and the components v4, vs, vg of
the disk angular velocity referred to the same axes. The G&n( reference frame is
chosen in such a way that the origin of the system is at the center of the disk, the
G&n plane is that of the disk, and G§£ axis remains parallel to the 0z;ys plane.
According to the definitions, the kinematic differential equations referring to Eqs



A GENERALIZED PROJECTION METHOD... 391

Z

Fig. 1. A rolling disk

(2.1) and (2.2) can be written as

. [A as] "

X = [ 0 A ]V_Av (6.2)
= B] B3 s ne

v_[o Bz}x_Bx (6.3)

where x = [é:Pa gPaéPa¢)o’¢]Ts V= [’01,’02,’03,’04,‘!)5,’06]1-, and

cos¢ —sinfsing cosfsine 0 cos”lg 0
Ap = | sing sinfcos¢ —cosfcos¢ A= —-1 0 0
0 cosf sin @ 0 tanf 1

~rcosfsing rtanfcosd 0
As=| rcosfcos¢d rtanfsing 0 Blei’l:AI
—rsin¢ 0 0
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0 -1 0 —rsinf 0 O
82 = cos @ 0 0 Bs = —81&382 = 0 0 0
sin¢ 0 1 0 -r 0

One can easy ascertain that the transformation of (6.1) to the dynamic form
(2.4) leads to rather complicated relations. Therefore, the constraints (6.1) are
often reformulated in a more convenient form. Namely, assuming that zp(tg) = 0,
the constraint (6.1c) can be replaced by its differentiated form

ip=0 (6.4)

Now, Egs (6.1a), (6.1b) and (6.4) represent the condition that the vectors of rim
velocity at the point P and the velocity of the contact point motion on the plane
0z yr are equal and have opposite directions, and the condition is expressed in the
0z ryrzr reference frame. Expressing the condition in the G&n( reference system,
that is left—sided premultiplying (6.1a), (6.1b) and (6.4) by B,;, and introducing
(6.2), the constraint equations become

a) vy +r16 =0
) 13—-7105=10

The differentiation with respect to time of (6.5) leads to the following convenient
dvnamic form of the constraints .

a) b+ 16 =0
b) b =0 ' (6.6)
c) U3 —7104=0

Physically, Eqs (6.5) express the condition. of null velocity of the point P of the
disk. The transformation from (6.5) to (6.6) requires that v1(t), v2(to), va(to),
v4(lo) and wg(to) must satisfy Egs (6.5).

It is easy to find that for the case at hand

(100 00 r]
C=]010 000 (6.7)
(001 —r 0 0]
and the orthogonal complement matrix D can be chosen as
[ -1 00 00 1]
D= 0 00010 (6.8)
| 00 r 10 0
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Introducing the dynamic equations of the unconstrained disk in the form (2.3),
where for the case at hand M and h* are

M = diag(m,m,m, J,J,2J) (6.9)

mv5(vg tan @ — 1)3) !

m(vgvz — vs5v; tanf — gcosf)
m(vsvy — v4¥2 — gsinf)
Jv5(v5 tan 6 — 2’06)

Juyg(2v6 — vs tan @)

0

1l

b (6.10)

where J = Jg¢ = Jyn = 3J¢¢, and g is the acceleration due to gravity, the
tangential projection of the equations (referring to (3.4b)) are

—mrig + 2J0g = —mrvs(vytan 6 — v3)
Jus = Jvg(2v — vstan ) (6.11)
mriz + JUg = mr(vsvy — vavz — grsin ) + Jus(vs tan 6 — 2vg)

The set of Egs (6.6), (6.11) and (6.2) refers to the reaction—free governing equa-
tions (3.5), and the associated constraint reactions can be determined through the
following relations

p1vs(vz tan 6 — v3)
A= | m(vqvz — vsvytanf — gcosb) (6.12)
n2 (1)51)1 — VqV2 — @ sinf — 2:"(1)5 tanf — 21)5))

A3 (6.13)

-
-
]
3T OO0 0O
1
>~
[t
-
)]
il

L@ty | o) | o)

where py = 2mJ/(mr® + 2J), and pz = mJ/(mr? + J). Is is worth noting that
r;. r; and r3 defined in Eqs (6.13) are represented in the base €}. Since e,1, €,
and e,3 are the unit vectors of the orthonormal G&n( reference frame, A3, A;
and Aj are, for the case considered, the values of the reaction forces applied at
the point P.

Let us illustrate now the concepts discussed in Sections 4 and 5. In order to
attain this, consider again the constraint equations in the form (6.1), and first
release the analysis from the geometric constraint (6.1c). It can be done by cho-
osing the independent generalized coordinates q = [zp,yp,$,8,%]. Defining
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u=4q=[tpr,yp, ¢ 6,¥]7, the matrix D referring to the definition (4.10) comes

from - _ .
v=Bx=Bq=Bu=D"u (6.14)

where B is the 6 5 matrix created from B (defined in Eqs (6.3)) by omitting the
3th column. After some manipulations, the dynamic equations in the form (2.8a),
where M and h* are defined by Egs (6.9) and (6.10), and C and ¢j are
C =[0,cos8,sin8,—rsiné,0,0] (6.15)
¢, = 6(2p sin ¢ — yp cos @) (6.16)

can be transformed to the form (4.10), where My = B"MB and h;, = B h" -
ST -
B M(B)u are

m 0 —mrsin 6 cos ¢ —mrcosfsin ¢ 0
* m —mrsin 0 sin ¢ mrcos 6 cos ¢ 0
Mg=| « + (mr?4J)sin?6+4J 0 2J sin 6 (6.17)
* % * mr? 4+ J 0
* % * * 2J
~mr[(¢? + 62)sin fsin ¢ — 2¢.>05 cos 8 cos ¢)
mr[(¢? + 62)sin 8 cos ¢ + 2¢4 cos § sin ¢]
hy = | —2(mr? + J)¢>9 sin 6 cos § — 2J‘¢70 cosd (6.18)
(mr? — J)¢? sin 0 cos 6 + 2J (¢ + ¢sin 9) sin @ + mg cos 6
~2J$0 cos b

and (%) in Eq (6.17) denote the symmetric entries. Fma]ly, fo].lowmg Eqs (3.6)
and (3.7), the reaction of the constraint (6.1c) is

A= —mr¢(1,/)c050+¢sin0cosl9)sin0+mg (6.19)
r=C") (6.20)
where Cis defined in Eq (6.15).

After the exclusion of the holonomic constraint (6.1c), the starting point of the
following analysis are the equations

a) Mg = h; + CT )
b) q =u (6.21)

where q = [zp,yp,#,0,9]T, u= [:i:p,g)p,q'ﬁ,é,w']T, M, and h; are defined in Egs
(6.17) and (6.18), and

1 0 0 0 rcos¢
0100 rsing (6:22)
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- [ ~rousin ¢ } (6.23)

= r¢">¢ cos ¢

Following the formulation given in Section 5, the orthogonal complement ma-
trix D can be constructed as

0 0 1 00
D= 0 0 0 10 (6.24)
—rcos¢ —-rsing 0 0 1

and the relationship between the dependent quasi-velocities u and the indepen-
dent quasi velocities w = [w;,wz,ws]T is

u=D"w (6.25)

Then, the final dynamic equations in the independent quasi-velocities w, referring
to Eqs (5.6), are

Mo =h (6.26)
where
(mr? + J)sin?8 + J 0 (mr? + J)sin 6
M, = 0 mri+ J 0 (6.27)
(mr? + J)sin@ 0 mr? +2J
mrlwaws cos §

b = | (mr?+ J)w?sinfcos + (mr? + 2J )ww; cos 8 + mg cos 8 (6.28)

—mr2waw cos b

The Eqs (6.26) should be completed with the differential kinematic equations,
referring to Eqs (5.7), as follows

x=D"w (6.29)

Finally, the reactions of the constraints {(6.1a) and (6.1b) can be found using the
relations (3.6) and (3.7). However, since the manipulations heed the inversion
of M, defined in Eqs (6.21), which is rather a laborious task for analytical cal-
culations, the formulae for determination of the constraint reactions will not be
reported here.

7. Concluding remarks

The advantages of the reported projection method approach to the dynamic
analysis of constrained systems can be summarized as follows
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¢ Compact mathematical formulation - tensor/matrix notation.

¢ Geometrical insight into the problems solved and its intuitive appeal as a
direct generalization of methods used in simple dynamics problems.

e Unified treatment of systems subject to holonomic and/or nonholonomic
constraints.

¢ The formulation enables one to carry out analyses in generalized coordinates
and/or quasi-velocities, without paying any attention to distinguishing these
cases.

e Constraint reaction—free equations of motion as well as formulae for deter-
mination of the associated comstraint reactions are obtained.

e The method comprises many other well known approaches to the constrained
dynamic analysis, and seems to be more general.

e No scalar function of velocity energy (acceleration energy, Hamiltonian func-
tion,...) needs to be introduced and then differentiated, which is often a

laborious task.

An evident drawback in applications of the method is, however, the necessity
of determination of the orthogonal complement matrix D (only for holonomic
systems, when Egs (4.2) is formulated & priori, D can be obtained by simple
mathematical transformations). As shown in Section 6, for small systems D can
be guessed. For large systems, however, the problem may be more complicated.
This problem will not be discussed here.
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Appendix

Consider an n-dimensional metric space. A vector @ can be expressed by its
contravariant components a = [ay,...,a,]7 in the covariant base of this space
e = [ey,...,en]", or by its covariant components a* = [a},...,a3]T in the contrava-
riant base e* = [e},...,e5]T (see e.g. [22,26]), i.e.

a=a'e=a"Te (A.1)
With the use of the metric tensor matrix M of the space,
M= ee” ' (A.2)
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the interdependences between the contravariant and covariant vector components
and base vectors are as follows

e = Me* a* = Ma (A.3)

A dot product of two vectors @ and b can be written in four possible ways

aob=a'Mb=a"b=a""M"b*=a"Tb - (A.4)

and the orthogonality condition is defined as @ob = 0. When the reference frame
changes from a given one to another, denoted by (), the transformation formulae

are
e=BTe e” = Be*
. A5
ai"=8Ta" a=Ba (4-5)
and the metric tensor matrix of the base éis
M =BTMB (A.6)

where B is the n X n transformation matrix.

Il
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Uogdlniona metoda rzutowania dla dynamicznej analizy nieswobodnych
ukiadéw mechanicznych

Streszczenie

Istota prezentowanej metody polega na rozdzieleniu przestrzeni konfiguracji ukladu na
podprzestrzenie styczna i ortogonalna, zdefiniowane wzgledem hlperpow1erzchm wie20w.
Rzut wyjsciowych (zaleznych od reakeji wigzédw) dynamicznych réwnar ruchu do podprze-
strzeni stycznej prowadzi do uwolnionych od reakcji wigzéw (ka.nomcznych) réwnan ruchu,
natomiast rzut ortogonalny pozwala na wyznaczenie reakcji wigzéw. Zaproponowane ma-
cierzowo/tensorowo/wektorowe sformulowanie matematyczne metody przystosowano do
prowadzenia analizy we wspdlrzednych nogdlnionych lub/oraz quasi-predkosciach oraz dla
ukladéw skrepowanych wigzami holonomicznymi lub/oru nieholonomicznymi. Dyskutuje
sie uproszczenia w analizie wynikajace z uzycia mezale inych wspélirzednych/predkosci.
Rozwazania teoretyczne zilustrowano przykladem.

Praca wplynela do Redakcji dnia 29 lipca 1991 roku



