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1. Introduction

Saolutions to problems of an elastic solid acted upon by single concentrated
force have a property of Green function in the elastic problems, and can be ap-
plied to practical problems of elasticity by superpositions or integrations of the
solutions. The notion of a concentrated force in elasticity was introduced by Ke-
Ivin, Theoretical idealization adopted t0 an analysis of the problems encountered
in geomechanics, fibre—reinforced compsites and in micro-mechanics defects in so-
lids often reduces to the solution of a boundary — value problem invalving an
orthotropi¢ semi~infinite.or infinite elastic medium.

~ Static problem of a concentrated force solution for anisotropic media has been
reported by many authors, e.g. Pan and Chou (1] and Chow and Yang [2]. Several
researchers have studied the response of an elastic medium twisted statically or
dynamically by an attached rigid disc or annulus (cf Gladwell {3], Tang [4], Rogow-
ski [5]) are can find there an analysis of the torsion of an isotropic, orthotropic and
layered transversely isotropic structure. The torsional problem of an orthotropic
half-space subject to a concentrated twisting moment, which acts in the interior
or on a surface and varies in time is considered in the present contribution. The in-
corporation of both anisotropy and vibration into the load transfer analysis would
enhance the applicability of the solution and its usefulness to engineering practice.
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2. Basic equations

Relative to cylindrical coordinate system (r,@,z) the stress - displacement
relations for axisymmetrical torsion problem are

v
ore = G, (5; = ;)
(2.1)
09z = Gz'g_:

where ¢,0, 0o, are the stress components, v is the displacement and G,, G, are
the material shear moduli for the planes parallel and perpendicular to the r—axis,
respectively. Substituting Egs (2.1) into equation of motion

dog Oge, 2  &Pv
ar t o, troe =t 2
one obtains
v 18v v 18 18%
wrie AtEa s awm (23)
where
G G .
20 By 2 U
B = C. . . P (2.4)
and p is the mass density. : ;
The boundary and continuity (or discontinuity) conditions are
0.0(r,0,t) =0 : (2.5)
[o(r,7,t)] =0 ‘ . (2:6)
[0'29(7': zl’ t)] i -—Tof(t)g(r) (2'7)

where T is a constant couple, f(t) is a function of time, g¢(r) is a function of
radial coordinate, which is axisymmetric, and the symbol [-] denotes the jump of
the function, defined as follows ' :

)| _, = lm[h(< + &) - h(Z - A)] (28)

It is assumed that the sclid body is initially at rest. With these assumptions the
problem is solved by the nse of integral transforms.
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3. Application of integral transforms

To solve the partial differential Eq (2.3) under boundary conditions (2.5) to
(2.7) we use the Laplace (with respect to time) and Hankel (with respect to radial
coordinate) transforms defined as follows

b= /vexp(—st) dt
¢ (3.1)

o = /erl(rf) dr
0
where s and ¢ are the Laplace and Hankel parameters and Jy(r§) is the Bessel

function of the first kind and order one. Applying the foregoing transforms to Eqs
(2.3) and Eqs (2.5) to (2.7) (with the use of (2.1) in (2.5) and (2.7)) we have

B+ 5o 62

91 .

%l’z:o =0 ~ (3-3)

[v‘lL_,, (3.4)
E =~ 22A°® (35)

For a torsional load with the resulté.nt couple Ty which acts along the circum-
ference of a circle with radius equal to a the function ¢(7) takes the form

o) =220 (36)

where §(r — a) is the Dirac delta fun‘ction. The Hankel transform of it is

gi(e) = 2 3.7)

21ra

For concentrated point torque we obtain

g'(¢) = f; ' (3.8)
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Applying the foregoing transforms to Egs (2.1) we obtain

&3 = "Grfﬁl
5 (3.9)
o' '
2y ¢
61 = Gl 8z
where the superscript 2 denotes the second-order Hankel transform of o,6.
The solution to Eq (3.2) is
i = A(s,E) e + B(s,£) = 0<z<7 (3.10)
ol = C(s,£) e 227 " (3.11)
where : ;
; , . 8\} :
B=(e+5) (3.12)

In the domain z > 2’ the solution has the form (3-11) to emsure regularity of
displacement ‘and stresses at infinity. The transforms &2 and 65, may be
_ writton in terms of the three unknown functions A(s,€)y B(s.,f) and C(s,£) by
substituting Eqs (3.10) and (3.11) into Egs (3.9). The boundary comnditions (3.3)
to (3.5) yield these three functions. Finally the Laplace and Hankel transforms of
displacement and stresses are

a_ _To [ —pus+s) | ,~Bule—r'|
- c,,, 3 [e +e )£ (3.13)
ilo = -5; £ [e"’“(”"-) + sgn(z — 2)e | (3.149)
L e Tou £ —Bu(z+2') ~Bulz—2'1| ¢ 5
o= o [emButet) 4 g-bule=s1] f (3.15)

4. Exact closed form solut’mn

Taking, for the inverse Hankel transform of Egs (3. 13) to (3.15), the following
mtegra.l

e—2V/O+(/P ele/ VT

/Jo(ff) W §df = —-\/—Z-QT——‘IJ (4.1)
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and applying for ‘inverse Laplace transform

. ft-q) t2q ‘
£ e f(o)] = { (4.2)

0 0<t<yg

the original solution of vibrations problem about an equilibrium state may be
expresses by

v R 1 vii(z+ 2P +r* oy
(”L”"SﬂZ#T{qu+fy+ﬂrnh+ c ot
IEGI PP 1
flt - : + . 4.3)
( g P [ 2(2—2’)24—?2]3/2 (
VPEARER 0, S
[ EEETEEE ), STV
_ 3To,u z4+z vVEHz+ 2y +1r? 0
0:0(r,2,) = — 14 X2 =+
26 8= {[p’(z+z')’+ ] [ c ot
1p2(z 4 2P + 12 82 2+ 7 Iy z-2
+§# (z+¢2)2+ Ei']f(t— Vi (z+c Y+r )+_

[pz(z _ 2[)2 + rz] 5/2

Sz = 7V ‘z': 2, _ Y2
.[1+‘/." (z . ) +’§t ;"_(’ :2') +’2;':2]. (4.4)
VEz =R + 12
£(t- = )t
o , gt VAGTZR+7 0
L (r)z’t)_:'""— 14 - —4
% e {[2(z+z’)2+ ]/[ ¢ at
1p3(2+z’)2+r2 & Wz + 2+ 2y 1
s g atzlf(’"\/ i )+

[z - 7y + 72" .

(4.5)

14 VEG-FV 178 llu’(z—Z')’+r2 &
1+ LI Lo kB
_x/p?G-z')urz)} |

(4

: fv(t 5

where f(t — ¢) equals zero for negative argument. The disturbance of displace-
ment and stress fields vanishes if t < /uZ(z — )2 + #2/c, in other words, the
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displacement equals zero ahead of the wave—front. If

s .
Vil(z =2+ 12 <t< \/;ﬂiz.' + 2 412

[ [

the second summands are the only non—zero in the solution (4.3) to (4.5), while

for t > /u¥(z + 22 + r¢/c the solution has both summands. The latter is the
superposition case of moving wave with the one reflected at the boundary surface.

In the special cases we observe the following significant results.

4.1. Time — harmonic excitation

With the exp(iwt) time—dependence (steady — state disturbance of frequency
w. i? = —1), the solutions of vibrations about an equilibrium state are

. T iwt ' i
olr, 2, 6 = o exp(iwt) . 1 v [1 n /ﬂz(z_,_ )2 + rz‘ﬂ],
87Gp [ﬂz(z + 22 4 ,.2] ¢
e VIR IR 1 e (4.6)
e —ep e e

.[1‘+ ViR(z - 2P + ,.zx_z_)] e-‘-‘:-\/n’(z—z')’w’}

o6(r,z,t) = _ 3T e::(iwt) o sy
[s2(z + 22 + 72

) 2 F l‘_v'_l 2 2 2.“’1
[l+\/#(z+z)2+7‘2c 3(#(z+2')+_f)cz]'
eV o : (47)

.[#2(2 2y ,.2} i3

o V= r T - L - vy 1)

<oV

]s/z'

1
et 24

'[1.+.>‘/”2(z+’z’)2+r2i‘—:-— %(p2(z+ zl)g +.r2)%’;] ;

ore(r,z,t) = 5o e;:(w” pur?

]5/2'
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e VAP ! 573 [1 + (4.8)

[#2(2 — )2+ ,.2]

; Nl s —
- 2 2'&’_ _ _1_ 2/, N2 2 """_ —53-\/;47(2—:’)24-1'3
+y/pu2(z-2')2 +r A 3(;;(2. 2" +r)cz]e }

4.2, Static solution

The stress and displacement equations derived above can be readily reduced
. to the static case if -g;(-) =0and f(t) = 1. These are

To r : r
vs(r,z) = : : + - _ (4.9)
Sﬂ'Gz” [Fz(z + Z/)z + 1-2] 3/2 {”2(2 _ 21)2 + rz] 3/2
3T z+ 2)r z~2)r
0as.s(r,2) = —=5 (2 2)r 7 (=2 =75 [ (4.10)
[#2(2 + 22 + r2] [,uz(z -2+ r’]
3Ton ) _ r? r? (411)

oro.s(r2) = - [z + =y 417 ' [,ﬁ(# ~ )+ 1‘2]5/2 |

4.3. External point torque

The solution for the external concentrated torque is obtained for z’ = 0. As
an example, we consider time-harmonic excitation by means of a surface torque.
The dynamic displacement and stress components being complex quantities have
the form '

vp(r,z,t) = vg(r,z)[l +/uz? + ,.2'_“;1] exp iw(t - —-————-';‘22:4_)] (4.12)

2 W
e ok e L
JEE) )

~exp iw(t— T



. 516 B.RoGgowsKlI

- 1 w2 w
arep(r,z't) = a,.e's(r,z) [l - 5(,1222 £ rz):f + 4 “1222 + 1‘2?] .

; /#222 + r2
-exp [1 (t - ——c—)J (4.14)
where
To T
vs(r,2) = - (4.15)
s(r,z) 4rG,p (#222 N r2)3/2 :
3T,
06z,s(r2) = — 4;“ e 7 (4.16)
(24
3T, r?
arevs(r' z) = —— opt (4.17)

4m (#2z2 + ,.2')5/2

are the static solutions, which agree with the solutions given by Chow and Yang
[2].

The dynamic amplification factors, i.e. the ratio of the displacement and stress
amplitudes |v| and |o;;| for dynamic problem to a static response may be written
as .

lvp| 2,2 2‘*’2 3
vpl _ oo 4.18
o = [14 2+ 5] (4.18)

L
2z

lore.pl _ bog g takd 1 9 ' N
T [1+ g +r )?(1+§(" 24 ):5)] (4.19)

lore,sl

and |o,e pl|/loe:s| has the same value as (4.19) for z # 0.
The other cases of excitation being a function of time may be also easily con-
sidered. The isotropic counterpart of the solution is obtained for u = 1.
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Dynamiczne skrecanie ortotropowej pdlprzestrzeni

Streszczenie

Otrzymano Scisle wzory dla przemieszczenia i naprezen w ortotropowej poiprzestrzeni
skrecane] zmieniajacym sie w czasie momentern skupionym, wykorzystujac metode trans-
formacji calkowych Hankela i Laplace’a.
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