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DUAL FINITE ELEMENT METHOD IN FRICTION PROBLEMS!

- ZpzIStAW WIECKOWSKI
Technical University of Lédé .
The application of the equilibrium model in terns of ‘the finite element me-
thod to plane stress and plane strain problems is considered in the paper, The
influence of friction of Coulomb type is taken into account. The problem is
set in the form of quasi-variational inequality. The Airy stress function is

used for calculation of the statically admissible solution. The iterative me-
thod of solving of the problem and some numerical mults are presented in

the paper.

1. Setting of the problem

Let Q be an open bounded domain in R? with regular boundary 82. The plane
stress and plane strain problems for the isotropic elastic body are considered. It is
assumed that the friction boundary conditions hald on the part I, of the boundary
90. The solution of the problem satisfies the following relations

(1) tbe strmn—dxsplwement relations

Eap = ‘(“a.ﬁ + g,a) on 2 (1.1)

‘where £, is the tensor of small de{ormatlons
(ii) the equilibrium equations

Opag +ba=0 on R {1.2)
(iii) the constitutive relations

Eaf = Cafiys Oxs (1.3)

1The paper rewarded with the first prizein The Polish Theoretical Papers on Mechanical Engi-
neering Competition held by the LédZ Branch of Polish Socicty of Theoretical Applied Mechanics
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where the fexibility temsor ¢ has the form

2

Capne = = [(1 + 1) 895 = V(2 + K0 Ybap bs]

C!
E is the Young modulus, v is the Foisson ratio, and & is equal to 0 or 1 for the
plane stress problem or plane strain problem, respectively;

(iv) the boundary conditions

ny = Uy on I, (1.4)

78a g = Tq cen I, (1.5)
uy, <0 oy <0 uyo, =0 on T 1.6)
jorl < ployl up0. <0 g (

where
rLurl,ul, =80
TiNlpy=r,NIy=I,NT, =0
n is the unit vector outward normal to the boundary 82
Uy = Uy Ng
Oy = Oag Mg Ng
UTa = %o — U g Mg (1.7)

0Ta = (0ap Rg — Opy N3 Ty Ng)

2. Variational formulation of the problem

We shall set our problem in the variational form. Using Eq (1.3), we can write
the following equation

/(c,_,ﬁ,,g TnE — 506)(7019 e Ua.ﬁ) dr =10 (2‘1)
n i

After using the relation (1.1) and the Green’s formula, Eq (2.1) can be written as
follows '

/caﬁ‘v5 0y6 (Tap — Gap) dz — / Uo (Tag — Oag) ng ds+

o

2 an
+/u, (Tap — Oap)pdz =0 _ (2.2)
fy]
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Let Y denote the set of statically admissible stress fields
Y = {T € [Lz(ﬁ')]‘1 : Taf = Tfa o8 + be =0 on 2
rapng=Ta on I,} (2.3)

We can see that Eq (2.2) induces the equation

/caw 05 (Tap — Cap) dz ~ /Ua (Tap — Gap) np ds +
a L

-+/ua (Tap —0ap)ngds=0 VreY oe€eY (2.4)
L

Let B denote the following set
Bloy)={rr : Irz| < plonl} (2.5)
It follows from Eq (1.6) that the following inequality holds
up(rp —0,)20 Vr. € B (2.6)

We see, from Eqgs (1.6) and (2.6) that the last integral in Eq (2.4) is non—negative
/ tg (Tap = Oap) np ds =
1,

= /[uN(rN —0y) + ug(r, — a,)-] ds >0 V1 € K(o)
Ty ;

where '
K@y)={reY: 7,20 | l<ploy] on I} @.7)

Then we can write our problem in the form of the quasi-variational inequality:
find 0 € K(o, ) such that

/ca.@mf Ons (Tap — Oap) dz 2 /Ua_r (rap — qaﬁ) ng ds
Q g
Vre K(a,) (2.8)

The problem (2.8) has a unique solution. The theory of quasi-variational
inequalities has already been described (cf [1,7]). Some applications of quasi-
variational inequalities to contact problems in mechanics have been given by e.g.
Bielski and Telega [2], Hlavatek et al. [6] and Telega [9).
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3. Finite element discretization

The statically admissible stress fields, whxch bekmg toY, are estabhshed in
terms of the Airy stress function &

Taf = €ay €5 P o5 + 0ap ¢ (3.1)

in Eq (3.1) ¢ denotes the potential of volume forces b, i.e. bo = —,a, €ag is the
permutation symbol. The functions menticned above are to be of classes as follows

dc H¥ (D)P=2Z . (39
p € HY(D) (3-3)

where H?(2) is the Sobolev space, and
P={¢: &.=0 VYo,p=12}
Let Z, denote the following subset of the space Z
Z. = {é €EZ: eoqepsPpunpg=Ty 'om 1‘,} (34)

It is easy to proof that the stress fields generated by the relation (3.1) belong to
the set Y if the function @ belongs to the set Z,. and by = —(p a.

Let 7, be a finite element mesh for 2 such that 2 = | K;, K; € T3, where K;
is the subdomain of £2. Let Z; C Z denote the discrete space associated with 7.
The relation (3.1) gives the stress fields fulfilling the equilibrium equations inside
12 only; the boundary equilibrium conditions (on I, ) are fulfilled by the use of the
Lagrange multipliers technique.

The discrete formulation suited to Eq (2.8) can be written in the form: find
o € Kn(ony) such that '

/cag,,g.ah-va (Tap — Ohap) dz > / Ua (.T"ﬁ ~ Ohapg) ng ds
e ; L
Vr € Ki(ons) (3.5)

where .
Ky=KnY, (3.6)

Ys denotes the discrete subset of Y associated with Z,. S.nd 7.
The rectangular element of Bogner, Fox and Schmit [3] is utilized in the present
paper, so the space Z; can be represent as follows

Zy = {@ €Z: SeC(DLd| cQ(K) VK. €T} (3'.7)
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where Q3(K) is the space of all polynomials of degree less than or equal to three
-with respect to both variables z;,22. The friction conditions (1.6) on the boundary
I', are checked at four points on the side of the rectangle K; € 7}, coordinates of
which are compatible with the Gauss quadrature rule.

4. The iterative solution

Let A be the following space
A= HE(I,)

and let A, be a discrete subspace of A associated with the Gauss integration rule

for the boundary I,.
The following iterative procedure is proposed for solution of the discrete pro-

~ blem .
. (1) initiation of A, A, € Ap: /\g‘,’) = '\-(,9) =0, .

(ii) for § = 1,2, ..., calculation of the successive estimation of a}:), z\ﬁ) and z\g)
from equations

/cap.,g a,(g‘ (Tap — a,(lgﬁ) dz = /Ua (Tap — a,(lzﬁ).ng'ds +
o] I,

(4.1)
+ [ (= o)+ XD (- o] &6 wre
I _
A6 = niax(z\g—l) + whag),o_) for o, >0 . (4.2)
i 0 for 0y, <0 :

. ' for o@>0 or o) =0
A0 = ma.x(ma.x(,\;f—l)?o) + A,O) for o0 <0 & o) >0 43)

min(min(,\gf-l),o) 2 A,O) for o) <0 & o <0

until the required accuracy of solution is achieved, where
(1)
o

A=w,(1- oy ‘l) (4.4)

o]

Wy, Wy > 0.
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5. Numerical results

The plane stress problem for the rectangular elastic plate compressed by two
rigid plates is considered (see Fig.1).

20m

L 2.0m -

Fig. 1.

The relative vertical translation U between the rigid plates is given. The
contact between the elastic body and rigid bodies is assumed to be of Coulomb
type. Calculations have been made with the following data: E = 2.09 - 10° MPa,
v = 0.3, U = 0.001 for several values of the friction coefficient. The quarter of
the plate has been divided into 4 square elements. The obta‘ned maps of principal
stresses are shown in Figs. 2 + 5 for the following values of friction coefficient u:
0, 0.1, 0.2, and 0.3.

For each value of g, 30 iterations have been performed. The value of w, has
been experimentally defined as equal to 1- 105, Tab.1. consists the magnitudes
of vertical force P which cause the contraction U.

Tab.1

i - P2
0.00 | 209.00 (exact)
0.00 209.15
0.05 210.67
0.10 212.05
0.15 212.86
0.20 213.44
0.25 213.81
0.30 213.89
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Napreiemiowa metoda elementéw skoticzonych w zagadnieniach tarcia
Streszczenie _
W pracy opisano zastosowanie naprezeniowej wersji metody element6éw skonczonych w
gadnieniu tarcia Coulomba. Rozwazono plaskie zagadnienia teorii sprezystosci. Zaga-
dnienie sformulowano w postaci nieréwnosdel quasi-wariacyjnej. Statycznie dopuszczalne

pola naprezen skonstruowano przy pomocy funkcji naprezen Airy’ego. Podano iteracyjny
algorytm rozwiazania zagadnienia oraz przyklad obliczen. :
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