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The plane set of N elastic fibres is investigated. Eachi fibre interacts with
the two mearest neighbours, the interaction force being proportional to the
difference of the displacements. The dispersion relation bas been written in
explicit form. The displacement has been written as the sum of displacements
corresponding to the subsequent N modes. The equations of statics are
written as the set of N linear algebraic equations. The displacements and
stresses have been calculated and plotted against the distance for the case
when one or two fibres are damaged in a bundle of five fibers, and for the
damage of the boundary fiber in a bundle of 21 fibers.

1. Interaction between fibers
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Fig. 1.

Consider N elastic fibers embedded in the elastic material, Fig.1. The displa-
cement u, of the fibre K is a function of the space coordinate z and time t.
Each fiber is connected with two its neighbours by the elastic joints. The first and
the last fibre is' connected with one fibre only. We neglect the dynamics of the
joints and assume that the force exerted by the fibre. X on the fibre ¥ —~1is
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proportional to the difference of the corresponding displacements %, — ug_.; the
proportionality factor is denoted by H. The displacement =, of the fiber K -
depends or: the time ¢ and the Cartesian space coordinate z

e = ug(2,1) (1.1)

In this paper we consider statics only and therefore the time dependence will
be later eliminated. However, since the approach is parallel to that in the dynamic
situations, (cf [1,2]) and since this does not consume any additional space we keep
in the derivation the time dependence. The derived formulae will be used in the
the dynamic solution, that will be discussed in a later paper. :

N demnotes the total number of fibers. The case N = 1 is trivial and was
treated in many textbooks. More interesting is the interaction of one fibre with
rigid surrounding treated by Sokolowski: ([3]). One special form of displacement
for N = 2 was treated in elsewhere (cf [4,5]). Here we assume N > 2. Each fiber
has the same elastic modulus FE and the same density p. The above assumptions
lead to the following system of equations of motion

Euyzz + H{ug— w1) = pury
Eugzz + H(us + w3 — 2up) = pugy:
Eusze + H(ug + uz — 2u3) = pugy (1.2)

Euy ,..+ H(uy +uy_, —2uy )= PUy s
EuN,:: + H(ug_, —uy) = Py,

In the fibre K we expect two longitudinal harmonic waves, one of amplitude
Ag running to the right and the other of amplitude B, running to the left.
Therefore the displacement u, and stress o in the fibre K are

u, = Ay expi(—kz + wt) + B, expi(kz + wt)
(1.3)
oy = —ikEA, expi(~kz + wt) + ikEB, expi(kzr + ut)

where w is the frequency, and k the wave number.
Eqgs (1.2) are satisfied, provided the amplitudes satisfy the system of algebraic
equations : .

(2p+1)A1 = 4,

(2p+2)Az = A3+ A

(2p+2)As = Ay + A2

(27 +2)A4 = As + A3 | (1.4)
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(2p+2)Ay_, = Ay + Ay,
(2p+ 1Ay =4,
where o )
il ool
Note other structure of the first and the last equations. Exactly the same system
of equations holds for B,, K = 1,2,...,N. In ordér to save space we do not
write this system, remembering that everywhere in this and next chapter A may
be replaced by B. The above system of equations may be written in the more
convenient matrix form

F2p+1 -1 0 0 0 0 0 0 [ A
-1 2p+2 -1 0 0 0 0 0 Ay
0 -1 242 -1 0 0 0 0 Az
0 0 -1 2p+2 -1 0 0 0 Ay | =¢
0 0 0 0 0 ... =1 2p+2 -1 Ay_,
L0 0 0 0 0 ... 0 ~1 2p+1][ 4, |
(1.6)
A, will denote the determinant of the coefficients
2p+1 -1 0 0 0 ... 0O 0 0 \
=1 '2p4+2 -1 0 0 ... 0 0 0
0 -1 2p+2 =1 0 ... 0 0 0
A, = 0 0 -1 2p4+2 -1 0 0 0 \ N
: 2 : : oo : : TOWs.
0 0 0 0 0 ... -1 2p+2 -1
0 ] 0 0 0 ... 0 -1 2p+1 )
| (1.7)
Define now the two closely related with Eq (1.7) K x K determinaxts,
2<K<N
2p+2 -1 0 0 0 0 0 0 )
-1 2p+2 -1 0 0 0 0 0
0 S I S KRSt 0 0 0
Ry = 0 0 -1 2p+2 -1 0 0 0 \ K
: g e e : o X : : Tows
0 0 0 0 0 ... -1 2+2 -1
0 0 0 0 o ... 0 -1 2p+1 J

(1.8)



570 , Z.WESOLOWSKI

o R 0 0 0 ... 0 0 0 |
-1 2+2 -1 0 0 0 0 0
P =17 peTrvalc - B 0 o0 0
5= B, TR B [ o [\ g
: : 3 : 2 d : % TOWS
0o o 0 TG Al O R S Gt
0 o 0 0 .. B . 0 =1 41l ,
(1.9)

In order to calculate the determinants A x and R, first we express them by
the determinants of lower order. There follow the two recursive relations :

A =(2p+ I)Rx-.x + Sk-s (1'10)
By =(2p+2)Ry_, + Sk, (1.11)

Eliminate from the above relations the determinant § x—1- There follow two
recursive formulae for R, and A,

R,=(2p+2)R,. ,—-R,_, g (1.12)
Ay =(2p+1)Rs_, — Ry, (1.13)
These formulae allow one to calculate R, and A, as the functions of p for
arbitrary K. However already for K > 6 this demands rather long calculations.
In the next chapter introducing other description we shall be able to replace the
recursive formulae by explicit functions. Here in order to gain some insight in

the problem we give the first four determinants R, and. A, expressed as the
functions of p

Ry =2p+41

Ry=4p*+6p+1 ]
R3 = 8p° +20p° + 12p+ 1 (1149
Ry = 16p* + 56p° + 60p* + 20p + 1

Az =4p(p+1)

As = 2p(4p® + 8p + 3) : ; |
Ad=8p(p+1)(20° +4p+1) (1.15)
As = 2p(4p* + 6p + 1)(4p* + 10p + 5) ks
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Note that A;j would correspond to a single fibre, not interacting with other
fibers. We do not consider this degenerate case. Eq (1.6) posseses for each p the
trivial solution Ay = Az = ... = A, = 0. It posseses the nontrivial solutions
if the determinant A, ‘equals zero. Therefore p is not arbitrary, but must be
calculated from the equation

Ay =10 (1.16)

In order to gain some insight in the mechanics of the system we list here the
roots of (1.16) for N = 2,3,4,5

N=2: p=0, -—1

1 3 _
N=3: p=0-3 -3 (1.17)
1 1
N=4: p-0,~1,—1+$,—1—--ﬁ
Nes: ~0 —3-v5 ~3+v5 -5-5 —5+.5
- . p“ ’ 4 L] 4 ’ 2 ] 2
a
® (2,0) 1)
I o -
(b)
(3,0 (31) (32)
L < ] =
> - I
(c)
(%,0) (41)
2 43)

Fig. 2.

For each number of fibers one of the roots is p = 0. In accord with (1.8) this
corresponds to A; = Az = A3 = 44 = ... For N = 2 the second root p = —1
corresponds to A2 = —A4,, (Fig.2a). The arrows represent the amplitudes or,



572 Z.WESOLOWSKI

equivalently, the dxsplacement in the fibers at fixed time. For N = 3 the root
p = —1/2 corresponds to Az = —A;, Az =0, and the root p = —3/2 corresponds
to. As = A;, A = —24,, (Fig.2b). For N = 4 the root p = —1 corresponds
to Ay = Ay, A; = A3 = —A;. To the root p = -1 + 1/\/- corresponds
Ay =(-1+4 V2)A;, Az =(1- V2)4;, Aq = ~A). To the root p= —1 - 1/\/-
corresponds Ay = 4y, Ay = A3 =—(1+ \/_ 2)A;, (Fig.2c). Note that the number
of roots and equivalently the number of different modes increases with the number
of fibers and equals N.

2. Explicit functions

The form of the recursive formula (1.12) leads to the conclusion that the sub-
sequent determinants R, constitute the generalized Fibonacci numbers a.nd may
be represented by the formula

R, = bk + bk (2.1)
where by, b, are constants and »;, v» are the solutions to the quadratic equation

-2+ +1=0

ma=p+1typ?+2p (2:2)

The solution (2.1) must meet R,, R; as given by Eq (1.14). The calculations lead
to the following formula for R,

RE = PP PAVE A2 i+ P+ 2K +

equal to

F AR (2.3)
+ -p}‘f:;2 (P+1 Vp +2P)K

Special caution should be taken if p = 0. In this case we shall base on the
recursive formula (1.12), which together with Eq (1.14) gives R, = 1. Substitute
the expression (2.3) into Eq (1.15). The following expression for A, is obtained

. P+ Vo + pr
Dt 2 2
i Z ,._.__.+2 lp +3p+(2p+1)\/p +2p] (p+1+
/ . +\/1->5 p
+ 2 2 N 2 p 2 _ ;

(2p+ 1)\/;»2 FoR(p+1- \/pz yopV?



FRACTURE OF PLANE BUNDLE... 572

. Again the case p = 0is not inciuded in the above formula. The nontrivial solutions
of the system (1.6) do exist, if the determinant equals zero. The analysis of Eq
(2.4) leads to the conclusion that A, = 0 for a discrete set of values from the
_interval —2 < p < 0. From Eqs (1.10) and (1.15) it follows that for p = 0 there
is. Ay =0, too. Note that for p < 0 the values of the square root in Eqs (2.3)
. and (2.4) are imaginary.

Further we calculate the roots of Eq (2.4). Here we assume that p has al-
ready been calculated and calculate the amplitudes A for fixed N. Because
the amplitudes are determined exact to in the multiplicative constant assume for
simplicity A; = 1. In the next chapter when considering already the full system
of amplitudes A, B, we denote A; = A, B, = B allowing arbitrary A, B.

In accordance with the matrix equation (1.6) we obtain the relation A; =
—(2p+ 1)A;, and the recursive formula ’

Ap = (2p+ 2)Ax_, — Ak, (25)

valid for K > 2. K we additionally assume Ag = 1 then Eq (2.5) is valid for
K > 1. This formula exactly coincides with the formula (1.12) for R,,. Therefore
the calculations exactly parallel to that leading to Eq {2.1) give

A = avE b 4 ek

where ¢;, ¢; are constants. We must now take into account that A; = 1,
Az =2p + 1 and calculate ¢, co. There is

cg+e =1
v+ =2p+1

and after solving for ¢;, ¢; we obtain

 1p+ VPP +2 '
A = BEVEXG 0 ropRis

-

v 1-p+vVp*+2p,. / K-1
+ L (1+p—-+/p?+2
2 VPP+2p Lt ?)

Note that for p = 0 all the amplitudes are equal A, = const. and there exists
no relative motion of the fibers. Because of the assumption A; = 1 the above
formula gives in fact only the ratios of the amplitudes.

It was mentioned above that the negative values of p are essential for the fur-
ther calculations. For these values the roots in the above expressions are complex.
Because of this we prefer to introduce the new parameter

(2.6)

s§=—p (2.7)
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In order to simplify at this stage the notation define
R=V2s- s
(R is real for —2 < p < 0) and obtain from Eq (2.4)

435 4 8s% — 25 + 4i(s? - s)R] (1-s+iR)V"2 -

1
A, = —|—
" %R [ (2.8)

- -2—}1—5 [—433 + 8s% — 25 — 4i(s® - s)R] 1-s—iR)N?
Note that there hold the identities

—45% 4 85% — 25 + 4i(s® — s)R = ~25(1 — s + iR)?
~45° + 85% — 23 — 4i(s® — s)R = —2s(1 — s —iR)?

They allow one to write Eq (2.8) in the simple form
58 L R
A= iR(l s+iR)" + iR(l 3 iR) (2.9)
Introduce the parameter ¢ defined by the following relations

,/ — il
<P==L'rctan——-———§“J : if 0<s<1

<p=arcta.n—%:-si+r if 1<s<2

(2.10)

Note that 0 € ¢ < 7 is single-valued continuous function of s for 0 < s < 2.
There hold the identities

(1~ s +iR) = exp(ip)
(1~ s~ iR) = exp(—ip)
o SyE. SL \ (2.11)

V2s — 82 = sin ¢

in which s is the independent variable. If the independent variable is ¢ then Eq
(2-11) uniquely defines s(p). The real-valued complex function (2.9) reduces now
to the real function

'mmﬂnN(p: ——m—-——-&lnN(ﬁ (2.12)
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This determinant must be equal zero. It follows immediately that the possible
values of the parameter ¢ are defined by the relation sin Ny = 0 which leads to
the following expression for

o= m—;-;— m=0,1,2,3,., N =1 (2.13)
The integer m defines the mode of the solution. Obvicusly the modes m > N
do not introduce new functions. The above relation in accordance with Egs (1.5),
(2.10) and (2.7) defines the dispersion relation k{w) for each mode m. In the
next chapter we write this function in explicit form.
Transform now the formula (2.6) using the notation of Eqs (2.7), (2.9). We
have ¥y = exp(ip), ¥ = exp(~ip) and the following formula is obtained

A, = cos(K — 1)p — -;Esin(K ~1)p (2.14)

The other possible forms may be obtained using Eq (2.11). There is

3 .. .
A, = sihv[smwcos(ﬂf“—- 1) — (1 - cosp)sin(K — 1)p] =
(2.15)
e s 1 .
s i stn K — .—;SJH(K - 1)y

Note that for K =1 there is Ay = 1. For K = N in accordance with the second
form of Eq'(2.15) there is

i 1
A g — ———sin(N - :
& §i_‘w,sm}\hp -singasm(N 1) (2.16)

The first term equals zero due to Eq (2.13). Due to the same equation and Eq
{2.11) the second term equals either -1 or 1. For j = 1,3,5,... there is 'A,, = -1,
and for j = 2,4,6,... thereis A, = +1. There follows the important qualitative
result that in one mode the amplitudes of the two extreme fibers have equal moduli,
and the same, or opposite signs.

3. The damaged bundle :

Summarize the results derived above. For the mode m we have

™ = m% m=0,1,2.,N -1 (3.1}
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We consider now (™) as the iﬁdependcnt variables and will express s and its
functions as the functions of (™). In accordance with Eq (2.10) there holds the

reiatien (1 — 8)tan (™) = (25 - s?)%. Solving this equation for s we obtain
st™ =1 4 cos pl™ (3.2)

For each s{™) the same sign must be taken. Remembering Eq (2.11) we infer that
the —sign must be taken. There is '

st™) =1 - cosm—;-r,- for 0<m<N-1 (3.3)
If the mode is prescribed, then the value of s for which A, = 0 is given by the
above formulae. The dispersion relation for the mode -m follows from Eq (1.4)

and the relation s = —p
. [2H pw? _
k-‘\/ 7 \/”23 ; (3.4)

When deriving the relations governing the amplitudes A4;, A;, Ags,...in the
fibres 1,2,3,... in order to simplify the notation it was assumed A; = 1. In fact,
the amplitude 4, is in general different from 1, and moreover it is different for
differont modes. The amplitude of the wave of mode m runuing in the K fibre
in the +z direction will be denoted by Ag"). Bl(,{"‘). will denote the amplitude of
the wave of mode m running in the K fibre in the —z direction. We denote
now Aim) = Alm) Bl(m) = B!™) and obtain from Eq (2.16) the amplitudes for
the mode m > 0 in the fibre K expressed by the two parameters Af®) B(m)

1 . .
(m) — g(m) : fm) _ o — 1)ol™)
AT ) [sin K ¢ sin( K — 1)¢'™] (3.5)
1 . .
(m) _ pgim) = (m) _ sin( K — m)
B™ =B o [sin K¢ sin(K — 1)(™)] (3.6)
For the mode m = 0 we have
AD = 4O B = p© (3.7

In the other paper we shall consider dynamics of the bundle and will use the
full system of equations. In this paper we intend to consider only statics of the
damaged bundle, and therefore in Eq (3.4) we assume w = 0. In this case the
dependence on time drops out from all equations.

In accordance with Egs (3.1) and (3.4} there is

k(m) &= ”—2—EH-3("")
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Taking into account Eq (3.3) we obtain

k(m)=i\’g§1/1-cosm-};— for 0<m<N-1 (3.8)

2H
Q=\% (3.9)

There follows the formala for the displacement u,

;.Ag") exp(+r”%‘. /1 - cosm-;rv) +
;Bg")exp(—z\/z—g-\/l —cosm%) ‘

The summation is over all modes m, from m =0to m = N — 1. Note that for
z — oo the first term tends to infinity, and for 2 — —oo the second term tends
to infinity.

We shall consider the case when one or more fibers are broken at z = (.
Because of this discontinuity we shall construct the solution from the solution for
z > 0 and the solution for z < 0 demanding the continuity of displacement and
stress in the non—-damaged fibers. In the damaged fibers the stress equals zero at
z = 0, and in the non—damaged fibers the displacement equals zero at z = 0. The
symmetry of the mechanical system allows us to concentrate on the solution for
z > 0 only. Obviously the mechanics excludes the infinite growth of the stresses,
therefore Ag") = 0. Take now into account Eq (3.5) expressing Bﬁc’") as the
function of B{™). There results the formula for the displacement and stress in the
fibre K for z > 0

Denote

(3.10)

(m) - - 1)
uw, = BO4 Z o lsin K;T sin—-——(K Nl)m_w]

(3.11}
exp[-—:rQ‘/l — cos m—]
/———— B(m) S sz (K - Dmr
Op = —EQZ 1—(‘OSmF5 DT]'
. (3.12)

exp [—zQ, {1 — cos m%]
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The summation is over the modes m = 1to m = N — 1. To the mode m =0
there corresponds zero stress, The m constants B{™) must be calculated to satisfy
the boundary conditions. We shall consider further several different situations
corresponding to damage of one fibre, either at the boundary,or inside the bundle,
and the damage of two fibers either distant or neighbouring.

In order to gain some insight in the calculations for arbitrary N consider first
the simplest possible system of three fibers, N = 3. In accordance with Eqgs (3.1)
and (3.4) there is :

3 2%
W(O) =0 ‘p(*) = ()0(2) = —3- (3.13)

s =g ' % s? = § (3.14)

s =
kO = g O = f ‘/211 ) = f i/m (3.15)

Substitute Eq (3.14) into the expressions for displacement and stress (1.3). For
the mode 0 we obtain the following displacments and stresses at z = 0

B = B{® = B = p©

u§°’ e ugo) 3 u§°’ = B (3.16)
ago) = ago) = a:(,o) =0

For the remaining two modes we obtain the following relations

B® = gy BV =0 B = —-p®
«M = g u =0 o) = p® (3.17)
oV = -G\/g R o) = G5B
B® = g B = —2p® BY = _p®
ug = B ugz) = -2B® u:(?) = B® (3.18)

o = -6\/2p® =262 o =g [Ipo

where
2EH (3.19)

Denote the stress in each fibre of the non—damaged, ideal bundle by ¢. To
- this initial stress corresponds the initial displacement u = zo[E. Assume that
theﬁbre k = 3 has been broken at z = 0. The fibres k=1 and k = 2 are
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non-damaged. At z = 0 the displacement in the fibres 1 and 2, and the total
stress in the fibre 3 equal zero. The stress in the fibre 3 consists of the initial stress
¢ and the additional stress- _aff‘)'+ 'crg_) + a'g). In accordance with Egs (3.16) +
(3.18) for z = 0-there hald the relations

- displacement in the first fibre

BO) 4 B0 4 5 = g
- displacement in the second fibre
B _28® =g
— stress in the third fibre
G %B'(‘) -'G\/gBm +o=0

Note that at z = 0 the initial displacement equals zero and therefore it does not
influence the above expressions. In the further calculations we assume ¢/G = 1.
Due to the linearity of the system for other values of ¢/G the resulting displa-
cements are ¢/G times larger. We face the system of equations in the constants
BX) :

BO 4 B + B =0

B® 2@ = ¢ (3.20)

\/ggm- /ap® = -1

The solutior of the above system of linear algebraic equations is
Bo - 22
3+v3
- _ 3V2
3+v3
V2
3+ V3
We can mow calculate the displacement corresponding to modes 6,1,2. The
next step is the sumation over all modes and calculation of the total displacements
2, (z) and the total stresses o,.(z) in the fibre K. The formulae (3.11) and (3.12)
reduce to the expressions

_ P
wm(z) = %z + B® 4 BM exp (—zQ\/};) 4+ B® exp (—vag)
ua(z) = %z +BO _ 2B(2)'exp(—zQ\/§) (3.22)

ug(z) = %z + B© _ p() exp(—rQ\/g) + B@exp ("‘3Q\/g)

(3.21)

B® =
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r(2) = o - Q8L exp(~2y/D) - £QE®[F exp(-=0/3)
oo(z) =0 — EQB(2)\/§exp(-xQ\/g) (3.23)

The corresponding curves for u,(z) are given as solid lines in Fig.4. In order
to obtain more clear plots in Fig.3 was omitted the initial displacement zo/E.
Note the displacement jump at z = 0 in the fibre 3. At large distance from z =0
the displacements in all fibres are the same. The stresses o..(z) are given as the
broken lines in Fig.3. Note that for z < 1 there is o3 > 0y and for z > 1.5 there

1s og L 01.

4. Statics of N fibers
Consider now a bundle of N fibers. Consider first the damage at z == 0 of
one fibre labelled K = D. There is
o, =0 .

WMEU= Sy, Slhpy TS, =0 (4.1)

z=10

From Eqs (3.9) and (3.10) there follows

(m) =
Z /1 k) mz- B = Dm7r e (D 1)m1r] -0 (4.2)
N sin mN N

B(m™) Kmx (K - 1)m=x
(0) i — si =
B\ + E TRy [sm N sin - ] 0

m

for K#D (4.3)

The summation is for m = 1 to m = N — 1. The above system of N alge-
braic equations allows one to calculate the N unknowns B(™), and they in turn
determine the displacements in each fibre. :

The heavy lines in Fig.4 give the displacements in each ﬁbre as the function of
z for the bundle of 5 fibers provided the first fibre has been damaged. The broken
lines give the coresponding stresses as the function of z. Note that the stress in
the fibre 2 for z < 1 is larger than in the other fibers. For z > 2 the stress in the
fibre 2 is smaller than the stress in the fibres 3,4,5.
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Fig.5 and Fig.6 give the displacement when the second or third fibers have
been damaged. The corresponding stresses are shown as the broken lines. Note
that at large distance the displacements and stresses in a]l fibers, damaged and

not damaged are equal.

AN/

Fig. 7.

Very interesting is the case when the bdunda,ry fiber of a wide bundle is broken.
To gain some insight we give the corresponding curves for 21 fibers (Fig.7). In all

plots the initial displacement was omitted.

Finally we consider the case when two fibers labelled K = Dl and K = D,

have been damaged
o, =0 05, =0 o o g o)

uK=_0 for K#Dl,Dz 31 z=0

The above bonnda.ry conditions we write .as the equations for B(™)

B(m) sk
Z 1 - cos m—- sin Dlm — sin (Dy 1)m1r.]. =0
V N sin mN N ]

(m) -
2‘/1—c05m1 B sin D2m1r n(D2 Nl)m7r_]=0

(4.4)
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i} B™ . Kmr (K — D)mx
(9 - . — JJmay
2 +2... .sinmﬁ-[sm Fo S| =0

for K # Dy,D; (4.7)

‘Fig.8. gives the displacements in the bundle of five fibers, when the first and
the third fibres have been damaged. Note that the displacement in the second
(non-damaged) fibre in one interval of r is larger than the displacement in the
third (damaged) fiber, The corresponding stresses are given in Fig.9. At large
-distances from z = 0 the stresses and displacements in all fibers are equal.

Generalisation of the above formulae to the damage of more than two fibers
can be done by adding additional equations of the (4.5) type.
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Przelom plaskiej wiazki elastycznych wldkien. St'atyka

Streszczenie

W pracy badano plaska wigzke N elastycznych wlékien. Kazde 2 nich oddzialywuje
z sila proporcjonalng do réznicy przemieszczen na dwa sasiednie wildkna. Réwnanie dys-
persyjne zostalo przedstawione w postaci rozwinietej. Przemieszczenie przedstawiono jako
sume przemieszczen odpowiadajacych N kolejnym modom. Réwnanie statyki zapisano
jako uklad AN liniowych réwnan algebraicznych. Naprezenia i przemieszczenia obliczono i
przedstawiono w funkeji odleglosci. Przedstawiono 3 przypadki: zerwanie 1 lub 2 widkien
w wiazce 5 widkien oraz zerwanie wldkna brzegowego w wiazce 21 wiékien.
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