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The linear stability theory is used for investigating the transition phenomena
in a three-dimensional supersonic boundary layer induced on a cone rotating
in an external flow. The stability equations are solved to determine the ei-
genvalues, using the compact two-point fourth-order finite-difference scheme.
The effect of wall cooling on critical Reynolds number is tested.

1. Introduction

The increasing cost of petroleum products and their reduced availability in the
future create new requirements in the design of aircrafts. These requirements make
the drag reduction problem to be of paramount importance particularly, in the case
of large supersonic aircrafts. At any speed, the principal drag reduction possibili-
ties lie in the maximal stabilization of the laminal boundary layer. By minimizing
the growth of linear disturbances, laminar flow can be obtained over a portion
of the surface of an aircraft. Such "stability modifiers” as suction, exploitation
of favorable pressure gradient, wall cooling and wave cancellation can potentially
provide a significant drag reduction by reducing the skin friction over a portion
of the surface of an aircraft. The consistent feature of the three-dimansional (3D)
boundary layer is the presence of spiral vortices in the laminar-turbulent trans-
ition region, which are caused by the crossflow velocity component occurring in’
the 3D-boundary layer. The critical issue for the control of the laminar-turbulent
transition consists in investigations of the stability characteristics of crossflow spi-
ral vortices. A comvenient starting point for such investigations can be the bo- .
undary layer of a rotating cone. This model problem, exhibiting the same rich
variety of instabilities as the swept wing, allows for simpler application of theory
and experiments. Based on such studies, hypothesis can be made on a swept wing
flow. -
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The first experimental studies of the crossflow instability in the boundary layer
of rotating disk (special case of cone) were carried out by Smith (1946), Gregory
et al. (1955). Kobayashi (1981) pioneered the theoretical studies of the stability
of rotating cone boundary layer and his investigations were continued by Koba-
yashi and Izumi (1983). Kohama and Kobayashi (1983) pointed out that on a
rotating cone surface there existed two kinds of spiral vortices: counterrotating
vortices which took place for the cone angle © between 0° < 30° and corotating
spiral vortices for angle of the cone between 30° -+ 90°. The schematic picture of
counterrotating and corotating vortices is shown in Fig.1.

ta) '-_»'-,'ﬁ 1)

Fig. 1. Schematic picture of counterrotating (a) and corotating (b) spiral vortices

The effect of wall cooling on the stability of the two-dimensional (2D) boundary
layer was investigated for the first time by Lees (1947). He found that wall cooling
stabilized 2D-disturbances in a flat plate boundary layer. This stabilization takes
place because the cooling through the wall temperature lowering, decreases the
viscosity close to the wall, which results in a thinner (more stable) boundary
layer. Mack (1975) found that wall cooling stabilizes the first mode but destabilizes
the higher order modes which appear when the mean flow relative to the phase
velocity becomes supersonic. Lekoudis (1979) studied the influence of cooling on
3D-subsonic-transonic boundary layer. He found that wall cooling stabilized the
crossflow waves in a subsonic-transonic range of speed. However this stabilization
turns out to be relatively small compared with the stabilization which cooling
has on Tollmien-Schlichting waves. Balacumar and Reed (1989) investigated wall
cooling in supersonic boundary layer.

In the present work the instability characteristics. of 3D-supersonic boundary
layer induced on the rotating cone surface are investigated theoretically. The effect
of wall cooling on crossflow instability is analyzed.

2. Governing equations

We consider a cone rotating around the axis of symmetry with a constant
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angular speed {2 in external supersonic flow. The cartesian (z;,23,23) and
body oriented (£,(,n) coordinate systems used in this paper are shown in Fig.2,

respectively.

Fig. 2. Schematic picture of rotating cone

The equations governing the flow of a viscous compressible ideal gas (the
Navier-Stokes equations, contmuity equation and energy equation) can be writ-
ten in the following form
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In the above equations .

R

v1,02,V3

> ®' O 9D

distance from the axis of the cone to a point (z1,z3,23)

R=¢5nO 4 (cos® (2.2)
heat transfer
q= —AVT (2.3) ]
velocity components in zy, 9, 3 directions respectively,
density,
temperature,

specific internal enetgy,
coefficient of viscosity,
thermal conductivity.

As mentioned above, the spiral vortices appear in the laminar-turbulent trans-
ition region of the 3D-boundary layer. We assume that spiral vortices appear as

small disturbances

when a laminar boundary layer becomes unstable.

Let wu,v,w be the velocity components in the &, (,7 directions respectively.
The flow parameters (u*,v*, w*, 7%, p*, p*, u*) are described as a sum of mean flow
terms (U,V,W,T,p, P,u) and small disturbance terms (u',v’,w’, 7, p', 9, 1'). The
algorithm for mean flow calculations is analized in Section 4. Assuming the flow
to be locally parallel, we can describe the flow parameters in the following way

w=U)+4 =0+ i(z)ei(a€—+mn—wt)

=0 = ,—,(E)ei(afmv)—wc)



E.SZNITKO 243

w* = W({) +w' = W(C) + w({)ecctmn=)

"= P({) + 7 = P({) + p({)esrmn=A) (2.4)
™ = T({)+ 7' = T({) + F({eErm=)

p" = p(0) + ¢ = p(0) + H(Q)HeEH T

= w(Q) + 4 = p({) + B(L)eilerm—)

where the parameters u*,v*,w* p*, r*, p*, u* are normalized with respect to the
free stream values U, U2p, Tk, pe, ie, respectively. The coordinates £,( are nor-
malized with the viscous scale /v€/U,.. The subscript e refers to the conditions
at the edge of the boundary layer. In the above equations o and m are the £ and
7 components of the dimensionless wavenumber vector k, w is the dimensionless
frequency and @((), 5({), @(¢), (¢), T(¢), (€), A({) are amplitudes of disturbances
(the complex functions).
The viscosity p is assumed to vary according to the Sutherland’s formula

214 C ' 110.4K
”zT%T$E) C=1n

Viscosity is the function of temperature only, so its fluctuations can be written in
the form (Malik et al., 1982)

(2.5)

du
[ ! 2
u, = —T ( .6)

Substituting the expressions (2.4) -~ (2.6) into the normalized form of governing
equations (2.1), we obtain the following ordinary differential equations

(AD*+BD+C)® =10 (2.7

where: D = d/d(, ® = [4,9,,7,p]" is a vector of the complex functions, and
A,B,C are [5 X 5] matrices. :

The boundary conditions on the velocity fluctuations are the usual no-slip and
no-penetration conditions :

(0) = 5(0) = %(0) = 0 (2.8)

For the gas flowing over a solid wall the boundary condition (2.9) refering to the
temperature fluctuation is used
H0)=0 (2.9)
Since in supersonic flow waves may propagate to infinity, the implementation
of the boundary conditions at the outer edge of the boundary layer needs some ,
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explanations. Over the boundary la.yer edge the elements of the matrices A,B,C
(Eq (2.7)) depend only o R(({) (nondimensionalized value of R(() - Eq (2.2))

R({) = Resin® + (cos 6 (2.10)

At high Reynolds number R(() becomes large and the variations of R({) from
Resin 6 are very small. So, for a point far from the wall we can take R{({) =
const. In such a case the elements of the matrices of Eq (2.7) become constants
and Eq (2.7) can be solved by means of the exponential method. The solution of
this system of equations can be written as

=28:c.-q.-e'-‘f - (2.11)

=1

AR Al ve AR

[ E—

where g; are column vectors. Eliminating solutions physically impossible (with
real part of r; greater than zero) we have at { — oo

o
da
«
v
P— 4
+ | =Y Cigeri? (2.12)
dr *i=1
£
w
| & |

Now we have eight equations with four unknowns Cj,C;,Cs and C,. Eliminating
- Cy,C,,C3 a.nd_C.. we obtain four necessary boundary conditions at the far field in
terms of (&, %,%,5,7, &, ®, 42). -

3. The solution technique

The linear compressible stability equations are solved using the fourth order ac-
curate two-point scheme which is derived by means of the Euler-Maclaurin formula
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(Malik et al., 1982)
- [dv" i - —[ﬁ- PO oy @)

where _ o
¢ = o(C) he = (i — (e
The nodes are distributed so that
k=1

- M- )
&= I—H'EEW k=12,.,N+1 (3.2)

where: N +1 is the total number of nodes and (, is the location‘of the boundary
layer edge. The scaling parameter M is chosen to be twice the height of the nodal
point at which the nondimensional mean profile has the value of 0.5 (cf Balacumar
and Reed, 1989; Malik et al., 1982). It was found that for a given number of points
such a choice of M yielded maximum accuracy.

To apply scheme (3.1) to equations (2.7) we have to formulate them as a set of
the first-order diﬁeg‘ential equations. We can write them as (cf Malik et al., 1982)

—_ = Ea,_,go_, i=12,..,8
j=1
(3.3)
2y,
=Y b;
where
- _du — 5
1= p2 = Ec— w3 = )
= -7 _dr
$s=p s = e = EE
- @ _dwo
24 pg = &
bij = -§‘=- 3wy
=1
‘Finally we can write
k k.
i Z %5 f+ Z 'J(PJ
J—l J=l
(3.4)

2 8
_[q,‘-x + Eak—l k-1 _’;_;Eb'@j-lq,;—l] =0 i=1,2,..8
j=1
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Following Cebeci and Bradshaw (1984), the above equations system (3.4) with
the boundary conditions can be written in the block-tridiagonal form

A + Brot + Chp*t = H ~ (3.5)

where Ag,Bi,Cr are 8 X 8 matrices and H'is a 8 x 1 null matrix so the linear
stability theory is now reduced to an eigenvalue problem.

To solve the linear stability equations directly the nonhomogeneous bounda.ry
conditions are imposed at the wall. The boundary condition ¢;(0) = @(0) = 0 is
replaced by ¢4(0) = p(0) = 1. Matrix H of equations (3.5) now becomes

H =[0,0,0,1,0,0,0,0)7 (3.6)

This is equivalent to normalizing the eigensolutions by the value of pressure per-
turbation at the wall. Now Eq (3.5) is nonhomogeneous and nontrivial solutions
can be obtained using block elimination method. Newton’s method is then used
(Eq (3.7)) to iterate on « so that the abandoned boundary condition %(0) =0 is

satisfied
6u(0)

a(0) + =0 (3.7

The iteration process is fast. Fig.3 xllustra.tes the lteratlon process obtained in
the present paper. -

n [aai

Fig. 3. Dlustration of the iteration process (Reynolds number Re = 2000, edge Mach
number Ma, = 3.0, cone angle 6 = 15°)

4. The basic state

The equations of the rotating cone boundary layer can be written in the follo-
wing way (Balacumar and Reed, 1989; Dllingworth, 1953)

d(prU) + d(prV)

3¢ ac -0
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oU oU WWwdr d s dU
%) = 3¢ ("¢

T =%’-‘W

p(Ua(gZV) TV (;ZV)) -2 (#0(;?’)) (4.1)
8h _Ohy 1 8, Oh U2 (OW

(Uaf +Va<) = Eac( _Z) + [(ac) + (792')2]

ph = peche

Here r(¢) is the radius of cone at the section §&,Pr is the Prandtl number
which is set to be constant Pr = 0.72, and k is enthalpy.

At the wall we have no-slip condition at the impermeable wall and zero heat
transfer (i) or isothermal (ii) condition

(i) g%::o

(1) h =const (4.2)

.

a) (=0: U=V=0, W=0r¢, {

b)) (—o: U=U., V=W=0, h=h,

The equations are transformed using Mangler’s transformation (Cebeci and
Bradshaw, 1984)

¢
1 1 1 Re
z= ﬁo/rz(f)df = 775 in2 @~ 63 sin 63R06 (4.3)
_ 1(6)¢ .
y=—7 (4.4)
U=U b (4.5)
=Lk (V + ﬂlcU) _ : (4.6)

where L is a reference length taken in as a unity for computations. Re and Ro
are Reynolds number defined in the following

- Ju.t :

Re — Uc—' (4-7)

Ve

S Y
Ro= /0. (4.8)

After transformation we obtain

8(pl) . 3pV) _
"8z | By
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il o0 Ww 9, 86U
PU6—+ Vay P37 —3;(#6—!’)

_ 0w ow  Uw 'a(aw

pU—— + pV—— (4.9)

6z TPy TP T\ ey
p0ge V5 = 5 (u3) +ul(5) + (3)]
ph = pehe
The boundary conditions are
® =0

a) y=0: UD=V=0, W=0r=0V3zsin6, {

(1) h = const

b)) y—=o0o: U=U., W;V=0, h-=h,
(4.10)
Once again we transform equations in terms of similarity variables
¥(z, y) = VPel‘cUezf(za 3) . (4-11')
ds = || UeLe P gy g (4.12)

z pe.

Finally the system of boundary layer equations can be written in the following
form

=z

ﬁ( gﬁ)+1fa2f ww (6f 0%f 3f32f)

3s \FP s 2702 3 0s 0z0s Oz 92

o, 8W\ 1,0W 1._08f (0f0W -0f W

5" 55) + 3155 3% % = (55 %% ~ 32 55) (1)
55 (105) + 5150 + Pets = DMauo[(51)+ (57)] =

_ Bf(')h af oh
= Prz (asaz 32:83)

ph=1
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The boundary conditions are
@) 5 =0

a) s=0: f=g£=0, W= {32586, {
(38) h = comst -
b) s-—o00: %{:1, wW=0, h=1
| (4.14)
All parameters in Eqs (4.13) and (4.14) are dimensionless.
To obtain the initial condition for parabolic system of equations (4.13) we
expand them in terms of small parameters method (cf Balacumar and Reed, 1989;
Tlingworth, 1953)

e= 2V3zsn 6 (4.15)
f=3 e fuls) (4.16)
nzom
=€) "wn(s) ' (4.17)
°°n.=0
h=Y" e*ha(s) (4.18)
n=0

After introducing above expressions into Eqs (4.13) and collecting terms, we

obtain a system of three equations (4.19) + (4.21) which are solved by the Runge-
Kutta scheme and the Newton’s method

Lo bfhee
& (woSh0y 4 T2 g, 200 ‘”‘° +Pr(n_1)Ma,up(‘f:f Y=o (a20)
) e

The boundary conditions are
() 4=0

a) s=0: fo=#§-=0, ‘w°=1,
(%) ho=comst  (4.22)

b) s—o0: go-—l | wo =0, ho =1

The solution to the system of equations (4.19) <+ (422), obtained very close to
the tip of cane, is used as an initial condition for equation (4.13). The resulting
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basic state profiles obtained for /U, = 0.375, cone angle € = 15° and different
edge Mach numbers are shown in Fig.4.

o) i1}

g

S

o

0y,

Fig. 4. Basic state profiles (a) streamwise component, (b) azimuthal component

5. Numerical calculations

Numerical calculations were made for two different temperature conditions
at the wall: zero heat transfer condition (8T/8(), = 0 (w denotes wall) and
isothermal condition T, = const. .

5.1. Zero heat transfer condition at the wall

For the first case solutions were obtained for the following combinations of
rotating speed {2/U., edge Mach number Ma,, Reynolds number Re:

2]U, | Ma, Re

0.000 | 3.0 | 1000 [ 2000 | 3000
0.200 | 3.0 | 1000 | 2000 | 3000
0.375 | 3.0 | 1000 | 2000 | 3000
0.500 | 3.0 | 1000 | 2000 | 3000

In Fig.5a-d, the amplification rate —a; versus wave number a, is analyzed.
Results are obtained for Reynolds number Re = 2000 and different wave angles
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Fig. 5. Instability characteristics obtained for rotational speeds
2/U. = 0.0, 0.2, 0.375, 0.5, edge Mach number Ma, = 3.0, Reynolds number
Re = 2000, © = 15° and different wave angles ¥
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ep = {q n'1 ( Ww]

Inviscid
direotion

Fig. 6. Schematic diagram of the flow and wave diréctions, respectively

4 (including the angle of the most unstable wave denoted by 7,,). The wave
angle 7 is defined by the tany = 8/a = (m/R)/a (Fig.6). The most unstable
crossflow disturbance, according to Owen and Randal (1952) is expected to lie
close to the crossflow direction, ie. direction normal to that of the inviscid flow
direction. Schematic diagram of the flow and wave directions is shown in Fig.6.
The values of the angles <v,, and crossflow angles ycF are given in Table 1. In
Fig.7 the influence of Reynolds number on stability characteristics is shown.

From Fig.5 we see that the amplification rates increase with increasing rotatio-
nal speed (and with increasing maximum value of crossflow profile). In Table 1 the
maximum value of crossflow profile CFrq.; and the crossflow Reynolds number
Recr are shown. When the variables are nondimensionalized by the edge velocity
and length scale, the crosslow Reynolds number equals

Recr = CFmasbipgRe - (5.1)

where §,0% is the distance from the point where the crossflow velocity equals 10%
of CFpa to the wall. The crossfiow profiles obtained for Ma, = 3.0 and for
different rotational speeds are shown in Fig.12 where lines denoted by AD refer
to zero heat transfer condition.

The amplification rates (Fig.5) also increase with increasing wave angle and
reach the maximum value for angle +,,. In this paper we restrict our investigations
to crossflow disturbances but it is known that when the mean flow relative to the
phase velocity becomes. supersonic, there exist several unstable modes. In the
3D-bourdary layer the amplification rates of the first modes increase while the
amplification rates of higher modes decrease with increasing angle from inviscid
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" Fig. 7. Instability characteristics obtained for Ma, = 3.0, @ = 15° rotational speeds
2/U, = 0.2, 0.375, 0.5 and wave angles y = 61°, 57°, 53° respectively, and for different
: Reynolds numbers '
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Fig. 8. Instability characteristics obtained for (a) Ma, = 5.0, Re = 3000 - spatial theory,
for (b) Ma, = 8.0, Re = 2000 — temporal theory (Balacumar and Reed, 1989)
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flow direction. Fig.8a,b show characteristics obtained by Balacumar end Reed
(1989) for 2/U. = 0.375, Ma, = 5.0, Re = 3000 (spatial theory) and for 2/U, =
0.375, Ma, = 8.0, Re = 2000 (temporal theory), respectively. It can be seen that
for so high Mach numbers the most unstable are waves (second modes) very close
to the inviscid flow direction (the angle between the inviscid flow direction and the

. meridional direction for both cases in Fig.8 is 6, = —16.2°). The amplification
rates of crossflow disturbances are much smaller than the amplification rates of
second modes. The second modes become dominant for the edge Mach number
about Ma,. > 4.0.

Table 1. The variation of the critical Reynolds number Recg against cros-
sflow Reynolds number Recr for different rotational speeds /U,

2 / U. Tm YCF Recr CFraz Recr
0.000 | 59.0° - 357,Q - -

0.200 | 61.0° | 81.17° 286.0 | 2.335 E-02 | 32.69
0.300 | 59.0° | 76.88° | 246.0 | 3.417 E-02 | 41.20
0.375 | 57.0° | 73.76° | 218.0 | 4.167 E-02 | 44.60
0.500 | 53.0° | 68.78° | 198.0 | 5.275 E-02 | 52.35

_Fig. 9. Instability characteristics obtained for Ma, = 3.0, Re = 2000, £2/U, = 0.375,
. v = 60° and different cone angle

Fig.9 shows the influence of the cone angle © on the amplification rates of
disturbances — the amplification rates. increase with increasing © angle. When
© reaches a value about 30° degrees, the structure of the vortices changes from
counterrotating (Fig.1a) to corotating (Fig.1b). The vortex structure obtained for
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© @ = 15° is shown in Fig.10. In this figure the distributions of crossflow velocity
perturbations CF’ and perturbations of velocity component perpendicular to the
wall v’ are analyzed. Such a structure of disturbances imposes the intensive mixing
of high and low velocities fluid. In section A-A the low velocity fluid from the
lower half of the boundary layer is lifted up. At the same time high velocity fluid
from the upper half of boundary layer (section B-B) is shifted down. In Fig.10b
numerical results are compared with the sketch made by Kohama (1983) based on.

his experimental work. .

W

Fig. 10. (a) Distribu%ions of crossflow perturbations CF’ and perturbations of velocity
component perpendicular to the wall v/ — numerical results, (b) schematic picture of
corotating vortices made by Kohama and Kobayashi (1983) based on his experimental
work

-n 0

5.2, Isothermal wall

' The purpose of this part of work has been to estimate the effect of wall co-
oling on crossflow disturbances in supersonic boundary layer. The calculations
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Fig. 11. Instability characteristics (a) and crossflow profiles (b) obtained for Ma, = 3.0,
Re = 2000, 6 = 15°, different rotational speed £2/U. = 0.0, 0.2, 0.375, 0.5 and different

wall temperature conditions
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were made for Reynolds number Re = 2000, cone angle © = 15° and for the
following combinations of rotational speed 2/U., edge Mach number Ma, and
wall temperature condition T, /T

/U, Ma, T /T.

0000] - |30 - |AD(252)]18]14] - | - | - | -
0200 - | 30| - | AD(258)| - | - |10} - | 06|04
0375 | - [30| - | AD(@265)| - | - |1.0| - | 06|04
0.500 | 2.0 | 3.0 | 5.0 | AD(2.75) | - | - |1.0]| 0.8 |0.6 | 0.4

The results obtained for Ma, = 3.0 (the case where the second modes are
not strongly amplified, cf Lees (1947)), Re = 2000 and for the different rotational
speeds £2/U,. are shown in Fig.11a. The rates of temperature for zero heat transfer
condition (AD) are T,,/T. = 2.52, 2.58, 2.65, 2.75 for the rotational speeds
n/U. = 0.0, 0.2, 0.375, 0.5 respectively. The highest amplification rates were
obtained for the rotational speed /U, = 0.5 where the crossflow component is
the largest one (Fig.11b) and the smallest for /U, = 0.0 case (zero crossflow
component). From Fig.11a we can see also that the amplification rates decrease
with the lowering temperature rate.

The influence of wall cooling on crossflow profiles is shown in Fig.11b. We can
see that the maximum values of crossflow profiles for particular rotational speeds
are almost the same for all temperature boundary conditions. The important fact
is that the wall cooling lowers the point of inflection and reduces the thicknes of
the boundary layer.

The results obtained for Ma, = 3.0 are summarized in Fig.12 and Table 2
where critical Reynolds numbers versus wall temperature conditions are analyzed
for different rotational speeds. As expected, the critical Reynolds number increa-
ses, for all rotational speeds, with the wall cooling. This confirms the supposition
that the wall cooling stabilizes the crossflow disturbances. However, the wall co-
oling turned out to be most effective for the rest case where critical Reynolds
number is 357 for zero heat transfer condition and 1946 for T,,/T. = 1.4. From
Fig.12 it is seen that the critical Reynolds number decreases with increasing rota-
tional speed (with the increasing value of crossfiow component) and for rotational
speed 2/U. = 0.5 the critical Reynolds number approaches almost the same value
for all wall temperature conditions. The crossflow Reynolds number limit above
which the wall cooling has turned out to be ineffective is 52.0 (Table 1).
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R . Zyn,

Fig. 12. Variations of the critical Reynolds number Recr against the wall temperature
conditions for Ma, = 3.0

Table 2. The variation of the critical Reynolds number Recpr against tempe-
rature wall conditions T, /T, and rotational speeds §2/U, at edge Mach number
Ma, = 3.0 and Reynolds number Re = 2000

To/T.

AD| 18| 14 | 10|08 06| 04|
nJU,
0.000 | 357 [678 (1946 | - [ - | - -1
0.200 | 286 | — ~ | 742 - |997| 1070
0.375 | 218 | - - 390 - |482| 548
0.500 | 198 | - - | 296|305 (344 | 382

To study the variations of the stability characteristics with the edge Mach
number, the calculations were made at Ma, = 2.0, 3.0, 5.0, at the rotational
speed §2/U, = 0.5 and the Reynolds number Re = 2000. The results are shown
in Fig.13 for different wall temperature conditions. It is seen that the amplification
rates of crossflow disturbances for Ma, = 5.0 are much smaller compared to the
case Ma, = 2.0 and Ma, = 3.0. It is the result of the dominant role of the
second modes at so high Mach number (Fig.8). We can also see from Fig.13 that
the stabilization effect of the wall cooling on crossflow disturbances in the case
Ma, = 5.0 and , 2/U, = 0.5 is minimal. Additionally we know that the wall
cooling destabilizes the second modes.

We can conclude that in the cases in which second modes are not strongly
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Fig. 13. Instability characteristics obtained for rotational speed £2/U, = 0.5, Re = 2000,
O = 15° and different edge Mach numbers and wall temperature conditions
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amplified the wall cooling stabilizes the 3D-supersonic boundary layer but effecti-
veness of the wall cooling decreases with the increasing crossflow velocity compo-

nent.

The crossflow Reynolds number over which the wall cooling turned out to

be ineffective is 52.
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Liniowa teoria niestabilnodci tréjwymiarowej naddZwickowej warstwy
przysciennej

Streszczenie

W pracy badana jest, metoda numeryczna, niestabilnosé¢ tréojwymiarowej naddzwie-
kowej warstwy przysciennej powstalej na powierzchni stozka wirujacego w przeplywie jed-
norodnym. Do badari zastosowano teorie liniowa. Przeplyw podstawowy wyznaczany jest
przy zastosowaniu transformacji Manglera i zmiennych podobienstwa. Rownania liniowej
teorii niestabilnosci rozwiazywane sa metoda réznic skonczonych. Obliczenia charakte-
rystyk niestabilnoéci przeprowadzono dla scianki adiabatycznej i izentropowej. Badano
wplyw chlodzenia na niestabilnosé naddZwiekowej warstwy przysciennej.
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