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The possibility of synchronous elimination of vibrations and forces from unba-
lanced rotary machines using the set of vibrators, axes of which not coincide
with the rotor axis has been demonstrated. The analytical conditions of the
existence and the stability of synchronous operational cycles, respectively
have been derived. The possibilitry of appearance of stable undesired solu-
tions, as well as the preventive methods have been shown. The analytical
considerations have been complemented by nurmerical simulations.

1. Introduction

The passive and semi-active vibration control methods of avoiding the results
of the unbalance appearing in the rotary machines rotors allow for the significant
reduction in the forces transmitted to the base at the cost of the unwanted loss
of the system static stiffness. This often leads to inadmisstble machine displace-
ments under the influence of slowly changing external forces. The latter are, for
example: the changes of the working load, variations of the belt tension, changes
in the static load, etc. In that case the vibrations of the machine diminished —
on the contrary, their amplitude increases. Moreover, the passive vibration con-
trol systems cause the necessity of passing through resonance frequencies during
the starting and coasting of the machine, accompanied by the rise in the vibra-
tions and forces amplitudes to high values. The semi-active systems, i.e. system
of controlled elastic or damping constants, have similar. properties, however they
make the reduction of the rise of the vibrations and forces in the near-resonance
range possible. The simultaneous reduction in the machine vibrations, and forces
transmitted to the base, may be achieved using the dynamic dampers and active
systems with an additional mass (cf Gosiewski, 1989).

The application of the dynamic dampers is limited in practice by the narrow
frequency range of their functioning (it pertains especially to the non-damped
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eliminators) as well as the necessity of the application of a suspension, elastic in
the directions of the vibrations elimination.

These disadvantages may be avoided by application of the active systems, in
which the forces compensating the forces of unbalancing, arise due to the accele-
ration of the additional (so called reactive) masses by means of controlled servo-
motors. A particularly convenient solution for rotary machines is the application
of the electromechanically driven inertial vibrators, as active elements, which is the
merit of vibrocompensation (cf Genkin, 1977). The aim of the control system in
this case is to retain the appropriate vibrator angular velocities and phase angles
in relation to the machine rotor. Thus, the rotor rotation angle must be measured
and the appropriate control system must be applied, causeing several difficulties
in practical applications, rises costs and decreases operational reliability. These
disadvantages may be eliminated by the construction of the self-synchronous sy-
stem adjusting phase angle and angular velocity to the required values (cf Thearle,
1950; Majewski, 1978; Blekhman, 1981; Hogfors, 1984).

These systems, known as synchronous eliminators, function properly when the
axis of vibrator rotation is in line with the axis of the rotor, what, for technical
reasons, is {requently not possible. An example of the design of the synchronous
eliminator is that patented by Lipka and Majewski'. In that design, the rolling
elements, placed freely in a drum rotating at the rotor angular velocity, are au-
tomatically positioned in a way causing the damping of the vibrations of masses
connected to the drum.

2. Synchronous off-axial elimination

The question arises, whether it is possible to attain the automatic damping of
the vibrations caused by the rotor unbalancing, by using the elements of rotation
axis distant from the rotor axis.

To answer that question let us consider the system?: an unbalanced rotor -
a set of inertial vibrators of the axes parallel to the rotor axis and meeting the
following requirements

(a) Zm,-e,- = myep (c) Zm,—e;y,- =0
(b) Zm,-e,-x,- =0 (d) Zm,'e,-z,- =0

(2.1)

where

ILipka J., Majewski T., The Method of Aulomatic Damping of Vibrations and the
Assembly for the Automatic Damping. Patent no. 103855 PL

2Michalczyk J., Assembly for the Eliminalion of Vibrations and Forces of the Rolary
Machines Unbalance, Patent Appl.OWP,/I/P/268/92
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mgeg, m;e; — static moments of the rotor and vibrators unbalance, re-
spectively,
Ziy Uiy 2 - coordinates of the vibrators pivoting points, in the system

of coordinates of the origin at the nominal (i.e. without
correction for the unbalance) rotor center of inertia.

The point of vibrators rotation is defined as the intersection of the rotation
plane of the unbalanced mass center with the axis of a given vibrator rotation.

Such a system leads to the compensation of the forces from unbalance and
elimination of the vibrations of the rotor body, providing that vibrators are out of
the phase rotor unbalance.

On condition 1a the principal vectors of dynamic forces from rotor unbalance
are equal to forces activated by the system of eliminators, whereas on conditions
(2.1b) + (2.1d) the principal moments, related to any pole, are equal for both
masses, for the proper set of the phase angles.

Let us consider the possibility of automatic setting the vibrators in accordance
with the requnrements (2.1b) + (2.1d). The integral criterion of the automatic
synchronization of vibrators (cf Blekhman, 1981) will be used. It states that the
existence and stability of the solution corresponding to a definite system of phase
angles of the unbalances masses, driven by motors of soft characteristics and of an
equal rated rotational speed, requires meeting the conditions of the existence of
the following functional minimum

T
1
== [(F-V)dt 2.2
7 [(E=V) (2:2)
0
where
T — period of vibrations,
E,V - kinetic and potential energy of the system, respectively, without

the correction for the energy of the vibrators rotation,
which leads to conditions imposed on the system of phase angles «;

oD .
=0 (2:3)
9’D

The condition (2.2) may be additionally simplified considering only the systems:
rotary machine — system of compensations "softly” mounted (i.e. overresonant) -
as in this case the potential energy, V, accumulated in the suspending system of
the rotor and the compensation system assembly, may be neglected as being many
times lower than the kinetic energy of this assembly. In this case the conditions
(2.2), (2.3),(2.4) may be replaced by the requirement that the kinetic energy of the
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system, averaged over the period of vibrations has a local minimum. As the kinetic
energy is never negative, it is enough to show the existence of isolated points in the
phase angles a; space, of zero kinetic energy of the basic system (with rotating
masses fixed on their rotation axes), which corresponds to the compensation of
displacements. We shall investigate the problems connected with the existence of
such solutions, on the example of the simple, two-body synchronous eliminator,
presented in Fig.1. The unbalanced rotor of a static moment of unbalance, mgep,
1s mounted on the frame 1, which can rotate around the point 0. The stability of
the position of the system static equilibrium is assured by a torsion spring of the
rotational spring condstant k, providing that /k/Ip € w, where I denotes the
moment of inertia of the basic system.
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Fig. 1.

When the following conditions are fulfilled

Mmoep = mye; + mae;
. (2.5)

mpe a) = maqegaas

there exists a system of phase angles for these three rotors, corresponding to the
modulation of the vibrators in the phase opposite to the unbalance of rotors.
It assures the mutual compensation of forces and then the decrease of the basic
svstem kinetic energyv to zero. According to earlier considerations this solution will
be stable since any change of the phase angle distribution leads to the unbalance
of the system and thus to the appearance of vibrations and to the increase of
the system kinetic energy. So, for example, the deviation of one of the vibrators
in the phase angle by da from the position maintaining the balance of forces
may be treated as the application of an additional vector dF of the value Fda,
perpendicular to the rotating vector F, which disturbs the equilibrium of the
system ard causes the appearance of the basic system vibrations — Fig.2.
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Fig. 2.

It should be noticed, that the indicated solution is not a unique one. To
prove it let us observe, that the balance of moments about to the point 0, which
is the condition for the absence of vibrations, may be achieved also assuming
the phase angles as shown in Fig.3 and the unbalance fulfilling the conditions:
Forg = Firy + Fyry, which corresponds to the conditions

Mmoepro = Mmieyry + maears (2.6)

The latter solution provides however only the elimination of the vibration due
to vanishing of the principal moment about the point 0 and does not provide the
elimination of the forces transmitted to the base through the rotation axis of the
frame 0, as in this case the principal vector of forces does not reduce to zero.

Fig. 3.

Let us assume the system of phase angles, corresponding to the solution of
the second type, Fig.3, and calculate the ratio of the maximal moment about the
axis of rotation M), 3, for the case when the moments of unbalance are chosen
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according to the condition (2.5) and for the case when these moments fulfill the
condition (2.6)

Fi F r r
M1'2(2.5) _ Firy + Farg - ;n_ﬁ.z;rl + ;TQ_":?;TZ - ;é‘ + ,‘.g'%;‘ (27)
M1'2(2.6) Fyrg Fyrg 1+ %;-

The analysis of this expression shows that it’s value is greater than unity for
the non-zero and finite values of parameters assuring the linear configuration of the
axes of these three rotors (it may be seen directly from the form of the expression
(2.7) for a typical case |rg| < |r;| and |ro| < |r2|). It proves that if the moments of
vibrators unbalance are assumed to fulfill the condition (2.5) of the full elimination
of vibration and forces, then such vibrators do not provide the elimination of the
second type vibrations, because the generated moments exceed the moments of
unbalance.

In such a case there exists however another system of the phase angles, provi-
ding the zero value of the principal moment and thus the vanishing of the assembly
vibrations at the non-zero value of the principal vector of forces. This solution
corresponds to the system of phase angles shown in Fig.4, where the vectors of
forces, denoted by the superscript ”, are positioned symmetrically to the vectors
of the solution, corresponding to the total elimination (superscript ') relative to
the normals to radius vectors r. :

\.,

Fig. 4.

It may be proved as follows
- each of the rotating vectors Fy, F; is a source of the moment M, .2, harmonically
varying with time, about the point 0;
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— each of these moments reaches the extreme value My, 2 when the appropriate
vector is perpendicular to the respective radius vectors r; 2, Fig.3.
Thus, the sum of these moments equals to

My, = Mo cos(wt + a1) + Mo cos(wt + az) =- 9)

= J(Mm cos a1 + Mga-cos dz)z + (M(“ sin @y + Mpa sin a;)’ cos(wt + 7)

where a; 7 denotes the angles between the respective vectors and half-lines n;
perpendicular to ry 3 for t =0

Mo, sin a; + My sin a3
My, cosa; + Mpz cos g

tany =

From the relationship (2.8) it results that if one set of phase angles a;, a3
causes that a summary moment Mj 2 has the angle of the phase displacement <
(calculated relative to the normal to the radius rq) équal to 0, that means that
the moments from vibrators balance the moment of rotor unbalance, then the set
of angles —oy, —ay gives also the phase shift angle for the resulting moments
equal 0, which is equivalent to balancing the moment from rotor unbalance. All
this proves the existence of the solution FY, i = 1,2 (see Fig.4) if the vibrators are
chosen according to the condition (2.5), i.e. if there exists a solution F%, ¢=1,2.

Thus, in the case of choosing the vibrators according to the conditions (2.5)
to obtain the complete elimination of vibrations and forces, there exists a second
set of phase angles, providing exclusively the elimination of vibrations, which is
according to the condition (2.2), stable too. There is then the danger that the
system will reach the second undesirable stable state, depending on the initial
conditions. Such phenomenon was observed during the computer simulation of
the system vibrations corresponding to the diagram from Fig.1, also at the non-
zero value of the rotational springing factor and the non-zero damping, which will
be discussed further.

It should be noticed that there is no such danger, in the'case of the system
moving translatory. In this case the radius vectors tend to infinity, which (for the
finite difference in their lengths resulting from the finite dimensions e, a,) causes
that the ratio ry/rp and r3/ro tend to unity and also the expression (2.7) tends
to unity. It means, that in the case of the system in the translational motion both
solutions coincide.

The way of avoiding "indeterminacy” of the stable state for the rotating system
by introducing additional bounds between vibrators, for instance by coupling their
driving motors by means of the power selsyn system, was given by Michalczyk3.
Such coupling excludes the second type synchronous elimination and enables the

3see footnote no.2 on p.2
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system to reach the desired type of synchronization, irrespective on the initial
conditions.

Let us consider the problem of the appearance and stability of the first type
of solution for the case of synchronous, two-body eliminator, with the rigid bound
between vibrators, in the application to the rotary-machine mounted in the way
enabling a flat movement of the system — Fig.5.

Moreover, the following designations were assumed

m;e; — static moments of unbalanced masses, i = 0,1,2;
Wi, Vi - coordinates of the axes of rotating masses in the central
movable system of coordinates Cuv;
. M, I —~ mass and the central moment of inertia of the system with
the unbalanced masses related to their rotation axes;
F = mpeow? ~— rotating force from the rotor unbalancing, the remaining

notations do not change. '
The equations of the basic system motion have the following form for the case,
when the vibrators fulfill the conditions (2.1)

Mz +k,z = Fleoswt + cos(wt + a)] (2.9)
Mi+ kyy = Flsinwt+ sin(wt + )] (2.10)
IB+ kg = F[-vgcoswt+ pgsinwt — v cos(wt + ) +

+  posin(wt + a)] (2.11)

The solutions of the above written equations have the following form

Flcoswt 4 cos(wt + a)]

z(t) = Mot (2.12)
o(t) = Flsin a;t -ts;x}guu;t + a)], (2.13)
v

B(t) = Fl-vg coswt + pg sinwt — vy cos(wt + a) + o sin{wt + a)] (2.14)

From the calculations the following form of the functional (2.2) will be obtained

Fliya, o, o
D = %/E[M(zzwz)ﬂﬁz— (koo? + kyy? + kpf?)]dt =
0
(2.15)
1 1 Uo + v
- lpg Mo + vo
1+ cos ) (37— kT Mok, T Twto kﬁ)
The condition (2.3) leads to the equation
_ l . 2 1 1 Ho + Vo
3 sinaF (Muﬂ —y + Ma? K, + ToZ kg-) =0 (2.16)
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Fig. 5. Denotations: 1 - frame; 2 - suspension; 3 — unbalanced rotor; 4 — rotor driving

motor; 5,6 — inertial vibrators; 7,8 ~ asynchronous drive of vibrators; 9 — power selsyn
system
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with the root of the equation reading as follows: @ = nx, where n =0, +1,42,...
From among these roots the following phase angles fulfill the condition of the
vibrations and forces elimination

a = x(1+ 2n) n=0,1,2,.. T (217

which correspond to setting the vibrators out of the phase with the rotor unbalance.
The condition (2.4) corresponds to the inequality

1 . 1 1 Ho + 1o
Lpa_ 2.1
PG iy i) 70 O

For the angles a, given by the expression (2.17) the fulfillment of the stability
condition requires the following inequality

1 1 o + o .
: 2.
ol vor syl o ey (2.19)

The more important particular solutions to this inequality are as follows
(a) Mw? > k., k, Iw? > kg
which corresponds to the over-resonant character of the function of the system
(b) kr— o0 ky, — o VEs/I <w
which corresponds to the rotational support
(¢) k; or ky — o and kg — o0
while the remaining spring constant assures the over-resonant character of one of
the translatory movements.

3. Simulation studies

The case (b), previously analyzed theoretically was studied using the numerical
simulation, taking into account the existence of the elastic bound and the damping
of the rotation, the mechanical characteristics of the inductive driving motors of the
rotating units and the full type power selsyn system coupling between vibrators.

The equations of motion taking into account the nonlinear coupling between
the motion of the basic system and the motion of the rotors take the form

M3=Q (3.1

where the coordinates vector q is given by

q = col{B, v, 1, P2} (3.2)
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while the matrix M elements are given by the following relations

2
My =L+ miu? +v}) M2 = moeo(po €08 o + 1o 8in (o)
=0
M3 = mye1(p1 cos ¢y + 1 sin ) My = maea(pa cos 3 + vg sin ¢3)
M3 = moeo(vo sin g + v €08 o) My, = Iy + moe]

My =0 My =0

M3y = mye; (11 sin @1 + p1 €08 1) My =0 (3.3)
Maz = I + meg My =0

My = maez(vasin 3 + 2 cos ) Mg=0

Mgp=0 . My = I + mae}

The elements of the forcing vectors are described with the following relationships

2
Q1= —bpf — kB + Y_ mieip¥ [ sin ; — v; cos ;]

=0
' (wu - ¢k)(wu - wuk)
i = 2M, s 34
Ui = Mk P+ (@ — OnF + R Malgz — 1) 34
i=2,3,4 k=1-2 I€2=0 K,3=1 K4=—1

where kg, bg are the spring constant and the damping coeflicient, respectively, of
the supporting system

Myp, wur — the out of the step falling moment and w of the ith induc-
tion motor, respectively,

M, - the out of the step falling moment of the correction motors
of the electric shaft, ’ '

W, — the synchronous rotational velocity of the induction motors.

The interaction of the power selsyn system (cf Michalczyk, 1991) was described
with the relationship

M,

=+

Mg ™ [1 ~cos{pz2— 1) f:: sin(p2 — qpl)] =
’ (3.5)
¥ Mu(pz— 1)
where s, s, — are the slide and the slide of the falling out of the correction motors.
For the simulation the following values of the parameters were assumed

I. = 300kgm? mo = 200kg e = 10—3m Bo = v = 0.5m
Io = 20kg m2 ' 11 = 12 = 0.02kg m2 m =mp = 2kg €] =€ = 0.05m
w1 =0 v = 1m Nn=72=05m w,=157s"1

kg =7.5-10°Nm/rad b = 250Nms/rad
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Fig. 6.

The form of the time courses of the chosen parameters, obtained as the result
of the simulation are illustrated in Fig.6, where the numerical value of the mean
deviation of the vibrators phase angle from the phase angle of the rotor, ¢y —
(¢1+p2) = 3.152, corresponds to the assumed state, while the values given for the
angle of frame swinging A and the forces Fy, Fy, transmitted in the horizontal
and vertical directions to the base are described by the amplitudes of these values,
changing around zero. The diagrams illustrate the run of these values from the
position corresponding to the desired solution (of the first type) to ¢ = 0.5 s,
while the quasi stationary state establishes at the time of 10.0 = 10.2 s. One
may observe that the vibrators, after the intermediate time during the machine
starting fix with a great accuracy out of the phase with the rotor. The error equals
(3.152 — %) x 57.3° = 0.57°. The amplitudes of the forces transmitted to the base
in the fixed stationary state, equal 51.289 N and make about 1.04% of the value
which would load the foundation without the eliminator.

In the case of disconnecting the power selsyn system (M, = 0) and starting
from the initial conditions close to the first type solution, the solution obtained for
the stationary state was close to the first type of the solution and the deviations
of the vibrators 1 and 2 phase angles from their theoretical positions were equal
to 18.3° and —2.6°, respectively. The values of the horizontal and vertical forces,
transmitted to the base are 12.0% and 14.6% of the forcing forces, respectively.
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In the case of disconnecting the power selsyn system (M, = 0) and starting
from the initial conditions close to the second type solution, the solution obtained
for the stationary state was close to the second type of the solution and the de-
viations of the vibrators phase angles from their theoretical positions were equal
to —4.2° and —7.4°, respectively. The values of the horizontal and vertical forces
transmitted to the base are in this case 36.1% and 29.6%, respectively.

The system described above may be applied, after the appropriate multiplica-
tion of the pairs of the vibrators, in the case of the unknown or varying value of the
unbalance?, too. Moreover it may be used in the case of the dynamic unbalance of
the rotor. In the first two cases the application of two sets of vibrators, instead of
the single set of vibrators meeting the requirements (2.1) is sufficient. From these
two sets of vibrators each must fulfill the conditions (2.1b) + (2.1d) separately,
and all of them together must fulfill one condition 1a {mg e means in this case
the limiting value of the rotor unbalance, which may appear).

The system chosen in this way, displayes such an automatic adaptability, that
the activating forces, acting in both sets of vibrators add or subtract geometrically,
so that their sum balances the actual unbalance of the rotor. In the case of the
dynamic unbalancing of the rotor there is a need of constructing the system acting
in two planes perpendicular to the axis of the rotor. In contrary to the majority of
other solutions the described system does not need to cause any deterioration of
the time course of the transient resonance during the starting the machine, because
it allows formation of the intermediate states of the eliminator independently of
the intermediate state of the machine, for example by using the eliminator only
for the time of stationary movement of the machine.

In consideration of the point 2 the influence of the energy dissipation, which
takes place in real objects, for instance in the supporting elements of the machine,
was neglected. This begs some comments. In the typical cases of supporting using
the steel springs or the rubber elements of the moderate the contribution of the
damping forces (beyond the near-resonance region), is negligible and is limited to
generation of the small deviations of the phase angles and incomplete elimination,
which results from the low value of the dissipation factors for these elements (cf
Lapunov, 1988). This thesis is justified both by theoretical premises — the syn-
chronous elimination is based on the phenomenon of self-synchronization and the
effect of damping of the movement of the system must be in both phenomena
similar, and by results of the simulation and experimental studies (cf Majewski,
1978), respectively. The extension of the analysis on the case of the considerable
damping or the studies of the system movement in the near resonance range will
require the application of another analytical methods, for instance the analysis of
the vibration moments (cf Blekhman, 1981).

4see footnote no.2 on p.2
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4. Conclusions

There exists the possibility of obtaining the synchronous elimination of vibra-
tions and forces of the unbalanced rotary machines using the set of inertial
vibrators, (in the simplest case there may be only two vibrators), of axes not
overlaping the axis of the rotor. This system must fulfill the conditions (2.1)
and the support of the assembly consisting of the machine and the eliminator
must fulfill the condition (2.19).

In the case of the supporting system allowing rotation of the assembly there
may appear also a type of eliminator synchronization, different from the
desired one and leading to the elimination of vibrations, but not assuring
the elimination of forces transmitted to the base. The initial conditions
determine the resulting stable state.

The desired type of synchronous elimination may‘be achieved by virtue of
coupling the eliminator rotors with an additional coupling.

References

1. BLEKHMAN L.I., 1981, Sinkhronizaciya v prirode i tekhnike, Nauka, Moskva

. BLEKHMAN L.I., 1988, Shto mozhel vibraciya, Nauka, Moskva

3. GENKIN M.D., ed., 1977, Vibroizolushchye systemy v mashinakh i mekhanizmakh,

Nauka, Moskva

. GosiEwWSKI Z., 1989, Active Control of Rotors Vibrations, WSI Publishers, Kosza-

lin, (Polish)

. Hogrors C., 1984, Autobalancing, XVI** Congress of Theoretical and Applied

Mechanics, Lyngby, 78-84

. LapuNov V.T. ET ALL., 1988, Rezinovyje Vibroizolatory, Sudostroenie, Leningrad
.- MaJewski T., 1978, Automatic Balancing of the Rotor Elastically Supported in

two Directions, Mechanika Teoret. i Stosowana, 16, 25-39, (Polish)

. MicHALCczYK J., 1991, Analysis of Synchronisation Conditions for Inertial Vi-

brators Using the Power Selsyn System, Archiwum Budowy Maszyn, XXXVIII, 3,
201-209 (Polish)

THEARLE E., 1959, Automatic Dynamic Balancers, Machine Design, 9,10,11



J.MICHALCZYK - 293

Pozaosiowa eliminacja synchroniczna drgan i sit w niewywazonych maszynach
wirnikowych

Streszczenie

W pracy wskazano na mozliwoé¢ uzyskania synchronicznej eliminacji drgan i sil
od niewywazenia maszyn wirnikowych za pomoca zespolu wibratoréw, ktorych osie nie
pokrywaja si¢ z osia wirnika. Wyprowadzono analityczne warunki istnienia i stabil-
nosci synchronicznych cykli roboczych i wskazano na mozliwos¢ wystapienia stabilnych
rozwiazan niepozadanych oraz sposob ich unikniecia. Rozwazania analityczne uzupelniono
badamami metoda symulacji cyfrowej.
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