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In the paper a theoretical model of a simply supported three-layer one-
dimensional plate with a distributed actuator/sensor pair has been examined.
A velocity feedback control is used to achieve active damping of structure.
The transfer functions relating the out-of-plane deformation to the actuator
voltage input for the system without control loop and for the system with
velocity feedback as well as the open-loop transfer function are obtained.
The numerical results show the influence of the actuator/sensor location and
controler parameters on the modal system response.

1. Introduction

The application of piezoelectric actuators and sensors to the active vibration
control of flexible structures has been investigated by many authors. Some of
them concentrated on static and dynamic response of beams or plates due to an
excitation of piezoelectric actuators bonded to the surface or embedded into the
structure (cf Crawley and Luis, 1687; Clarc et al., 1991; Pan et al., 1991; Wang
and Rogers, 1991). The sensing ability of piezoelectric elements was applied by the
others to develop the effect of active damping. The structures with actuator/sensor
pairs and the velocity feedback control have been studied by Newman (1991),
Alberts and Colvin (1991) (beams) and Lee et al. (1991) (one-dimensional plates).
The static approach is commonly used to describe the mechnical coupling between
the actuator and the structure. The static model for one-dimensional piezoelectric
elements has been developed by Crawley and Luis (1987) and applied by Clarc et
al. (1991), Newman (1991), Alberts and Colvin (1991) among otkers. However,
another idea for modelling the interaction between the actuator and the structure
has been proposed by Pan et al. (1991) (dynamic model) and by Wang and Rogers
(1991) (strain-energy model).
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In the paper a theoretical model of a simply supported one-dimensional la-
minated plate with piezoelectric layers has been examined. Basing on the static
strain/stress analysis, two concepts of determining the equivalent bending mo-
ment caused by the actuator are compared. The velocity feedback control is used
to achieve the active damping of structure. The system response is obtained apply-
ing the laminated beam theory (Whitney, 1987). The transfer functions relating
the out-of-plane deformation under the actuator voltage input for the system wi-
thout the control loop and for the system with velocity feedback as well as the
open-loop transfer function, respectively, are obtained. The numerical results show
the influence of the actuator/sensor location and control parameters on the modal
system response.

2. Model of one-dimensional piezoelectric laminate

The system investigated in this article is a three-layer rectangular composite
plate simply supported at the opposite edges as shown in Fig.l. The plate is
composed of a stainless steel shim with piezoelectric layers bonded to the upper
and lower surfaces, respectively. The piezoelectric layers are made of PZTG-1195
film. Because of the piezoelectric properties, the material isotropy is assumed (cf
Crawley and Luis, 1987). The upper lamina acts as the actuator while the lower
layer is used as the sensor. Only the portion of the piezoelectric layer covered
by an electrode on both sides of the layer is activated. The identical, symmetri-
cally located rectangular surface electrodes attached to actuator and sensor layers,
respectively, are used in the considered structure.

Y,
/ surface slectrode actuating layer
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v 4 ’
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hp ‘ \stakiess steel shim \senshg layer sim
L

Fig. 1. A simply supported beam with a sensor/actuator pair

According to the clasical laminate plate theory, the Kirchhoff hypothesis is
accepted. Hence, for thin plates, a plane stress state exists. The equation of
motion for out-of-plane displacements, w(z,y,t), of a plate composed of isotropic
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layers can be written as

0w 84w 0w

w
Dn( 6220y2 + dyt ) +phom ot2 g(z’ Y, t) (21)

where g(z,y,t) represents an external load; h = 2h, + h; is the thickness of
laminate; p is the equivalent density of laminate which in the considered case
becomes

o= 2(205hy + o) (2.2)

The subscripts ! and p indicate the shim metal layer and the piezoelectric ply,
respectively.
The flexural rigidity of the plate is given by

Dn = 1flu,2(’11_z) + Em" (1"1 + iy + 3"'2’) (23)

where FE, v represents the Young modulus and the Poisson ratio of the layer,
respectively.

Assuming that the length is much greater than the width of the plate, i.e.,
L > b, and the intensity of a load g does not change in y direction, displace-
ments w may be considered to be independent of the width coordinate (y axis).
Therefore, the equation of motion of a one-dimentional plate is obtained

0w *w
DI’EF + Ph‘an = g(,t) (2.4)

Since, the isotropic plies of the laminate are oriented symmetrically about the
midplane, the deflection of the plate can be analysed in terms of the classical beam
theory replacing the bending stiffness EJ by the eqmva.lent stiffness E°J defined
as follows (see thtney, 1987 )

E"J ZE"J" , (2.5)
k=1 : .

where E! is the effective bending modulus of the laminated beam; E¥ is the
-modulus of the kth layer; J and J* is the moment of inertia of the beam and
the moment of inertia of kth layer relative to the midplane, respectively.
Applying laminated beam theory (Whitney, 1987), Eq (2.4) describing the
motion of the one-dimentional plate can be replaced by the following equation
3“w

B +p P atz = p(z, 1) (2.6)
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where
12 bh3
E'= 73 Dn J=3 A=bh p(z,t) = bg(z,1)

In the next sections of the article the one-dimentional plate is investigated
using the mathematical model of the laminated beam.

3. Actuator relations

In effect of applying a voltage to an unconstrained actuating layer along its
polarization direction a strain is induced

Eq = @Va 3.1
hy

that is a function of the piezoelectric strain constant dsp, the applied voltage Vj,
and the element thickness h,, respectively.

In the simplified model of the system, the piezoelectric layers are perfectly
bonded to the metal shim with zero glue thickness. Because the layers are narrow
with respect to.their length, only the bending effect is considered. Extension of
the actuator produces the longitudinal interface strains in the z direction and a
bending moment about the neutral axis of the laminated beam.

In the paper two concepts of determining the equivalent bending moment based
on the static strain/stress analysis are used.

zl}

Fig. 2. Stress distribution

The first concept is presented by Crawley and Luis (1987), Clarc et al. (1991).
In the considered structure it is assumed that the effective piezoelectric patch
induces the linear stress distribution which is shown in Fig.2.
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The shim and actuator interface stresses of depend on the interface strains &
according to Hook’s law

o} = Ei¢’ (3.2)

where the upper script i is used to designate the interface.
The actuator stresses of at the interface are the result of the metal shim
strains and the unconstrained actuator strains, respectively

ol = Ey(c' —¢4) (3.3)

The linear distribution of the normal stresses in the shim and actuator leads
to the expressions
. Z
= 20{— 3.4
(4] 4 hl ( )
and 5
—_nt i1 9%
0a = 0 — oi(1 2’") (3.5)
Because of the thinness of the piezoelectric layer, the stresses in the sensor are
assumed to be distributed according to Eq (3.4). The moment equilibrum about
neutral bending axis gives

3 3 +hp
/ o1zdz + / 0,2d2 =0 (3.6)
~5t—hp 3

Substituting Egs (3.4) and (3.5) into Eq (3.6), after integration, yields the following
interface stress .
i o} = —Ko, (3.7)

where K is a nondimensional parameter specified as

ot 3huhy(hi + hyp)
b + 9h;h2 + 3hih, + 8h3

(3.8)

The interface strain relation can be obtained substituting Eqs (3.2) and (3.3)
into Eq (3.7)

i 3.9
v £ E+K Epe" (3.9

The bending curvature of the interface is the strain function
1_ 2 (3.10)

rt hi
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so the bending moment produced by the actuator can be written as

2EbJ
M, = h—le (3.11)
where E®J is the eqivalent stiffness of the laminated beam determined by Eq

(2.5).
Substituting Eqs (3.9) and (3.1) into Eq (3.11), the relation between the voltage
applied to the actuator and the induced bending moment is obtained

M, =C,V, (3.12)

where the constant C, depends on the geometry and material properties of the
system
C. = 2K E,E*Jdy;
® 7 hihy(Ei + KEy)
The voltage applied to the actuator electrode can be written as a function of
separated variables

(3.13)

Va(z,t) = V(1) Au(2) (3.14)
where V() describes the time dependent voltage and A,(z) is a spatialy depen-
dent term which informs about the electrode pattern.

The second way of determining the bending moment produced by the actuator
is mentioned by Newman (1991), Alberts and Colvin (1991). Because of the small
thickness of piezoelectric layer, the normal stresses ¢, are assumed to be uniform
in the z direction. For the actuator/sensor layers characterized by the same
dimensions and elastic moduli, the force equation along =z axis caused by the
tension effect of the actuator gives the following strain relation

Ephy
= ———&,
2E hy, + Eihy
where ¢ is the longitudinal strain of the laminated beam.

The bending moment is calculated from the moment equilibrum of the resultant

forces in the actuator and sensor layers about the neutral axis

M, = Ephyby(c, ~ 26) 221 (3.16)

€ (3.15)

where b, is the width of the actuator layer which is activated.

Substituting Eqs (3.15) and (3.1) into Eq (3.16), the bending moment can be
expressed by Eq (3.12), where the constant C, is specified as
C. = EEyds (hf + hihy)b,

In the both cases it is assumed that the surface electrode is large compared to

-the piezoelectric layer thickness, so the produced moments caused by the normal
stress distribution create the pure bending of the structure. :

(3.17)
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4. Sensor relations

The piezoelectric element response on the applied strain ¢, is the charge

density on its surface \
= (%
q= (931)6' (4.1)

where kj3; is the piezoelectric electromechanical coupling constant and g3 is the
piezoelectric stress constant, (cf Alberts and Colvin, 1991).

The strain ¢, is related to the curvature of the laminated beam and can be
expressed by

€ = -(h";hp)‘;%’ (4.2)

When the sensor electrode pattern is determined, the total charge induced on
the electrode surface is the integral over the length of the beam
L
@ = [at(a)da (4.3)
0

where A,(z) is the spatial distribution function.
Substituting Eqs (4.1) and (4.2) into Eq (4.3) gives

L
= _(k_%l) (’" + hP) g::A,(z)dz (4.4)
0

931 2

The voltage developed by the sensor is the ratio of the charge and the capacitance,
50 it is obtained

i rw
V, = '-C, / —a?A,(z)dz (45)

The sensor constant C, depends on piezoelectric material properties and geome-
trical parameters characterizing the structure

= (281\ P 4.6
¢ = () 3ic (4.6)

where A, is the sensor electrode area and C, is the capacitance of the area unit.

5. Vibrations of a simply supported one-dimensional piezoelectric
laminate

As mentioned earlier, the problem of vibrations of one-dimensional composite
plate is solved using laminated beam theory. Assuming external viscous damping
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and applying the moment produced by actuator, the equation of motion of the
considered system, Eq (2.6), can be rewritten as follows

0? 0w 0w
0z 0z? ot?
where f is the damping factor.
The term for damping serves a finite response at resonance. The moment M,
replaced by Eq (3.12) and transferred to the right-hand side of Eq (5.1) represents
the external load

(B - M) +pa %2 2ﬂpA‘?9_‘f =0 (5.1)

&w 0w ow %V,

by ¥ =C 4

EJ(9 +pA6t2+2ﬂA C.,az2

The voltage V, is a function of time and geometry of the actuator. For the
rectangular surface electrode which location is indicated by coordinates z; and
z2 and the width is smaller than the width of the laminate, the voltage is given

by the equation

(5.2)

Va(z,t) = V(t)%”[H(a: —z3) — H(z - z,)] (5.3)

where H(z) is the unit-step function.
Substituting Eq (5.3) into Eq (5.2), and after differentiating, the following form
of the equation of motion can be obtained
&w 1w
EbJ — 521 + pA— T
where §(z) is the Dirac delta-function and §'(z) = 86(z)/0z.

The right-hand side of the above equation represents the external resultant
moments acting at boundaries of the actuator surface electrode. The solution to
the equation of motion according to the modal analysis can be decomposed into
the modal summation

+ 2ﬂpA%—1: = CaV(t)%[J'(z - 1) — & (z - z3)] (5.4)

w .
w(z,t) = E A ()P, (2) (5.5)
n=l
where A,(t) and &, are the modal coordinate and mode shape of the nth
vibration mode, respectively.
The mode shape &,(z) for the simply supported beam has the well-known

form

_ P.(z) = sinknz (5.6)

where k, = nr /L is the eigenvalue for the boundary conditions mentioned above.
The mode shape function satisfies the following differential equation

did,(z)
dz4

= Kidn(2) (5.7)
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The external load can be rewtitten using the modal summation
b (2]
CaV()LW(z = 21) = 8'(z — 22)] = 3 Qn(t)Bn(2) (5.8)
n=1

After applying the orthogonality condition, the modal coordinate @,(¢) becomes

Qn(t) = 22080 05 (2721) — cos(2222) (1) (5.9)

Considering a harmonic voltage input, V(t) = e“t, the modal coordinate
A, (t) of transverse displacements can be obtained by substituting Egs (5.5), (5.6),
(5.8) and (5.9) into the equation of motion (5.2)

A1) = pALzb(fJg?tg: j2ﬂw)[ (mr:cl) - (n?:z)]ei“" (5.10)

where the nth resonance frequency w, is determined by

Wn = (PLIY %’XJ (5.11)

The deflection of the one-dimensional piezoelectric laminate is written directly
from Eqs (5.5), (5.6) and (5.10)

276,Ca 5ot

wet) = LA

(5.12)
,,ng — w;1+j2ﬂw [cos(nle) - cos(mzh)] sin(nzz)

The system response can be expressed in terms of the transfer function. The
transfer function relating the out-of plane deformation to the actuator voltage
input has the form

Clow) = U

V() (5.13)

Sl () - ()] 0 ()

6. Transfer functions of the system with feedback control

‘The control loop scheme shown in Fig.3 is used to achieve active damping of
the vibrations of the structure.
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Fig. 3. Scheme of the feedback control loop

The velocity feedback is characterized by the transfer function Gy which repre-
sents the ratio of the output voltage signal Vy(t) to the deflection of the laminated
beam. The output signal Vy(t) is proportional to the time derivative of the sensor
voltage signal, therefore, is proportional to the velocity of the curvature change.
Since, the sensing layer is covered by the rectangular electrode extended partially
across the width of the lamina, the spatial distribution function A,(z) is given by

A(z) = b{H(z - 21) = H(z - 22)] (6.1)

The transfer function between the sensor output voltage V;(t) and the external
input actuator voltage V(t) can be obtained from Egs (4.5), (5.13) and (6.1)

'G:(w)= “//((::))
(6.2)
2 2b C.C, 2 n n
e sz—wz+.)2ﬂw[ cos () - eos(*T0)]

Because of the velocity feedback the open-loop transfer function is a product of
the transfer function G, given by Eq (6.2) and the transfer function characterised
the differentiating element

o Vi)

Go(w) = V) = = Go(W) 7
where T, and T are the gain constant and the time-lag constant of the differen-
tiator, respectively.

The closed-loop transfer functxon, which relates the deflection of the beam with
the feedback loop to the actuator voltage, can be determined by the well-known
equation

Jwa

1+ jTw (6-3)

G(z,w)

T+ Gow) (64)

Gz,w) =
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In the models of real systems damping is often described by the uniform modal
damping. The transfer functions G, G,, G,, G, for this kind of damping can be
obtained from Eqs (5.13), (6.2), (6.3) and (6.4) substituting

B = ywn (6.5)

where 7 is a nondimensional damping factor identical for all modes.

7. Results

To demonstrate the effect of excitation and active damping using piezoelectric
elements, the numerical test was carried out. The dimensions and material proper-
ties of the simply supported laminated beam and parameters of the piezoelectric
G-1195 layers are listed in Table 1, (The main data was taken from Crawley and
Luis (1987), Clarc et al. (1991)).

Table 1. Dimensions and properties of the system used in calculation

L 0.38 [m] zT9 — T 0.038 [m)

b 0.04 [m by - 0.04 [m]

hy 0.002 [m] hy 0.002 [m]

Pl 7800 [kg/m?] Pp 7275 [kg/m3]
E; | 2.1 x 10! [N/m?] E, 6.3 x 1010 [N/m?]
Y 0.33 Vp 0.28

Y 0.01 day 1,9 x 10-19 [m/V]

The beam response depends on the location of the actuator/sensor surface
electrode in relation to the modal lines for the considered boundary conditions.
As an example, the frequency functions of the system for the rectangular electrode
located at the center of the beam (z1 = 0.171 m, z2 = 0.209 m) and near to the
left support (z; = 0.081 m, z2 = 0.119 m) are presented in Fig.4 and Fig.5,
respectively. In the both cases frequency response functions are calculated at
z = 0.15 m. The feedback control loop is characterized by the product of the
sensor constant and the gain constant C,Ty = 1000 Vs/m. The time-lag of the
differentiator is neglected, i.e., T = 0.0 s. The actuator constant C, is obtained
according to Eq (3.13) assuming the linear distribution of the normal stresses in
the piezoelectric layer.

When the piezoelectric activated part is located symmetrically at the center
of the beam, the frequency response of the structure to a harmonic input voltage
defined by Eq (5.13) is shown in Fig.4a. There are five modes appearing between
1+ 3500 Hz. In this case the actuator works effectively only for modes which refer
to the odd resonance frequencies of the system, i.e, w; = 38.2 Hz, w3 = 344
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Hz, ws = 955 Hz, w7 = 1870 Hz, wg = 3100 Hz. For the even modes
the center line of the actuator lies on the modal line where an inflection point
exists. Therefore, as a result of a minimum curvature, the bending moment created
by the actuator is negligible. The above explanation concerns the sensing layer.
In Fig.4b the magnitude plot of the open-loop transfer function calculated using
Eq (6.3) is shown. The output voltage is characterized by a sequence of the
odd modes with alternate pole/zero pairs. The resonance peaks become greater
for higher frequencies because of the greater curvature of the structure in the
region of the actuator. For the closed-control loop with the velocity feedback, the
frequency function defined as the ratio of deflection of the structure to the outer
input voltage, Eq.(6.4), is presented in Fig.4c. The response differs significantly
from the plot given in Fig.4a, especially, when the driving frequency lies in the
range of resonance. The poles which occur at lower frequencies (w;,ws) are
reduced and they do not exist in higher frequencies (ws,w7,ws). This is the effect
of the active damping of the structural vibration.

When the center line of the actuator/sensor electrode and the line of the beam,
where deflection is mesured, do not coincide with the modal line, all modes in the
frequency response can be observed. The response caused by the outer input
voltage calculated at z = 0.15 m is characterized by poles that occur at all reso-
nance frequencies in the considered range, Fig.5a. The alternate pole/zero pairs
dominate in the plot, however, some pairs of poles appear in sequence, without a
zero in between. In the considered case this phenomenon can be noticed between
the 2nd and 3rd pole and between the 5th and 6th pole. The magnitude plot of
the open-loop transfer function has in general the alternating pole/zero pattern,
Fig.5b. The output voltage increases sharply at resonance frequencies except the
4th mode which is characterized by the nodal line laying close to the center line
of the sensor. The small curvature of the structure in the sensing region for the
1st mode causes inability of the sensor to induce a high voltage. The output vol-
tage produced in the control loop is fed back to the actuator to obtain the active
damping. In Fig.5¢c the magnitude plot of the closed-loop transfer function is pre-
sented. By comparing Fig.5a and Fig.5c¢, it can be seen that the resonance peaks
are reduced. The eflect of active damping is greater for the frequencies referring
to the high efficiency of the sensor (ws,ws,ws). The magnitude between a pair
of poles occurring in sequence changes slightly and still has a considerable value.
This kind of response is disadvantageous for the structure dynamic behaviour and
occurs because the actuator and sensor signals are not compatible.

The effect of active damping can be illustrated by comparing the deflection
distributed along the beam longitudinal axis produced by the actuator voltage
input for the system without control loop with this for the system with velocity
feedback. Assuming that the actuator/sensor surface electrode is located near the
left support, the distributed deflection diagrams calculated at four driving fre-
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quencies are given in Fig.6. As it was expected, the compared amplitude plots
corresponding to the first mode (at 38.2 Hz) differ slighty, Fig.6a, because of the
small curvature of the actuating/sensing region. For this reason, the distributed
deflection at frequency 200 Hz is nearly the same for both cases, Fig.6¢c. Here, the
driving frequency is off-resonance and belongs to the range between the pair of
poles occurring in sequence (see Fig.5). The damping effect is significant at reso-
nance frequencies refering to the second and the third mode as shown in Fig.6b and
Fig.6d, respectively. For the above modes the actuator/sensor responds efficiently.

In the considered system the velocity feedback is composed applying the dif-
ferentiating element characterized by the time-lag constant T. The influence of
the value of parameter T on the closed-loop frequency response is presented in
Fig.7. To increase the testing effect the small modal damping factor v = 10-% is
used in the calculation. By comparing Fig.7a and Fig.7b obtained for the time-lag
" constant T = 0.0 s and T = 0.0005 s respectively, the magnitude increment
is observed, particularly, at higher resonance frequencies. However, for the large
time-lag constant 7 = 0.01 s (see Fig.7c) the resonance peaks differ significantly
from those calculated for T = 0.0 s even at low frequencies. The phase displace-
ment between the signals from the actuator and sensor induced by the time-lag of
the differentiator causes that the actuator/sensor pair does not operate effectively.
The presence of damping in real systems diminishes the effect exposed in Fig.7.
Since, the time-lag constants of the applied PD-control elements are smaller then
103 s, so the influence of the phase displacement on the system response can be
neglected.

Ca=107°
INa/V} |

45
J

4.0

0.0 0.05 010 015 - 020 ..’,,T

Fig. 8. The actuator constant C, versus thickness ratio {l,/ln; 1 - linear stress
distribution, 2 - uniform stress distribution in the piezoelectric layer

' Fig.8 shows the actuator constant C, obtained by varying the thickness ratio’
of the piezoelectric layer and metal strip for the two considered methods of deter-
mining the equivalent bending moment. In the first case (line No.1), the linear
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stress distribution in the actuator layer and the equivalent bending stiffness of the
one-dimensional laminated plate were assumed. It can be seen that the constant
C, declines as the thickness ratio increases. For low thickness ratios, the relation-
ship between the actuator constant as well as the bending moment induced by the
actuator is nearly linear. The above results generally agree with those obtained
by Wang and Rogers (1991) using the strain-energy model of the mechanical cou-
pling between the actuator and the structure. In the second case (line No.2), the
normal stresses in the piezoelectric ply are assumed to be uniform. The actuator
constant C, versus the thickness ratio changes in a different way, i.e., C; in-
creases in proportion {o the increment of the thickness ratio. Inspection of Fig.8
shows that there are stiffness ratios where the both values of the constant C, are
similar (0.05 < hp/h; < 0.1). But for law and high thickness ratios, the values of
C, differ significantly. Therefore, the application of the second method to obtain
equivalent bending moment is restricted to the narrow range of the stiffness ratio.

8. Conclusions

The theoretical model of a simply supported one-dimensional laminated plate
with piezoelectric layers has been studied. To achieve the active damping of the
structure, the velocity feedback control is used. The system response is expressed
in terms of the transfer functions. The transfer functions for the system with and
without control-loop, respectively, have been examined. It was shown that the
system response and the sensitivity to generate or damp particular modes depend
on the location of the actuator/sensor surface electrode in relation to the modal
lines resulting from the boundary conditions.

The phase displacement between the signals from the actuator and sensor caun-
sed by the time-lag of the controller can reduce the efficiency of the actuator/sensor
pair. However, this effect can be neglected because of da,mpmg and a very small
value of the time-lag constant in the models of real systems.

Two static models describing the interaction between the’ actuator and the
structure are discussed. It was shown that the simplification of the stress distri-
bution in the piezoelectric layer causes that the bending moment induced by the
actuator is underestimated for low and overestimated for hxgh tthkness ratios,

respectively.
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Kontrolowanie i redukcja drgaii jednowymiarowych piezoelektrycznych
laminatéw

Streszczenie

W pracy zbadano model swobodnie podpartej tréjwarstwowej jednowymiarowej plyty
z okleinami piezoelektrycznymi, ktére stanowis pare wykonawczo-pomiarowa. Aktywne
tlumienie drgani uzyskano poprzez sprzgqzenie zwroine o sygnale proporcjonalnym do
predkosci zmian napiecia wytwarzanego przez element pomiarowy.

Wyznaczono przepustowosci widmowe odpowiadajace stosunkowi ugigé plyty do napis-
cia zewngtrznego zasilajacego element wykonawczy w przypadku ukladu bez sprzezenia
zwrotnego i ukladu zamknietego ze sprzezeniem zwrotnym. Okreslono takze przepustowosé
widmowg ukladu otwartego. o

Na podstawie wynikéw eksperymentu numerycznego pokazano wplyw lokalizacji pary
wykonawczo-pomiarowej oraz parametréw sterujacych na dynamiczng odpowiedz ukladu.
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