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A theoretical investigation of dynamic stability for linear elastic beams due
to time dependent harmonic axial forces is presented. The concept of intel-
ligent structure is used to insure the active damping. In the present paper
the applicability of active vibration control is extended to linear continuous
systems with parametric harmonic excitations. The study is based on the ap-
plication of distributed sensors, actuators, and an appropriate feedback and
1s adopted for stability problems of system consisting of beam with control
part governed by uniform partial differential equations with time dependent
coefficients. To estimate deviations of solutions from the eqqi,li’brium state
(the distance between a solution with nontrivial initial conditions and the
trivial solution) a scalar measure of distance equal to the square root of the
functional is introduced. The Lyapunov method is used to derive a velocity
feedback implying nonincreasing of the functional along an arbitrary beam
motion and in conséquence to balance the supplied energy by the parametric
excitation and the dissipated energy by the inner and control damping. In
order to calculate the energetic norm of disturbed solution as a function of
time the partial differential equation is solved numerically. The numerical
tests performed for the simply supported beam with surface bonded actua-
:.ior_s and serisors show the influence of the fedback constant on the vibration
ecrease.

1. Introduction

Piezoelectrics show a great promise as elements of intelligent structures, i.e.
structures with highly distributed actuators, sensors and processor networks. Such
a system allows the use of software adjustment to modify and tune the closed-loop
behaviour via distributed sensor and actuators. Spatially-varying piezoelectric
actuator distributions has been applied to contro} all vibrational modes of flexible
beams with a wide class of boundary conditions (cf Burke and Hubbard, 1988;
Newman, 1991). Control strategies were derived using Lyapunov’s direct method.
The flexural vibration of an elastic beam having-a piezoelectric actuator bonded to
one face was described by a partial differential equation with the inhomogeneous
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term representing space and time variations of control distributions. As the control
input is modelled by distributed moments generated by an electric field, intrinsic
features of mechanical coupling between the beam and piezoelectric layers were
neglected.

Crawley and de Luis (1987) presented a comprehensive static model for a pie-
zoelectric actuator, bonding layer and structurally coupled beam. In their model
the effective formulas describing static structural strains both in the structure and
in the actuator as well as shear stresses in the bonding layer were derived and
discussed. Jie Pan, Hansen and Snyder (1991) analysed a dynamic model of a
simply supported beam response to excitation by actuators made using piezoe-
lectric ceramics glued to the beam surface. The dynamic extensional strains on
the beam surface were calculated neglecting the presence of a finite bonding layer
and assuming a perfect bonding actuator. Wang and Rogers (1991) alternatively
modelled the dynamics of the beam — actuator system using a strain — energy
approach.

The present paper is devoted to formulating control laws without the necessity
of modelling the beam in terms of its vibrational modes. The beam is supposed to
be axially compressed by a harmonic force, which can excite parametric vibrations
and destabilize the system. The previous assumptions are relaxed and the finite
bonding layer is analysed.

In the second section the dynamic equations.governing a mechanical coupling
are considered. Under the assumption that the bonding layers are very thin the
control strategies are derived via the direct Lyapunov method in the third section.
In the fourth section a full dynamic model taking into account the finite bonding
actuators and sensors is developed. Control laws are derived using the Lyapunov
approach with a functional in the form of total mechanical energy. Collocated
sensor/actuator system (Dosch, Inman and Garcia, 1992) is discussed and com-
pared to the classical solution, where the actuator and the sensor are mounted on
opposite sides of the beam.

In the sixth section of this paper a behaviour of system energy is numerically
simulated.

2. Equations of an axially loaded beam with perfectly bonded
layers — model 1

We start our consideration from a Bernoulli-Euler beam axially loaded by a
time-dependent force S(t) with identical piezoelectric layers mounted on each
of two opposite sides of the beam. The layers are perfectly bonded onto the
beam, which allows the assumption of strain continuity at the bonding interface.
The beam is divided into three sections and the dynamics of each section should



STABILIZATION OF BEAM PARAMETRIC VIBRATIONS 659

fuzooloctﬂc actuator Bean

st /

Lo 0
:Plovoeloctrlc sensor /;%

Fig. 1. Beam bonded with piezoelectric layers
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Fig. 2. Geometry of beam element with perfectly bonded piezoelectric layers

be described separately (see Fig.1). The piezoelectric layers are located between
z = 21 and z = z3. The element of length dz in the second section z; < z < 25
is shown in Fig.2. The thickness t,. of piezoelectric layers is assumed to be small
as compared with the beam thickness ?; and therefore the longitudinal stress in
the element is assumed to be uniform in the transverse direction. Static equations
of the element are given as follows

Totq=0 (2.1)
M, -T+7bty=0 (2.2)

where T is the shear stress on the interface surface, t; is the beam thickness, and
b is the beam width. In order to derive the dynamic equations we substitute ¢ for
the inertia force in the transverse motion.. A comma denotes a partial derivative
of the main symbol with respect to-the index. Assuming the pure onedimensional
shear in the bonding layer and pure extensxonal strain in the piezoelectric and
beam and using the strain dxspl‘acement relationships (Crawley and de Luis, 1987)
the § govermng equa.txons have the form

petpeepe’zz Tr’-’ = p‘peepc‘u (23)
EbJs 00 + 1072 = prtsbw s (24)
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where ¢, and ¢, are the strains in the piezoelectric element and in the surface
of the beam, respectively.
The geometrical moment of the beam cross-section is defined by Ji = bt3/12.
The beam transverse displacement is related to the beam surface strain by

2¢p
Warr = —-tT (2.5)

Expressing the transverse load acting on the beam by the inertia force and a
component due to the axial load § in the form

g = —pplsbw gy — S(t)W 2y (2.6)

eliminating the shear 7 and using the perfect bonding condition on the interface
between the piezoelectric element and the beam

Epe = Eb z € (21,22) (2.7)

dynamic equations of motion in displacements can be written down as
—for z; <z < 29

(Evdb + EpeJpe)W 220z ~ PpedpeW 2zt + potsw, il + S(t)w,zz = 0 (2.8)
—for 0<z<zand 2, <2<,
Eyyw,zzzz + pptyw, zztt + S()w,zz = 0 (2.9)

where Jp, = btp.tZ/2.
Introducing z dependent coefficients E,J,(z) and Ep.J,.(z)

EyJy if 0<z<z
EyJi(z) = ¢ Eps + Epedpe if z<z<2,
EyJy if z9<z<1
0 if 0<z<n
ppere(x) = pperc if z1<z<2z
0 if z3<z<!

we can rewrite Egs (2.8) and (2.9) in the form
EyJs(Z2)W z22z — Ppedpe(Z2)W 2zt + potow,e + S(H)w, 2z = 0 (2.10)
for =z € (0,1)
The component pJp.w 2 in Eq (2.10) represents the rotary inertia term of

the piezoelectric elements and therefore Eq (2.10) is the same as in the Timoshenko
beam theory with omitting a shear effect.
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Boundary conditions corresponding to simply supported ends for z = 0, have
the form

w(0,) = 0 w(l,t) =0 (2.11)

w2(0,8) = 0 waa(lyt) = 0 (2.12)

At the joints between sections 1 and 2 z = z; and between sections 2 and 3
2 = x5 we have the continuity in beam transverse displacement, slope, curvature
and transverse forces

w(zy) = w(zt) (213)
wa(e7) = wala}) (2.14)
Weo(27) = w,,,(z}') (2.15)

EyJoW 222(27) = (Ebdb + Epedpe )W zze(2F) — pp,.lpew,,u(zf') (2.16)

w(zy) = w(z) (2.17)
we(27) = wa(zF) (2.18)
w,s2(27) = waa(23) (2.19)

Eb"bw.uz(z;) = (EpJo + Epe pc)w.uz(zz—) = Predpew oit(z7) (2.20)

The stress free conditions for the piezoelectric layers have the form o,.(z,) =
Ope(z2) = 0. Using the constitutive equations of a piezoelectric material, Lee
(1990), they can be written down as

2 2
Wzx(21) = —?gepc(zl) = —EA (2.21)
2 2
‘w,::(zg) = —zb—Epc(.’Eg) = —gA (2.22)
4=% (2.23)
toe

where A denotes the piezoelectric strain, dj; is the piezoelectric constant, and v
is the voltage applied across the piezoelectric.
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3. Deriving the control strategy for model 1

1

The partial differential equation (2.10) with the nonuniform boundary condi-
tions, Eqs (2.17) and (2.18) does not have the trivial solution w = w,; = 0 and
we are going to derive the stabilizing control strategy using the direct Lyapunov
method. The crucial point of the method is a construction of a suitable Lyapunov
functional, which is positive for any motion of analysed system. Due to the term
PJpew szt in Eq (2.10) it is necessary to introduce a term representing the rotary
kinetic energy (Tylikowski, 1986 and 1991) to the Lyapunov functional

V= [pbbtbw:‘; + Ebe(z)wiz + pper,(z)w?ﬂ] dz 3.1

DN =
o'\‘__

Time-derivative of functional V with respect to time is equal to
l N
av N
i / [pbbth,:w,u + EsJo(2)W,22W 2t + PpeJpe(T)W rtWryJdz (3.2)
0
Integrating by parts and using zero boundary conditions we have
I I
z2
/ppere(z)w,ztw,ztt dz = — /ppe-]pe(z)w,tw,zztt dr + Ppe-]pe’w,t’w,.z'ttL':1 (33)
o 0

Substituting into the time-derivative yields

I
% -
d_t = /{w.t[Pbbtbw,u - Echpe(z)w,z‘zH] - Ebe(z)w,zzw,zzt}dT- +
° (3.4)
z3
+ pperew,tw,xu
zy
Eliminating the first integrand term by means of dynamic equations
I
dv
il /[—Ebe(z)w,gw,uu + EyJo(2)W 20w 20t — S(t)wvgw,u] dz +
° (3.5)

z3
+ Ppe Jpe w,tw,xtt

1

Integrating by parts separately in intervals: (0,z;), (z1,z2) and (z2,!) yields
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—/lS(t)w,,w,u dz +
0
+w,q(z1) [(Epere + EsJy)w zoo(21) — ppedpew,zue(zt) — Ebew,zzz(zl—)] -
~0,(23) [(Bpedpe + EsJs)W0,05(27 ) = Predpet0,ott(27) — EsJow,oal(2})] +
+ 2(21) [ EsJsw02(27) = (Esds + Epedpe)w zo(x)] + (3.6)

+0,4(22) [(Esds + EpeJpe)0,22(27) = EsJyws2(27))|

Due to the joint boundary conditions (equivalent to the equality of transverse
force at z = z; and z = z;) the second and the third component in Eq (3.6) are
equal to zero. Similarly, the continuity of beam curvature at z; and z, simplifies
the last two components in Eq (3.2).

ﬂ = —/S(t)wgw,,, dz - E J,e—[w,zz(ivz) w,zt(zl)] (3-7)‘

where A is the strain induced by the piezoelectric actuaturs, which can be calcu-
lated from Eqs (2.17) and (2.18).
Assuming a velocity feedback in the form

A=K, /w,,,g dz (3.8)

Ty

where K, is a sensor constant, Newman (1991)

_ d3lE(t- + tpc)
Ki=—"—3¢
the time derivative of functional can be written in the form
dV
= —/S(t)w Wz dz — E,,,Jpe [/ W ot dz] (3.9)
or
dV .
LA / S(t)yw, 10,25 dz — E,,J,,-[w,,,(x,) wlzr)] (3.10)

The second quadratic component in Eq (3.10) represents the rate at which the
distributed controller extracts energy from the beam.
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4. Equations of an axially loaded beam with finite bonding layers
and piezoelectric layers — model 2
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Fig. 3. Geometry of beam element with finite bonding layers and piezoelectric layers

Let us consider two piezoelectric elements bonded by a finite-thickness bonding
layer to an elastic beam. In order to derive the dynamic equations the equilibrium
of the element shown in Fig.3 is examined. The equations have the form

Ppe At “ =NJ . - T+b (4.1)
ppcAupc “ N;e’: - T+b (4.2)
pitsbge = T + (S(t)0,0), (43)

where A =t,.bis a piezoelectric layer cross-section.

Axial forces in piezoelectrics: Npc, N,., interlayer shear stresses: r+, v, and
beam transverse force T and bending moment M can be found from classical
formulae

N+ = AEpul, (4.4)

Pe x

Ny = ABpcup, | (4.5)
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' G ty
=7 = (v + Ju.) (4.6)
- Gr_ 4
- = E (upe - -2—w,,) (4.7)
M= _Ebew,zjz (4.8)

tb(rt —17)

T = "‘Ebew,::z: + 2

(4.9)

Using Eqs (4.1) + (4.9) the dynamic equations of system motion can be written
in the form

—z€ (21’22)
Gb 14
PpeAul, ¢~ Epeduf, =t T‘-(u:', + Ew,,) =0 (4.10)
- Gby . 4
PreAuy,  — EpeAuy, _ + ?(u,,e - Ew',) =0 (4.11)
Gbty s _ -
PHsb gt + By Sy cns — == (U5 = 5, + 20z) 4 S()w,zx = 0 (4.12)
2t, 2
—z€ (Or 21) u (22, I)
ortobw g + EpJow zoor + S(Wzz = 0 (4.13)

We assume simply supported boundary conditions imposed on the solution of
Eq (4.13) at z = 0 and z = I, continuity of deflection, slope, curvature and
transverse force for z = z; and z = z3.

Remembering Eq (4.9) the conditions corresponding to the continuity of trans-
verse forces can be written down as

. E;,wa,,,,(zl') = EyJyw z202(25) - %(r*’(z'{) -1 (zF )) (4.14)
E.,sz,m(z;) = BuJin (2 - M(r+(==;) ~17(27))  (41%)

Solutions of Eqs (4. 10) and (4. ll) should sat;sfy free edge conditions, whnch
can be wntten in the form

u';,‘ = At at z=12y, T=2, (4.16)

u, =4 at x=2), T=23 (4.17)
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8. Deriving the control strategy for model 2

We choose the Lyapunov functional as a total mechanical energy in the form

V =

™| =

l
/ pbtbbw 1+ Ebew )da: +
0

| =

2 _2 _2
/ p,l,,Au],,Ct + Epe Au+ )d:v + = 3 /(pp,Aupc‘ + E,.,Aupc,z) dz +
o (5.1)

IRy ET

) £

2

Proceeding similarly as in section 3 after integrating by parts and using boun-
. dary conditions the time-derivative of functional is given by

{
dv
v - / S(t)w,w . dz +
° (5.2)
+ EpAA(uf, (22) - vk (21) + 45, (22) — v (21))
If the feedback has the form
z3
A= K,/u;e 4z (5.3)
E5
the time-derivative of functional is equal to
dv [
—d—t— = - _0/ S(t)w_,w," dz +
(5.4)

+ EpeAK, (uf, (22) - ufe (21)) (452 ((22) - 52 (21))

Therefore the second term does not have a definite sign. If a collocated sensor-
actuator is used (Dosch, Inman and Garcia, 1992) then the feedback is given by

A=—K, / + da (5.5)
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and the system extracts energy as

av

l
o= -O/S(t)w,gw_u dz — E, AK, (u;f‘e't(zg) - u;f'e,‘(:t:l))2 (5.6)

6. Numerical simulation and results

In order to simulate the dynamic behaviour of the beam we start with Eq (2.4),
where the shear distribution 7 is taken from Crawley and de Luis (1987)

plodw gt + 20ptsbw s + EJW g2z — 8,72 + S(t)w,z2 =0 (6.1)

Gm sinh =22
2t,I' coshTl’

r=-4A (H(a: —-z)— H(z - 12)) (6.2)

where
= Epty + 6 Epetpe m?G (6.3)
Egty t,tpeEpc

and H(z) is a Heaviside function.
The axial parametric excitation is given as follows

S(t) = So + Ap sin(wt)

The dimensions and properties of materials are the same as used by Jie Pan,
Hansen and Snyder (1991)

I = 0.038m b = 0.04m t, = 0.002m
z; = 0.078m z2 = 0.118m py = T800kg/m>

Ey = 21.6 x 101°N/m?®  p,. = 7250kg/m®  E, = 6.3 x 10'°N/m?
d3y = 1.9 x 10~ °m/V G = 10°N/m? t, = 0.0001m

The first eigenfrequency of beam is equal to w; = 207.38 1/sec. A passive
viscous model of external damping with a constant proportionality coefficient is
assumed to describe a dissipation of the beam energy. The reduced damping
coefficient S in Eq (5.3) is equal to S = 0.01. Calculations were performed for
the main parametric resonance, where the excitation frequency w is equal to the
half of the first eigen-frequency of the beam.
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Fig. 4. Influence of the feedback gain on vibrations in the stable region of parametric
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Fig. 5. Influence of the feedback gain on vibrations in the unstable region of parametric
excitation
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The square root of mechanical energy denoted by ||w]|| represents the distance
of a disturbed solution from the stright equilibrium w =0

1
1
holl = | 5 [(wh +wi)de
0

Fig.4 shows an influence of the feedback gain K, on the vibration behaviour
for the amplitude Ag near to the unstable value. In Fig.5 the similar situation
is shown, when the axial force destabilizes the beam motion without the feedback
K, = 0. It can be observed that the velocity feedback dramatically stabilizes the
beam motion in both cases.
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Stabilizacja drgad parametrycznych belki

Streszczenie

W pracy przedstawiono teoretyczna analiz¢ dynamicznej statecznosci liniowej spr
zystej belki éciskanej sila harmonicznie zmienna. Posluzono si¢ pojeciem komstrukcji
inteligentnej w celu wprowadzenia aktywnego tlumienia. W analizie skorzystano z za-
stosowania rozlozonych czujnikéw, elementéw wykonawczych i odpowiedniego sprzezenia
zwrotnego do zbadania statecznoéci ukladu zlozonego z belki opisanej r6wnaniem jednorod-
nym o pochodnych czastkowych ze wspélczynnikami j Jjawnie zaleznymi od czasu. W celu
oceny odchylema rozwiazania od prostoliniowego stanu réwnowagi wprowadzono miare
odleglodci réwna pierwiastkowi z energetycznego funkcjonalu. Zastosowano bezposrednia
metode Lapunowa w celu pokazania, ze predkosciowe sprzezenie zwrotne zmniejsza energie
mechaniczng belki mogac w koricowym efekcie zbilansowal energig dostarczana przez wy-
muszenie parametryczne i energie rozpraszana przez tlumienie pasywne i aktywne.

Dokonano symulacje numeryczna normy energetycznej. Testy numeryczne przeprowa-
dzone dla belki przegubowo podpartej na obu koricach z przyklejonymi po obu stronach
plytkami czujnika i e Tumenuu wykonawczego pokazuja wplyw sprzezenia zwrotnego na za-
nik drgan.
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