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A geometric form designing method for details made of rubber-like materials
has been presented in the paper. With regard to real properties of materials
of that kind a non-linearly elastic physical model was adopted as the most
adequate one. Large finite deformations as well as a state of stress for com-
posite load have been determined too. Eventually, it allows one to design for
example detail cross-sections of desirable shape.

1. Introduction

Many applied constructional materials have non-linearly elastic properties. Po-
lymers and elastomers among other materials belong to that group. These ma-
terials are able to carry, under a load, quite big finite deformations. Internal
structure of these materials differs entirely from crystal and symmetric atomic
structure of metals. Their internal structure has a molecular construction and
molecules are connected each other with main and transverse bonds. Concluding,
physical properties of rubber-like materials demand for application of more com-
plex theory to their description, namely non-linear elasticity. These methods not
only allow us to take into account large elastic deformations, but also to design
machine elements made of these materials in more optimal way. It can consists,
among others, in an appropriate selection of the element cross-section geometric
form in states before and after load, respectively. Direction of further research is
taking into account internal friction and its outcomes in the process.

The foundations of non-linear elasticity theory presented, among others, by
Green and Zerna (1954) and Wesolowski and Wozniak (1970) were utilized in the
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paper. While formulating physical relations for elastomers it was assumed that
these materials are homogeneous, isotropic, hyperelastic and incompressible.

The goal of the paper is a description of construction transversal deformation
for a V-belt complex form as an example.

2. Geometry of deformation

An initial state B° of dimensionaly undefined rubber V-belt undergoes defor-
mation as a result of belt gird around a pulley. For a deformation state B the
belt assumes a cylindrical form of inner radius r;, outer radius 79, pulley bend
angle 2a and trapezoidal cross-section (Fig.1), respectively. It is convenient to use
for an actual state B the cylindrical coordinates z;(r,a,2), while the Cartesian
coordinates X; for an initial state BO.
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Fig. 1. Belt deformation geometry: state B? — initial configuration, state B — final
configuration

Belt deformation can be described as follows

zy = f(r) —az
Ty = ba (21)

T3 =cz
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where f(r), a, b, ¢ are the characteristic quantities for belt deformations and are
to be determined.
Metric tensors defined as

o oXmoax™
957 o5 93
for the state B° will take the following form

CARE

g= 0 b2 0 (2.2)
—a% 0 a’?+4¢?

and for the state B

1 0 0
G=|0 720 (2.3)
0 0 1
After determination of invariant /3 based on the metric tensors
_ detG g
37 detg g

and its comparing to the unit and after taking into account a condition of rubber
incompressibility

J(r)= 522’“2 +C (2.4)

The constant C will be determined from the boundary conditions, which result
from the assumed design conditions.

An effective determination of belt cross-section form design principles for a
natural state B9 using the method of non-linear elasticity requires proper as-
sumptions conformable to design criteria.

The final effect of deformation is integrally connected with assumed geometric
parameters determining the belt cross-section for the state BP°.

Assumptions of

o constant height in the belt central cross-section
e variant wedge angle ¥° > v for the state BO or of constant angle (7% =v)
e A and B border points of belt side surface fixed during deformation (Fig.2)

are justified from technical point of view (description is given in a further part of
the paper).

An assumption of belt constant height in the center cross-section CD (Fig.2)
leads to the following boundary conditions
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Fig. 2. Deformation of the belt cross-section: state B° — initial configuration,
state B — final configuration

—for z=0and r=r
f(rl)—pl Qta,n%

a1

thus :
— 2=
2bcr1+ 2tan;l

hence .
__ 9 L o2
¢= 2ta.n% 20c !

—for z=0and r =ry

az

f(r2) =p2 = 2tan%

thus - o
e ? +C= 2tan 3
hence o )
C = Q—t;n—%— - ﬁr%

Comparing Egs (2.5a) and (2.5b) we receive the function

T +7‘2 = ZbC

which links deformation parameters b and c.

(2.5a)

(2.5b)

(2.6)
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" The following boundary conditions result from the assumption that the location
of belt side surface border points A and B does not change during the deformation
(A=A, B=DB')

— for 7 =7y and z = ay/2 it occours

1 ay
flri)=m = 55;7‘?'*0—“—2‘
SO )
a
C= a;l +r - —%rf (2.7a)
—for 7 =ryand z=ay/2
_ _ 1 2 a2
f(ra)=m = 2bcr2 +C—a 3
o )
C= aa—; + 7y - %1‘3 (2.7b)

Comparison of Eqs (2.7a) and (2.7b) leads to the function containing parame-
ters a, b and ¢
T4 T2 = 2bc(1 + atan —‘21) (2.8)

The belt deformation described by functions (2.1) substituting for the constant
C Eq (2.5a), can be written in detailed form

_ 12 a1 o
A AR T A T
Toy = ba (29)
T3 = C2

and for the value of C from Eq (2.7a)

= 17'2 az+alar 11‘2
17 9pe 2 T pe !
T = ba (210)
T3 = C2

Metric tensor g components, i.e. covariant and contravariant ones, are of the
following form regardless of the earlier made assumptions

[ —% 0 —b%r

[gij] = 0 b2 0 (2.11)
|~ 0 d?4e?
gt 0 gn

[gii] =| 0 -b1—2 0 (2.12)
10 g%
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while
1 b%c? a?b?c?
9 = + 2 4 2
r2 a2b2¢? 4 b2¢t — a2y
13 _ 31 _ ab®c’
=9 = r(a?b2c? + b2ct — ar?)
% 2a2b2¢? 4 b2¢t — a?¢?

- (a? + c?)(a?b2c? + b2¢t — a?r?)

For rubber regarded as an incompressible material (cf Green and Zerna, 1954;
Wesotowski and WoZniak, 1970; Dudziak and Mielniczuk, 1989) deformation inva-

riants have the form

r2

L =g7Gy =g"" + ;7 + 9%
T3 TS T2 b2 2 2
Iy =¢,,G%¢,,G"°I3 = vz + 2 +a*+c¢ (2.13)
det G,’j
3= —= =1
detg,-j

The state of deformation will be fully determined, when deformation parame-
ters a, b, and c are known. Additional an still missing, two equations describing
these quantities, besides of already got equations (2.6) or (2.8), can be obtained
from the proper stress conditions. In order to achieve that, determination of a
stress state in the deformed belt (2.1) seems to be indispensable.

3. State of stress for a finite deformation

A stress tensor in a non-linear elastic (hyperelastic) isotropic medium
t9 = ¢g¥ + B + pGY : (3.1)
where

_2w 2w
VI 013 - VL 0L

W is an elastic potential (cf Wesotowski and Wozniak, 1970; Dudziak and Mielni-
czuk, 1989) and BY is a deformation tensor

oW
p=2VIz5—

¢ 0I3

Bij — Ilgij _ girgstrs
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The stress tensor of rubber-like materials can be real described by the potential
proposed by Mooney (cf Zahorski, 1962)

W = C](I] - 3) + Cg([g - 3) (32)

where Cy > 0, Cy < 0 are the material constants.
Stress tensor components can be determined with an accuracy of scalar quan-

tity p

b2¢? a?b2c?
1 _
= "b( r2 + aZb2¢2 4 b2¢t — a2r2) tp

1 P
22
= ¢b_2 + —72

433 2a2b%¢c? + b2¢t — a2r?

B ¢(‘12 + ¢2)(a2b%c? + b2¢t — a?r?) +p (3.3)
13 = ¢ ab3¢3

B r(a?b2c? 4 b2¢4 — a?r2)
t12 — t23 — 0

It was assumed that ¢ = 2C7 and 7 = 0 because C2 = 0. Then a function of
hydrostatic pressure p for an incompressible material will be determined from the
balance equation and the boundary conditions, respectively. Omitting both mass
and inertia forces the balance equation can be written in a general form

|, = rpr 4 1 <o 30

while the Christoffel symbols for a change of coordinates {from the Cartesian to
cylindrical ones are as follows

Ijp=-r F122:F221=l
r
other I' = 0. After writting out Eq (3.4) we obtain
11 22 Lo
t,l —rt + ;t = 0

T?+T3 =0 (3.5)
T3 +TF =0

From Eqs (3.5)2 and (3.5)3 it results, that the parameter p is merely the
function of r. Basing on Eq (3.5); and relations (3.3) one obtains following
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function

ldp _ 7 n b2c? B a’b?c?

dpdr b2 13 r(a2b2c? 4 b2ct — a2r?)

(3.6)
2a1b2c%r
(a2b2c2 + b2t — a272)2
and after integration
2 P22 p2e2 2 2.2
p_ b ) T b*c +D (3.7)

6 W2 2z AT "A2-r2 AT _ 12

where A2 = b2¢2 + %Ci and D is an integration constant.

From the engineering point of view it is more convenient to introduce the stress
state tensor components. They will have then one mutual denomination, e.g.
MPa. Current stress tensor physical components for the curvilinear coordinates
are defined in the following way

Gij i .. 1 .
o = 5=t =,/G;Gj; t7 = —= 1Y
Y G ne G#GII
For the Cartesian coordinates
0ij = 1ij

According to Eq (2.10) the stress state physical components are

gy = tll 099 = 7‘2t22
033 = t33 J13 = tls (38)
093 = ’I‘t23

The constant D appearing in Eq (3.7) will be determined from the boundary
conditions. For r = r; it happens that oy, = 0 and in that case
_ b2c? r? b2¢?

D=2 —2e L
942 " AT 12 207 22

(3.9a)

Similarly for r = ry

2,2 2 2,2 2
D:bc1 T5 bec TS

- - = 3.9b
9AZ A2 _ 2 2r2  2p2 (3.9)

From functions (3.9a) and (3.9b) one can achieve the second equation describing
deformation parameters of a belt cross-section

b2c? . r3(A? - r}) 1 1 1
In -2 122 (- 5) - S(ri-rh =0 3.10
iy g ) D (3.10)
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An assumption of a pure bending (n = 0) leads to formulation of the last equation
describing deformation parameters a, b and ¢. Therefore

T2 T2 T2
n2=/F022 dr = a2;a1/T022 d’l‘+ (al — a2-}:alrl)/022 dr =0 (311)
T1 T1 T1

After integration of appearing in Eqgs (3.5), (3.7), (3.8) and (3.9a) one can obtain

L[S%(rg - - gln :—: + 4§b2c2L1n ﬁz : :; +

+%(r§ r?)(gifz In Aﬁ 7" (;2:; - %)] +

gt - ) - T G G T e
+(2(j:;2 + D)(‘l‘z - 7‘1)] + %K(m In A2T—% i —ryln A:} T%) -
_%L(r%]n A2r_§ r} — r%ln A:} T?) =0

where

as — a1
[ =22" ™
h
az —a
™1
h

D — according to (3.9a) or (3.9b)

I( =

Finally for the presented conditions the deformation parameters a, b, ¢ of belt
cross-section can be determined from Egs (2.6), (3.10) and (3.12) or (2.8), (3.10)
and (3.12), respectively.

4. Determination of the neutral axis location

When the stress distribution over the bend belt cross-section is known, one
can find for this cross-section the location neutral axis, as it was done for a flat
belt (Zahorski, 1962). Knowledge of the neutral axis proper location is necessary
not only for the cross-section shape design process but first of all for a cord thread
layer positioning inside the belt. The slender and inextensible cord layer should
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be positioned in a zone of neutral axis radius. It makes the belt susceptible for
bending, what affects significantly durability and efficiency of the transmission.
From Eq (3.8); for 022 = 0 one can find a function describing the neutral axis

radius g

o2 = 1?t?2 =0 (4.1)
and finally
1 2 2 1 1 1, rd(A2-r}) 2
W(:».ro-rl)—(¥+¥)_Elnr%mz_r?’)_Az_rg_o (4.2)

The neutral axis radii ro were determined from Eq (4.2) for bend radii =,
or ro of B17 X 11 V-belt. Radii values are presented in Table 1 and neutral axis
radius 7o values variations relative to bend r adii are shown in Fig.3.

Table 1. List of belt bend radii values

division T To
diameter D, [mm] | [mm] | [mm]
90 40 51
125 57.5 | 68.5
135 62.5 | 73.5
140 65 76
150 70 81
160 75 86
170 80 91
201 95 106
280 135 146
r
7l
1.06
1.05
\
1.04 i —
1.03 T
1.02 -
40 60 80 100 120 140 7, [mm]

Fig. 3. Neutral axis radius location as a function of bend radius on pulley

In reality, a belt is loaded in a more complex way, because beside the ben-
ding moment axial forces like the force of initial pull and the effective force act
as well. Dudziak (1990) proved that the axial forces affect the deformation of
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belt cross-section is negligible — about 10 times lower than the effect of pure ben-
ding moment. Due to that the achieved results are of significant theoretical and
practical importance.

5. Examples of belt shape design

Fig. 4. Deformation of a belt cross-section for assumed fixed location of operating
surface extreme points A, B: 70 = v

A shape and dimensions of a standard V-belt B17 x 11 cross-section for the
initial state, i.e. before vulcanization (Fig.2) will be established for two following
basic assumptions:

a) a hight of the center cross-section varies during the deformation process,

b) the location of operational surface extreme points does not change during the
deformation.
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The deformations were determined for bend radii »; and 75 of values presented
in Table 1. The belt is made of OKB-1 type rubber, hardness of which is 55-56
Sh and other mechanical properties are available by Dudziak (1990).

Fig.4 and 5 show examples of a belt cross-section arbitrary form design depen-
dent on the accepted assumptions.

17

A

’|-=

Fig. 5. Deformation of a belt cross-section for assumed variable angle % = v, and
h S hsr

Summarizing, application of continuum non-linear mechanics methods using
computer aided design leads to effective, closer to reality methods of calculations
and designing of the complex form geometry constructions and details. The me-
thod allows one to form constructions of least internal friction effect.
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Projektowanie geomerycznej postaci paséw klinowych z materialéw
nieliniowo sprezystych

Streszczenie

Przedstawiono metode projektowania postaci geometrycznej elementdw z materialdw
gumopodobnych. Uwzgledniajac rzeczywiste wlasciwosci tych materialéw przyjeto nieli-
niowo sprezysty model fizyczny jako najbardzie) adekwatny. Okreslono duze skoriczone
odksztalcenia oraz stan naprezenia dla zlozonego obciazenia. Pozwala to w efekcie projek-
towal np. przekroje poprzeczne clementéw o zadanym ksztalcie.
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