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The paper 1s devoted to the static analysis of countable medium with an
accumulation point in terms of a one-dimensional model of the non-local
interactions in a two material interface contact area. The new approach
is based on a concept of non-local interactions between the accumulation
point defined as a hypothetical particle located on a theoretical boundary
of two connected materials and the remaining particles of medium.
The problem of solvability of the equation of equilibrium (qualitative and
quantitative analyses) is formulated, i.e. the existence and uniqueness
theorems are demonstrated as well as the approximate method is for-
mulated. Numerical results given in the form of diagrams are compared
with the solutions which base on a classical model of contact forces.
The character of displacements of particles near the accumulation po-
int (witin the joint region) is qualitatively consistent with the observed
strain hardening (synergism) of material.

1. Introduction

At the interface of materials having various mechanical properties (e.g. in
composites) there are often observed effects which consist in new mechani-
cal properties, different from the properties of joined materials, which occure
within the small contact zone.

The considerable increase in stiffness and strength of material in the in-
terface contact area, quickly fading away from the contact area, as well as
microscopic observation revealing a very complicated structure of the inter-
face, caused by mixing of the various component often in the presence of
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additional reinforcing moderators, allow us to assume that the non-local inte-
ractions decreasing quickly with the distance from joint are of importance in
the physical interpretation of this phenomenon.

The phenomenon of strength increase following the surface coating of ma-
terial with a very thin layer of the hardening agent can be interpreted in a
similar way.

The above phenomena are to be described within the framework of conti-
nuum mechanics, taking into account the non-local interactions in the contact
zone of different materials. An adequate model with non-local interactions
(cf WoZniak, 1969; Eringen and Edelen, 1972; Rogula, 1973; Sztyren, 1979;
Gould, 1990) (e.g. with a density of these interactions given by two varia-
ble functions, decreasing quickly in an appropriate manner with the distance
between the points in the medium and the contact surfaces, respectively) is
available. However such a mathematical model of the phenomenon would lead
to integral-differential equations. Thus, the eflective solution to the problem
becomes a difficult task.

The paper presents a concept of countable modelling in classical mechanics
of deformable media (cf Nagdrski, 1989; Czarnecki, 1990). On account of the
preliminary stage of the study, only a one-dimensional problem is analysed.
The countable chain of particles with the accumulation point lying on a stra-
ight line is proposed as the model of one-dimensional linear-elastic medium.
The accumulation point defined as a particle located on the theoretical boun-
dary of the connected materials (or material and reinforcing agent) describes
such joint. The particles are subjected to displacements along the straight
line of their initial configuration. The medium deformation is brought about
by the external forces, internal elastic local interactions between the adjacent
particles and internal elastic non-local interactions between the particle defi-
ned as an accumulation point and the remaining particles of the medium. The
non-local interactions decrease with the distance from the accumulation point.

The main aim of this paper is:

e To formulate mathematically the problem of the medium of equilibrium

o To formulate the problem of solvability of the equilibrium equations i.e.
the existence and uniqueness theorems, respectively

e To propose the effective method to determine the approximate solutions
with an arbitrary accuracy

e To show the numerical results and their interpretation in order to confirm
the hypothesis of the influence of non-local interactions on the observed
increase in stiffness in the close proximity to the materials interface.
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2. Basic definitions and equations

Fig. 1. One-dimensional countable model of the contact zone

Let (C) be a countable set of particles (i) lying on the euclidean straight
line (see Fig.1)

(€)= {(i): i€ N} N*=NU{0}={0,1,2,..})  (2.1)

We assume the existance of a particle (co) which is the accumulation point
of the set (C).
By (D) we mean the set of particles

(D) = (C) U {(e0)} (2:2)

Under the external forces P; (¢ € N*) and P as well as due to unknown
internal interactions, let the particles (¢) (¢ € A™) and the particle (co) be in
equilibrium in the locations determined by 9; + z; and 9, + 2 respectively,
where z;, o, denote the displacements of particles (¢) and (c0) and ¥;, Yoo
denote their coordinates in the natural configuration, (P, = P, = 0).

We assume that (see Fig.1)

00 o
d = Zhgj < d' = Zh2j+l < o0 (2.3)
=0 j=0
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where h; > 0 (i € N'*) are given parameters determining the distribution of
the set (D) particles in the state of natural equilibrium; i.e.

7 J
¥o; = Z hak Vo401 = Z haky) (2.4)
k=0 k=0

We shall postulate that the interaction forces between particles (i+2)—(7)
are proportional to the relative difference in their displacements

F, = ki(zi+2 - Ii) (l S N*) (2.5)
where (see Fig.1)
ki = Z_ (i e N*) (2.6)

The coefficients e; are given characteristics of this interactions refered to the
relative strain and satisfying the condition

e, e*€R VieN* O0<e<e<e* < (2.7)

Furthermore we shall postulate that the particle (oo) interacts with all
the remaining particles (i) € (C). The respective forces for this kind of
interactions are assumed in the form

Si = k(oo — T4) (i e N*) (2.8)

where, like in Eq (2.6) (see Fig.1)

€ .
Ky = = (l & N*) (2.9)
Ai
The coefficients ¢; are given characteristics of the interactions between par-
ticles (i) — (o0) refered to the relative strain.
We also assume that

Ao o Ao ol
52]' = 5’(1 - —2]+2) 52j+1 = 5”(1 — —2]:3)
& d (2.10)
Agj = Z hay Agj1 = Z haky1
k=3 k=3

as well as
0<e,e"ad,a" < oo (2.11)
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The parameters ¢’, ¢” determine the magnitude of nonlocal interactions of
the particle (00), whereas the parameters o', o” indicate their range, i.e. the
decay rate depending on the increase in the distance A; from the particle (o0).

We emphasize here that the springs and the vertical segments shown in
Fig.1l are of auxiliary significance only and merely visualize the scheme of
internal interactions in the investigated system (D) which, in fact, is one-
dimensional and rectilinear.

We define the countable medium (D) as a set of particles (2.2) together
with the above postulated external and internal interactions. The particles
of this medium are subjected to statical displacements z; (i € A™*) and
Zoo, satisfying the support conditions as well as the following equation of
equilibrium employing the principle of virtual work

Y ki(zira =) (Wirr—¥i)+ D Kil @0~ i) (Yoo — ¥i) = Y Pitli+ PooYoo (2.12)
=0 1=0 1=0

for the arbitrary allowable (virtual) displacements y; (¢ € A*) and yoo.
The medium (D) is our one-dimensional countable model of interactions
two different materials connected at the point modelled by the particle (oo).
Let us notice that putting

Ty =3 =25 =..= T (2.13)

PP=P3=P=..=P =0 (2.14)

(see Fig.1) we obtain — on the basis of Eq (2.12), (using the principle of
virtual work) the equation of equilibrium for the countable medium modelling
the interaction between given material and hardening agent (the right-hand
side of the medium (D) undergoes rigid deformation i.e. translation).

3. The problem of equilibrium
Let .
X={z=(z)): z;eR, ie N} (3.1)

be a linear space of the series in which two operations are defined: addition
and multiplication by scalars

(z:) + (¥:) = (zi + vi) a(z;) = (az;) (3.2)
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Let next

V = {z:(zi)eX: zo =0, lim 2; = oo,

(3.3)

[o 0]
D lkilzive = zil® + Kilwo — 2:]?] < 00}
1=0

Under the assumptions (2.3) + (2.11) it can be proved that the set V is a
Hilbert space with the inner product

<z,y>=K(z,y)

where
K(z,y) = i[ki(zi+2 — ) (U2 — i) + Ki(Zoo — i) (Yoo — ¥i)] (3.4)
1=0

is a bilinear positive definite form over V.
Moreover, if the sequence (P;) satisfies the condition

x p?
E:: 7 < (3.5)
then -
= EPiyi + PooYoo (3.6)
=1
is a continuous linear form defined over V.

Let us notice that for the medium (D) with fixed end at ¢ =0 (zo = 0)
according to Eqgs (3.4) and (3.6) we can rewrite the Eq (2.12) in the form

K(z,y)=P(y) (3.7)

Hence by the Riesz representation theorem (Lax-Milgram lemma) there exists
one and only one element (sequence) z € V which satisfies Eq (3.7) for all
y € V. The sequence z = (z;) determines the state of equilibrium of medium
(D) (i.e. the statical displacement of its particles).

The above statement (under the same assumptions) holds also in the case
when the end at ¢ =1 is fixed (z; = 0). ‘

If the displacements of the medium (D) ends are given, i.e.

To = Up or T, = (3.8)
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then the new unknown

v=r—u (3.9)
can be introduced for arbitrary u = (uo,u1,...) € X such that
& = (0,uy,uq,us,...) € V (when z9 = g, z; free) or relevantly

% = (0,0,up,u3,...) € V (when z9 = ug, 7 = wu; and the problem (3.7)
can be formulated as follows

K(v,y) =P(y) - K(u, y) yev (3.10)

It can be proved that the solution z = v 4+ u does not depend on the choice
of u.

Similarly in the problem involving interaction between the medium and the
hardening agent, the conclusions formulated in this paragraph remain true. It
suffices to make use of Eq (2.13) and assume that the right end (7 = 1) is free.

4. Approximate solution

It is rather difficult or even impossible in most cases to find the exact solu-
tion to the problem presented in Section 3. Fortunately there exist a standard
technique for obtaining approximate solutions with an arbitrary accuracy in
a sense defined below. We shall now demonstrate this method, focusing our
attention, for convenience, on the case when the medium (D) is fixed at the
end i =0 (z9=0).

Let

VD ={z=(2)eX: zi=z1, i>1) (I eN) (4.1)

If condition

. 1 &
36>0 Vi>2 e ;h]- <4é (4.2)

is fulfilled, then it is not difficult to show that V(1) is the approximate subspace
of V,ie. V) is a finite-dimensional linear and closed subspace of V as well
as

VyeV lim|y—yP|=0 (4.3)
where () is a projection of y onto V()

(I .
ylgl) _J for 1< I (4.4)
Y1 for 1>171
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while |- | is the (energetic) norm in V i.e. (see (3.4))

[yl = V(. 9) (4.5)

The Cea lemma (cf Ciarlet, 1978) implies that if 2 (2 € V') is a solution
to Eq (3.7) and z(D) (z() ¢ V) is a solution to the equation

K(zD,y) = P(y) vy e v (4.6)
then
Jim [z D=0 (4.7)

The problem (4.6) after taking into account Egs (3.4), (3.6) and (4.1) can
be easily rewritten in the form of the linear algebraic equations in 7 unknowns
zgl),, ey :L‘y) which turns out to be suitable for algorithmization on a computer.

5. Examples

ra s ¢ e
2 27 " 231 no pJN
—_— e e e
() 2) “ o T
J_oqy i -
271 =5 i P
- - —»

Fig. 2. Approximate analysis — distribution of the particles in the finite-dimensional
model

Subsequently the method of solution described above is applied to some
examples illustrating the medium « D) properties. The calculations have been
done out for the following distribution of the particles (i) in the segments
[0,d'], [d',d" + d"] (see Fig.1 and Fig.2)

, f—(z% 0<j<2/ -2

25 = d’ 12+J'—2J J
" . .
@ 0<j<27 -2

hojt1 = 3// (
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and on account of demonstrative (qualitative) character of the paper the fol-
lowing data have been assumed

dI:dII:1

ei:e:l VZEN*

g=e"=¢e=01 or gd=¢"=¢e=10 (5.2)
o =a"=a=3 or o =ad"=a=7

Moreover we put
P =1 Py = (5.3)

for the medium fixed at the end i =0 (zo = 0) also
Po=1 (5.4)

for the medium fixed at both ends (z¢ = 7 = 0) and P; = 0 for the remaining
indices 1.

In order to find an approximate solution (sequence) xﬁ”, v x(/) according
to the procedure described in Section 4 we take
I=22-14+N) (5.5)

The parameter J determines the density of the distribution of the particles
on the segment [0,d’' + d"”] whereas the parameter N determines the range of
the approximation zone of the sequence =z.

The presentation of results is confined to the particles contained within the
segment [0,d] (left side of the medium) in view of the fact that the solution

is roughly symmetrical with respect to the accumulation point.
For data given in Eqs (5.2), (5.4) and J = 2, J = 3 it was found that

the numerical results show a good convergence xz(l) to z; with N — oo (or
I — o0, see Eq (5.5) and from N = 10 are practically undistinguishable.

In Fig.3 and Fig.4 the values of displacements of the particles are plotted in
relation to the displacement diagram in the case when local interactions only
are taken into account (full line). The increase in material stiffness in close
proximity of the particle (o0o) due to the existance of the non-local interactions
is clearly visible. Naturally, the greater value of the parameter ¢ relative to
the value of e the larger influence of the non-local interaction (see Eqs (5.2),
(2.6),(2.9), (2.10)). On the other hand, the greater value of the parameter «
the smaller zone of non-local interaction. The graphs of the internal forces F;

(see Eq (2.5)) and the forces

Ni=)_S; (5.6)
§=0
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Fig. 3. Displacement z of the particle (7)
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Fig. 4. Displacement z of the particle (7)
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Fig. 5. Distribution of the internal forces F; and N; between particles (i + 2) — (%)
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Fig. 6. Distribution of the internal forces F; and N; between particles (i + 2) — (4)
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(see Eq (2.8)) are presented in Fig.5 and Fig.6. Obviously we have
N; + F; = const Vie N (5.7)

It is obvious that the local (classical) interactions quickly decrease and
nonlocal interactions increase when the distance from the particle (oo) decre-
ases.

6. Final remarks

The medium (D) presented in the Section 2 + 5 as a model of interac-
tions ”perpendicular to the boundary surface” of the connected materials has
a demonstrative character. However its qualitative properties are in accor-
dance with some experimental results in which the so called ”synergic effect”
is significant.

Further necessary investigations should focus at least on two-dimensional
models of the phenomenon and on carrying out the experiments identifying
the parameters used. However, they may require the unconventional experi-
mental methods in comparison with those which are employed in the classical
phenomenological mechanics.
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Jednowymiarowy przeliczalny model efektu statycznego oddzialywan
niclokalnych w kompozytach

Streszczenie

Celem pracy bylo studialne zbadanie mozliwosci zastosowania osrodka przeliczal-
nego z punktem skupienia z uwzglednieniem jego oddzialywan nielokalnych z po-
zostalymi czastkami osrodka do modelowania efektu synergicznego w kompozytach
w poblizu miejsca (powierzchni) kontaktu dwéch materialow. To oryginalne pode-
Jscie do problemu zbadano wstepnie dla przypadku modelu jednowymiarowego. Zba-
dano réwnania tego modelu, dokonano jego jakosciowej i ilosciowe]j analizy statycznej
przy zastosowaniu metod analizy funkcjonalnej, w tym przestrzeni ciagéw oraz zapro-
ponowanej 1 matematycznie uzasadnione] metody aproksymacyjnej, zezwalajace) na
efektywne otrzymywanie wynikéw liczbowych. Wyniki szeregu obliczen wskazuja na
uzyskanie efektu wzmocnienia (usztywnienia) kompozytu w poblizu miejsca kontaktu
dwéch materialow, jakosciowo zgodnego z obserwacjami fizycznymi.
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