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An automatic computer code for constructing an orthonormal and dif-
ferentiable basis of tangent (null) subspace for constrained mechanical
systems is proposed. The method uses the Gram-Schmidt vector ortho-
gonalization process, adopted according to the Riemannian space forma-
lism. An interesting and useful peculiarity of the formulation is that the
minimal-order (purely kinetic) equations of motion are generated direc-
tly in the resolved form (the related mass matrix is the identity matrix).
The other problems snlved are: generation of a well-posed and sparse
supplementary matrix to the constraint matrix, used in the orthonorma-
lization process; diminishing the constraint violation due to numerical
errors of integration; estimation of consistent initial values of tangent
velocities; and effective determination of constraint reactions.

1. Introduction

A prevalent approach to the dynamic analysis of constrained mechanical
systems is to pose initially the problem in terms of a redundant set of co-
ordinates. The related equations of motion are mixed differential-algebraic
equations (DAEs). Since the numerical treatment of the DAEs is usually
inefficient, several methods have arisen that automatically generate a set of
independent variables and reduce the equations of motion to a minimal order
for solution. The coordinate partitioning (LU decomposition) method (cf We-
hage and Haug, 1982), the zero eigenvalues theorem method (cf Walton and
Steeves, 1969; Kamman and Huston, 1984) and closely related singular value
decomposition (SVD) method (cf Mani et al., 1985; Singh and Likins, 1985),
and methods based on the Householder transformations (cf Kim and Vander-
ploeg, 1986; Amirouche et al., 1988) and on the Gram-Schmidt orthogonali-
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zation (GSO) process (cf Liang and Lance, 1987: Agrawal and Saigal, 1989)
are representative examples of methods of this type. This paper is another
contribution to the field.

The idea used herein originates from the works by Liang and Lance (1987),
Agrawal and Saigal (1989), where the GSO formulae were used to generate ba-
ses of tangent (null) space. As opposed to previous applications, however, the
present scheme involves the metric tensor of the system configuration space
into the definition of vector length and into the definition of dot product of
two vectors. Consequently, a genuine orthonormal basis of tangent space can
be built. Projecting the initial dynamic equations into the orthonormal basis
of tangent space and expressing them in terms of the corresponding tangent
velocities results in a minimal-order set of kinetic equations of motion. An
important and useful characteristic of the equations is that the related mass
matrix (metric tensor matrix of the orthonormal basis of tangent space) is
the unit matrix. In other words, resolved kinetic equations are directly obta-
ined. The other problems solved are: generation of a well-posed and sparse
supplementary matrix to the constraint matrix, used in the orthonormaliza-
tion process; diminishing the constraint violation due to numerical errors of
integration; estimation of consistent initial values of tangent velocities; and
effective determination of constraint reactions.

2. Preliminary definitions

In order to define properly a vector length and a dot product of two vectors
in an n-dimensional configuration space of a system, the critical observation
is that the space is a Riemannian space. Accordingly, the concepts and sta-
tements of the Riemannian geometry should be used to study dynamics of
constrained /multibody systems. Mechanicians make usually little account of
these aspects for many problems of mechanics can be described and solved
without involving the mathematical tool of Riemannian geometry. Some spe-
cialized problems, as the problem undertaken in this paper, will require the
use of the tool, however, and ignoring this fact may lead to inconsistencies in
mathematical formulation.

The notation used hereafter for vector space and tensor calculus concepts
patterns upon Pobedrya (1972) and the constrained system dynamics formula-
tion developed by Blajer (1992a,b); it has also some reference to Papastavirdis
(1990), Brauchli (1991), Maifler (1991). For details the reader is referred to
these works. Here, of special use there will be the distinction between the
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contravariant, a = [ag,...,a,]", and the covariant, a* = [a},...,a%]T,
respectively, representations of a vector @ in the n-dimensional Riemannian
space R, and the interdependance between them is

a" = Ma (2.1)

where M is the metric tensor (symmetric, positive definite) matrix of the
space, referred to the covariant basis in which a is defined. Then, a dot
product of two vectors a and b can be written in four possible ways

(a,b) =a’Mb=a"b* =a*"M'b*=a*Th (2.2)

and the vector orthogonality condition is (a,b) = 0. A vector length is
defined, according to Lq (2.2), as

llall = \/(a,a) (2.3)

Using the above notation, for a system characterized by n generalized
coordinates x = [z,...,2,], and subject to m (m < n) stationary holonomic
constraints f = [fi,..., fa]

f(x)=0 (2.4)

the dynamic equations of constrained motion can be represented as follows
M(x)x = h*(x,x,t) + C*(x)A (2.5)

where M is the n X n symmetric positive definite mass matrix (metric tensor
matrix of the covariant base vectors spanning the directions of x components);
h* = [A},..., h}] represents the generalized forces; C* = (f/0x)*T is the
n X m constraint Jacobian matrix; A = [My,...,An]T contains thecorrespon-
ding Lagrange multipliers; and ¢ represents time. The constraint vectors ¢;
(i = 1,...,m), represented by covariant components as colunms of C*, span
(form a basis of) the m-dimensional constrained subspace C in R. By as-
sumption, no virtual motion is allowed in the subspace, and the reaction r;
of the ith constraint is spanned along the corresponding constraint vector,
rP=c.

Blajer (1992a,b) gave more explanation concerning the above governing
equations in the descriptor (DAL) form for a constrained mechanical system.
The reasons for using contravariant/covariant vector components are also bet-
ter detailed there. Moreover, the formulation of those papers is valid for
systems subject to holonomic and/or nonholonomic constraints, and for the
dynamic analysis carried out in generalized velocities and/or quasi-velocities.
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For reasons of simplicity, the formulation of this paper is limited to systems
subject to holonomic constraints and to the analysis carrieed out in genera-
lized velocities, which suffices usually to model and analyse a wide range of
problems of multibody dynamics. Nevertheless, the following formulation can
easily be modified so as to model and analyse the aforementioned more general
cases of mechani¢s.

The crux of the methods that reduce the DAEs (2.4) and (2.5) to a minimal
set of ODEs is constructing an n X k full-rank matrix D so that the velocity
and acceleration equations of constraints (2.4)

f=CTx=0 (2.6)

f=CTx+C"x=0 (2.7)

are satisfied when expressed in k& = n — m tangent (independent) velocities
u = [uy,...,u;]" defined as

x = D(x)u (2.8)

In other words, after substituting the relationship (2.8) into Eqs (2.6) and
(2.7), the condition of f = 0 and f = 0 implies that

C'D=0 and D'C =0 (2.9)

i.e. D is an orthogonal complement matrix to C* in R. Mathematically,
Eq (2.6) expresses dot products of the constraint vectors with the velocity
vector, (¢,z) = 0 (¢ = 1,..,m), and this justifies the covariant repre-
sentation of column vectors of C*. Then, Eq (2.9) expresses (c¢;,d;) = 0
(¢t = 1,...,m; 7 = 1,...,k), where the vectors d;, represented by contrava-
riant components as columns of D, span (form a basis of) the k-dimensional
tangent (null) space 7 which complements Cin R, 7TUC = TR and
Tnc =0.

Projecting the dynamic equations (2.5) into 7 defined by dy,...,dx, and
expressing the equations in terms of u, &k kinetic equations of the constrained
motion follow

M. (x)u = h}(x,u,t) (2.10)

where
M, =D"MD (2.11)
h% = D" (h* — MDu) (2.12)

The mass matrix M, of the kinetic equations (2.10) is the metric tensor matrix
of 7, referred to the covariant basis formed by di,...,dx, and Eq (2.11) can
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be interpreted as M(7,j) = (d;,d;), 7,7 = 1,...,k. As seen in Eq (2.12), the
regular derivation of kinetic equations requires that D must be found as well.

Since the relationship (2.8) is, in general, nonintegrable (the integral of u
may have no physical meaning), the minimal-order governing equations of the
constrained motion are then composed of Eqs (2.8) and (2.10).

3. Revised orthonormalization process

Application of the GSO process to generation of a tangent subspace basis
requires that the constraint matrix C* must be appended to an n X k£ matrix
E* so that the produced » x n» matrix P*

P* = [C* E*] (3.1)

is of maximal rank. Formulation of E* is not unique, and the task can be
completed by any method. The problem of effective and well-conditioned
formulation of E* is discussed in Section 5.

The condition rank(P*) = = assures that the vectors p; (: = 1,...,n),
represented by covariant components as columns of P*, are independent in
R. They span thus the whole R and form a basis of the space. Consequently,
the vectors e; (j = 1,...,k), represented as columns of E*, cover T but do
not, in general, span the subspace. The vectors may give projections into the
constrained subspace as well, E*TM~!C* % 0. The physical interpretation of
E* is that it stands for the Jacobian matrix of supplementary constraints that
freeze the system, i.e. P*Tx = 0.
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Fig. 1. Nlustration of the orthonormalization process

Applying a properly modified GSO process to the base vectors p;
(¢ = 1,..,n), an orthonormal basis of R can be produced. The recursion
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formulae of the revised orthonormalization process are

w; = M w} w; = vj||vi]]
1
vi = p] Vijl =Pl — E(wj’l’i+1)w; (3.2)
i=1

I

i
[loall* = llpy lvisall® = llpigall? = D2 (w5, piga )’
J=1

where (it is convenient to use)
||Pi+1||2 = (Pi+1,Pi+1) = P?I1M_1Pf+1
(wjaPi+1) = WJTP?+1

As a result, the matrix P* transforms to a matrix W which, according to Eq
(3.1), can be split into

W =W, Wy (3.3)

An attribute of the n X m matrix W, is that its columns w; (¢ = 1,...,m)
are linear combinations of ¢} (i = 1,...,m). The vectors wy,...,w,, span thus
C, and form an orthonormal basis of the subspace. Since, by assumption, all
the orthonornal vectors w; (i = 1,...,n) are orthogonal to each other, it
follows then

WIMW, = and W;C* =0 (3.4)

W, is thus an orthogonal complement matrix to C*.

Agrawal and Saigal (1989), Liang and Lance (1987) also used the GSO pro-
cess to produce orthogonal complement matrices. However, since the metric
of R had not been involved in those schemes (the schemes had a form given
Eq (3.2) after substituting for M the identity matrix I), the tangent subspace
base vectors obtained were neither orthonormal nor orthogonal to each other
in the meaning used in this paper. They would be orthogonal only if the mass
matrix M of the initial dynamic equations (2.5) was M = al, a being a real
constant, and they would be orthonornal if M = | (the contravariant and
covariant representations of vectors are identical in the latter case). As will
be seen in Section 4, the genuine orthonormality of vectors w; (i = 1,...,n)
produced by the scheme of Eq (3.2) yields useful peculiarities of the kinetic
equations of motion that follow.
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In order to obtain the time derivative of W, one can use the following
recursion formulae

Wi = (M7 ws 4+ M (3 fol| =+ i (ol 7))

i =6
-1y 1 -3 .
oal[75)" = Slleall ™2 (py, ) (3.5)

7

Vi1 = Pig1 — Z((whpiﬂ)""; + (wj,Pi+1)W;)
=1

1y 1 -3 . d .
(losall™) = Slvertll™% (Prersegn) = 230 (wj pegs Xwj,pe4r))
i=1

where

(M71y = —M~'MM~!
(Pi+1717.'+1)' = 2Pf11M_1b7+1 + pr(M_l)'pr
(w;,Pi41) = W}P?ﬂ + “';'rls?+1

Using Eqs (3.2) and (3.5), W, and W,, corresponding to D and D in
Egs (2.10) + (2.12), can be constructed. For better understanding of the me-
chanism of the orthonormalization process, one can refer to simple illustration
in the two-dimensional Cartesian space (M = I), shown in Fig.1. The two
nonorthogonal vectors p; and p, are orthonomalized to w; and w,. The
direction of p; can also represent the constrained subspace (vector ¢), and
the direction of p, ~ the subspace defined by E (vector e). The vector wy is
thus orthogonal to the constrained direction, and represents an orthonormal
basis of the tangent subspace. The orthonormalization process of Eq (3.12) is
a generalization of this simple case to the n-dimensional Riemannian space.

4. Peculiarities of the orthonormal basis formulation

As the vectors defined by W form an orthonormal basis of R, it follows
that
WTMW = WTW* = WTMIW* = W TW = | (4.1)
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where 1" is the n x = identity matrix (the metric tensor matrix of the

orthonormal basis). In other words, for 7,5 = 1,...,n
o)1 for i1=7
(wl,wJ) - { 0 {for l# ] (410‘)

Making use of the division of W as in Eq (3.3), or formulating Eq (4.1a) for
t,7 = m+1,..,n,it is evident that

W MW, = 1K) (4.2)

and the & x k identity matrix I%) is the metric tensor matrix of the ortho-
normal basis of 7, defined by w,,41,...,w,. This observation is of para-
mount importance for the formulation of kinetic equations. Projecting the
initial dynamic equations (2.5) into the orthonormal basis of 7 and expres-
sing them in terms of the corresponding tangent velocities u, it follows that
M, = WIMW,; = 1) and the resolved form of governing equations of the
constrained motion is obtained as follows

% = Wy(x)u (4.3)

0= WJ (h* — MW,u) = hZ(x,u,1) (4.4)

Note that the above result cannot be achieved by using the formulations given
by Agrawal and Saigal (1989), Liang and Lance (1987). The tangent subspace
bases produced there satisfy the condition W] C* = 0, but M,(x) = W] MW,
are general symmetric positive-definite matrices.

Three more aspects may be of importance when using the approach propo-
sed above. The first is that the formulation of Eqs (4.3) and (4.4) assures, by
assumption, maintenance of the higher-order constraint Eqs (2.6) and (2.7);
which does not protect the analysis from violation of the constraint Eqs (2.4)
due to the numerical errors of integration of Eqs (4.3) and (4.4), however.
Even if the initial position of the system satisfies the constraint equations,
during the simulation the integrated position x* may violate the constraints,
f(x') # 0, and the violation gradient accelerates usually in the course of time.
The same concerns the integration process of Eqs (2.8) and (2.10).

The conceptually simpliest method for diminishing the constraint violation
is, after each step of integration or a sequence of steps, to treat x* as a trial
rootof f(x) = 0, and then to solve iteratively for a numerically exact root. As
dim(f) < dim(x), the following modified Newton-Raphson formula is proposed

C*T(x') T VM v\ A f(x')
[ W (M () } Ax =T (xX)M(x*)Ax = - [ 0 ] (4.5)
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integrated motion path
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Fig. 2. Reduction of constraint violation

where Ax = x-—-x,and T = [M7IC* W,]T is the transformation
matrix between the covariant representations of unit vectors k; (i = 1,...,n)
spanning the directions of x components (the covariant components of vectors
are contained in the n X n identity matrix, K* = 10" so that (z,k;) = z;)
and the covariant components of base vectors ¢j,...,Cm, Wpt1, ..., Wy; Tefer
to Blajer (1992a,b) for details. The formula (4.5) translates the m-vector
f(x*) into the m-vector Ax required for diminishing the violation, and assures
that the system position is corrected in the constrained directions only (the
position in 7 is not changed). Since M; = T'MT = diag(C*TM~1C*, 1tF)y
is the matrix of the metric tensor of basis €1,...,Cm, Wmy1, ..., Wy, it is easy to

show that (TTM)~! = TM; !, which applied to Eq (4.5) yields
Ax = —M7ICH(CTMICH) (4.5a)

Note that M7 f are the contravariant components of the required corrections
expressed in the basis of C defined by ey,...,em, and M, = C*TM™IC* is
the metric tensor matrix of the basis. The constraint violation measure f(x)
corresponds thus to the forces which are orthogonal to the constraint manifold
and assure that the system moves on the manifold (cf Arnold, 1978).

The correction of constraint violation can also be included directly into the
integration process of Egs (4.3) and (4.4) by adopting the Bamgarte method
(cf Baumgarte, 1972; Ostermeyer, 1990). Using a PI-controller scheme, one

can write
M,“] :TTMk+[G‘f+%°ffdtl (4.6)
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where M; and T have been defined above, and G; and Gg are diagonal
matrices of feedback gains. Then after premultiplying Eq (4.5) by (TTM)~!,
one obtains

% = Wau - M1 C*(CTM1C) ! (Gof + Go/fdt) (4.60)

The stabilized geverning equations are composed then of Eqs (4.6a) and (4.4).
It may be worth noting that the stabilizing terms appear in the kinematic
equations, whereas they are commonly placed in the dynamic equations (cf
Baumgarte, 1972). In the present formulation, however, as the corrections are
represented in C only, they will not affect the kinetic Eqs (4.4) defined in 7.
Since involvement of the stabilizing terms into the integration process may be
computationally expensive, analysts will probably prefer to check acceptability
of the current constraint violation and correct occasionally the system position
according to the scheme of Lq (4.5a).

A closely related problem is determination of the initial values of u for
given initial values xo and xo. As f(xo) = 0 and i'(xo,)'(o) = 0, the initial
values ug can be found from Eq (4.6) as

o = W] (x0)M(x0)% (4.7)
For Eqs (2.8) and (2.10) the corresponding formula would read
up = M7 (%0)D T (%0)M(x0 )0 (4.74)

where M, is defined in Eq (2.11). The problem of consistent initial values of
tangent velocities is seldom undertaken in the literature.

The third aspect that may also be of importance is an effective determi-
nation of constraint reactions. The classical scheme (Wittenburg, 1977)

A% u,2) = —(CTMIC) ™ (€ Wau + CTM ) (4.8)

may be computationally expensive. Moreover, A = [Aq,..., \]" should not,
in general, be identified with the values of physical forces and moments of
constraint reactions. In fact, a particular constrainment of a system can be
formulated in diffrent ways, provided that the system’s motion is prohibited
in the same constrained subspace. We can write thus

CTA=B"A\ =W, (4.9)

where B*(x) is the n X m full-rank matrix of distribution of the physical
constraint reaction values Ay = [Asy,...,Apm]T;  WZ contains in columns
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w (¢ = 1,...,m) produced by the orthonormalization process of Eq (3.2);
and A, conserves the corresponding Lagrange multipliers. By substitu-
ting WX for C* into Eq (4.8), and noting that W*TM~!W* = (™) and

. wT . .
W, W, = —W:T'Wd, one obtains

(%, u,1) = (W Wau - W] h*) (4.10)

The above formula regires no matrix inversion and uses W;, W,, and W,
produced in the orthonormalization process and used in the formulation of
kinetic equations (4.3) and (4.4). Having A, determined, A (or Ay) can be
calculated from Eq (4.9). As this is an over-determined system of n linear
equations in m unknowns A (or Ay), only m equations should be chosen,
provided that the corresponding m X m submatrix matrix of C* (or B*)
is invertible. A rational choice of the submatrix can be made by using the
projective criterion described in the next section.

5. Formulation of the supplementary matrix E*

As said, the matrix E* defined in Eq (3.1) can be determined by any
method, provided that rank([C* E*]) = =. For a given matrix C*, the
formulation of E* is not unique and may vary as C* depends on x. The
robustness of the orthonormalization process may require that the projections
of vectors e; (j = 1,...,k) into C are relatively small. Reffering to the
illustration shown in Fig.1, even if the directions of e and ¢ are very close to
each other, the two vectors still span over (form a basis of ) the two-dimensional
space. In such a case, however, the orthonormalization process may be ill-
conditioned with its accuracy diminished. The condition det(P*) # 0 says
nothing about how the problem is conditioned, and the value of det(P*) is
not a criterion of the conditioning either.

For small systems the supplementary matrix E* can sometimes be guessed
or stated by intuition. In general, and especially for large systems, a formal
procedure is needed. It is suggested by Liang and Lance (1987) to use SVD
or LU factorization of C* to obtain E*. At the point of application, a matrix
E (= D, see Eqs (2.8) + (12)) defining 7 would just be obtained, and the
contravariant representation of the vectors e; (j = 1,...,k) plays no role
only if the metric of R is disregarded. Since C* varies during the simulation
process, the procedure should be occasionally repeated in order to avoid the
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singularity of P*. By contrast, Agrawal and Saigal (1989) included the for-
mulation of E*, directly in their orthogonalization process. After having the
constraint vectors orthonormalized (in the meaning of their definition), they
choose consecutively e} (j = 1,...,k) and update the orthonormalized sub-
space. A chosen vector e is a unit vector along a particular #; (i = 1,...,n)
direction, and a criterion of the i-direction choice acceptability is that e}
does not project totally into the so far orthonormalized subspace of R.

The approach proposed in this paper is conceptually close to that used
by Agrawal and Saigal (1989); E* is built at one stage, however, before the
orthonormalization process is initialized. The present idea is to choose those

column vectors ki (z = 1,...,n) of K*
10 --- 0
0 1 --- 0
K'=|. . . . (5.1)
00 --- 1
for e} (7 = 1,..,k), which give the relatively smallest projections into C

(or biggest projections into 7). A particular k7 is a covariant representation
of a unit vector k; spanned along the ith generalized velocity direction,
(#,k;) = x'k! = #;. The squared length of k; is

1&i]|? = ki TM 7Tk = M (52)

where M is the (i,i)th element of M~!. Note that the vectors k;
(¢ = 1,...,n) defined by the unit matrix K* are, in general, neither orthonor-
mal nor orthogonal in R as (k;, k;) = k' M™* ki = Mgl. The projections
of k; into C and 7 can be stated as

K = Wlki = (W]);

(5.3)
* d *

K = Wiki = (WJ)
where (-); denotes the 7th column of the corresponding matrix. The squared
lengths of the projections are

k{2 = (WWT )i
(5.4)

[CRIEECATHE
where (-);; denotes the (%,7)th entry of the corresponding matrix. The
above formulae are relatively simple due to: W;r MW, = I and
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WIM W, = I%). The relative volume of the projections can be measured by
the generalized cosine and sine of the angle between k; and kfc)

¢ d)
(L oy = 1B
cos a; = sin o; = —— 5.5
] e (5
and it is easy to show that cos?a;+sin?a; = 1. If cosa; = 1 (sina; = 0),

k; is totally sunk in C (give no projection into 7), and the corresponding k;
cannot be used in E*. The condition cosa; < 1 (sina; > 0) indicates that
k; is represented in 7T, and there are at least k such vectors. Since all the

vectors k; (¢ = 1,...,n) are linearly independent, any matrix E* composed
of kj (j = 1,..,k) such that cose; < 1 (sine; > 0) is acceptable. An
optimal choice of E* is to gather those columns ki ( = 1,...,n) whose

corresponding cos ; (sin ;) have the smallest (biggest) values, i.e. which
give the relatively smallest (biggest) projections into C (7).

At a particular instant of simulation, the above projective criterion for cho-
osing E* uses the matrix W generated previously by the orthonormalization
process. The criterion cannot thus be applied to initialize the process. At the
initial point, ||k$c)|| used in Eq (5.5); should thus be redefined according to
||k(-c)||2 = (C*TM HTMI(C*TM™Y);, where (C*TM™!); is the ith column of
C*"™M~!, and M, = C*TM~IC" is the metric tensor matrix of C defined by
€1,...,¢m. The other possibility is to apply the orthonormalization process only
to the constraint vectors in order to generate W,. In fact, the latter approach
could be applied at any instant of simulation, i.e. the orthonormalization pro-
cess could be stopped after the constrained subspace is othonormalized and,
using Eqs (5.4), the matrix E* could be chosen to finish the process. For
k < m, however, the sine criterion as in Eqs (5.4) may be computationaly
cheaper. Note also that the criterion can be used only occasionally in order
to check the acceptability or redefine the current choice of E*.

If the orthonormalization process has been once initialized, at a particular
instant of simulation one can take the current Wy for E*, and use it in the next
step (or a sequence of steps) of integration of Eqs (4.3) and (4.4). This assures
the best-conditioned matrix P* to be obtained. However, W} is a general
matrix, whereas E* defined as a set of columns of K* is a sparse matrix having
only one nonzero (unity) entry in each column. The latter feature benefits
simplifications in the orthonormalization process for ¢ = m+1,...,n, and
for large systems with few constraints this may be of importance. Note also
that e; = 0, which yields further simplifications in the scheme (3.5).

The projective criterion defined in equations (5.2) + (5.5) can also be
applied for indicating the best conditioned m equations from n Eqs (4.9) to
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determine A (or Ay) as a function of A,. In this case, however, the chosen
equations should correspond to those m vectors from k; (i = 1,...,n) which
give the relatively biggest (smallest) projections into C (7), i.e. whose cos ¢
(sin a;) have the biggest (smallest) values.

6. Simple illustration

442/
L

Fig. 3. A mooving physical pendulum

Consider a moving physical pendulum as shown in TFig.3. Setting
x = [z1,%2,23)7 as indicated, the mass matrix of the system (the metric
tensor of the related basis of the three-dimensional configuration space R) is

M = diag(m,m, J) (6.1)

where m and J are the mass and the moment of inertia of the pendulum.
The constraint equation is

f=29—psinz3 =0 (6.2)
The matrix P* defined in Eq (3.1) can be constructed as
0

10
P* = 1 00 (6.3)
—pcoszz 0 1
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where the first column is the constraint vector. Application of the orthonor-
malization scheme of Eq (3.2) and (3.5) yields

-1
0 0
wl=|" d 6.4
d [ 0 U lp coszT3 [ 1 ( )
. T 0 0 0
Wq = [ 0 —;L2‘3Jp:i'3 sin 3 u;ampzi'g sin 23 cos T3 (6.5)

where yu; = /m, and up = /J + mp?cos? z3. Using Eqs (6.1) and (6.4)
it is easy to show that W] MW, = I®, and the final governing equations are

T = pflul

Lo = ,u;lpu2 COS I3

&=y uy (6.6)
iy = pythy

Uy = ;12'1 (ph; cos z3 + h;)

where h* = [h}, h3, h3]T are the applied forces and moments on the pendu-
lum. For given xg and xg, the initial values of u are

u10 = M1%10
(6.7)

ugo = p2 5t piag + py ' JEz0

7. Conclusions

The main achievements of this paper are as follows:

e The vector orthonormalization process has been redefined according to
the Riemannian space formulation.

o By supplementing the constraint matrix and employing the modified
orthonormalization formulae, an orthonormal and differentiable basis of
the tangent subspace can be constructed.
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e A projective criterion for choosing the supplementary matrix is proposed.

e Resolved kinetic equations defined in the orthonormal basis of tangent
subspace and expressed in terms of the corresponding tangent velocities,
are obtained.

e A formulation is proposed for diminishing the constraint violation due to
numerical errors of integration of the minimal-order equations of motion.

e A formula for exact determination of consistent initial values of thetan-
gent speeds is provided.

e The problem of effective determination of constraint reactions is discus-
sed.

As compared with the other methods (mentioned in Section 1) for con-
structing the tangent subspace bases, the present method scems to be com-
putationally efficient. The obtained orthonormal basis of 7 is differentiable
and benefits by the resolved kinetic Eqs (4.4). This feature of the formula-
tion may be especially useful in applications. The only inconvenience is the
necessity for determining M™!, used frequently in the formulation process,
and (M~1)y = ~M~IMM™! applied to Eq (3.5). In the case of absolute coor-
dinate formulation of multibody dynamics, M is a constant diagonal matrix;
determination of M~! is then a trivial task and M = 0. In a general case,
however, M should be obtained symbolically at the stage of modelling of the
problem, and M~! computed during the simulation process.

A final remark is that the role of Riemannian space formalism for the
dynamic analysis of constrained/multibody systems is commonly underesti-
mated. The formalism is indeed a powerful mathematical tool of the analysis
that clarifies and automates many mathematical transformations. What is of
greater importance, the formalism sets the analysis in physical order. As an
illustration of the latter statement let us consider again the constraint vec-
tor ¢ =[01 — pcoszs]' introduced in Section 6. Following the common
definition, the squared lenth of the vector is ||c[|> = 1 + p?cos? z3, and the
summands are of different dimensions. The Riemannian geometry adjusts the
dimensions, ||¢[|? = X+ %p%cos? z3. Evidently, in computations we play with
numbers, and the dimensions are not seen. Consequently, many problems may
be solved when no attention is payed to these aspects. In particular, all the
methods mentioned in Section 1 produce the orthogonal complement matrices
without taking the metric of the configuration space into consideration. Invo-
lving the space metric would probably benefit better conditioned formulations
of the methods, however.
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Formulowanie dynamiki ukladéw nieswobodnych poprzez
ortonormalizacje przestrzeni konfiguracji

Streszczenie

W pracy zaproponowano algorytm automatycznego formulowania ortonornalnej
i rézniczkowalnej bazy podprzestrzeni stycznej dla nieswobodnych ukladéw mecha-
nicznych. Metoda wykorzystuje reguly Grama-Schmidta ortogonalizacji wektoréw,
adoptujac je zgodnie z formalizmem przestrzeni Riemanna. Interesujaca 1 uzyteczna
wlasnoscia proponowanego sformulowania jest to, ze kanoniczne rownania ruchu
ukladu ‘(llczba ich jest rowna ilosci stopni swobody) generowane sa bezposrednio
w rozwiklanej formie (macierz mas tych réwnar jest macierza jednostkowa). In-
nymi poruszanymi zagadnieniami sa: generowame dobrze uwarunkowanej i rzadko
upakowanej macierzy uzupelniajacej macierz wiqzéw, wykorzystywanej nastepnie w
procesie ortonormalizacji; korygowanie naruszenia w1¢zow w wyniku kumulowania
si¢ niedokladnosci calkowania numerycznego réwnan ruchu; wyznaczanie zgodnych z
warunkami wiezéw wartosci poczatkowych predkosci stycznych; oraz efektywne wy-
znaczanie reakcji wiezow.
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