MECHANIKA TEORETYCZNA
I STOSOWANA

Journal of Theoretical

and Applied Mechanics

2,32, 1994

OPTIMIZATION WITH A PERIODIC CONTROL AND
CONSTRAINTS ON THE STATE VARIABLES!

ZBIGNIEW PIEKARSKI

Institute of Physics
Cracow University of Technology

In this paper, on the basis of Pontryagin’s maximum principle, the neces-
sary conditions for the optimality of a periodic control, have been found,
while taking into account certain constraints imposed on the state va-
riables.

1. Formulation and solution to the problem

The problem of optimization of systems described, among other things, by
a periodic control within a limited interval has been presented before Piekarski
(1992).

On the basis of Pontryagin’s maximum principle, the author presents a
theorem specifying necessary conditions under which such a control is optimal.
Some technical applications of the theory formulated by Piekarski (1992) have
been presented by Gajewski and Piekarski {2].

The aim of this paper is to generalize the afore mentioned theorem, for the
case of optimization with constraints imposed on the state variables.

In order to describe the conditions of periodicity and the considered con-
straints accurately, the whole interval of optimization [0, L] is divided into
subintervals, each of the length

T2
n

n=1,2..,71<0o (1.1)

1This paper was supported by the Grant PB 0269/P4/93/05
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A part of the independent variable t € [0, L] contained by the interval ¢ shall
be denoted t,

ty € [(¢ - V)T, qT] g=1,2,..,n (1.2)

If the inequality
(r-1DT <t <rT (1.3)

is true, where r is an arbitrary fixed value of the index ¢, then the variable
t, can be described by the following formula

ty=t-+(qg—-r)T (1.4)

The following assumptions have to be made about the control u(t) speci-
fying the optimization process:

e Itis admissible, i.e. it is contained in a fixed set of defined and sectionally

continuous functions
u(t) e U (1.5)

A the points of discontinuity, the right-hand limit of the control is assu-
med as its value.

e It is periodic in a limited interval, i.e. we can choose a subset of functions
from the set U, for which the following is true

u(t;) = u(ty) (1.6)
for each ¢ and fixed value of r.

Control functions described by assumptions (1.5) and (1.6) are simultane-
ously admissible and periodic within a limited interval.
Two types of constraints are imposed on the state variable:

1. The continuous type

gm(2(mT)) =0
zi(mT +0)—2;(mT -0)=0 (1.7)
m=1,2,..(n-1) i=1,2,.,N

The quantity z(mT') represents a vector of state at a boundary point

mT of subintervals m and (m+1). We assume, that the scalar function
gm generally assumes a different value for different values of m.
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2. The discontinuous type
z;(mT + 0) — z;(mT — 0) = hpi(z(mT — 0)) (1.8)

The quantity h,, represents a vector of N coordinates h,,;. We assume
that functions ¢,, and h,,; are continuous together with their derivatives
with respect to their arguments. No single variable can be limited by
both kinds of constraints at the same point, because they rule out each
other.

We shall consider physical systems, described by a finite number of real
variables z;(t) appearing in constraints (1.7), (1.8). We assume, that the state
of the object is described by a system of N ordinary differential equations of
the first degree

d
(1) = file (1), u(1), 1) (1.9)

We assume that functions f; are defined for all z,u,t, continuous together
with their derivatives 0f;/0z for all z,u and sectionally continuous for ¢.
To the equation of state (1.9) we add the following boundary conditions

pi(z(0),z(L))=0 [=1,2,..,p<2N (1.10)

We assume that functions p; are of the same class as functions ¢, and h,,;.

We shall be searching for the solution to the following optimization pro-
blem: let the functions z,(¢) satisfy the equation of state (1.9) with the
boundary conditions (1.10) and the constraints (1.7), (1.8), with the control
u(t) defined by Egs (1.5) and (1.6); we aim to find such optimal =z(t), u(t),
which will make the cost functional

L
J:/hmmmmnm (1.11)

assume its minimal value. We assume, that the function fp is of the same
class as functions f;.

To solve the problem, we have to formally eliminate the periodicity (1.6),
by reducing the optimization given within the interval [0, L] to an equivalent
optimization within the subinterval [(r — 1)T,rT]. This requires an increase
in the dimension of space of the state variables and controls. To obtain such
an increase we introduce the following vector functions, dependent on t,

z(ty) = (z1(tg)s .- n(tq)) (1.12)
u(ty) = (11 (k) oy (1) (1.13)
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for all the values of ¢q. The vector of state has ; n/V, and the vector of control
has nK coordinates. From Eq (1.12) it is obvious that the variables of state
z;(t) in particular subintervals ¢, are marked as z;(t;). Substitution of Eq
(1.6) into Eq (1.13) gives the vector

u(ty) = (u1(ty), ooy us(ty)) = u(t,) (1.14)

which is the same in each subinterval g.

Eqgs (1.12) and (1.14) together with the change of variables (1.4) allow
us to put the equation of state (1.9) in an equivalent form, defined in the
subinterval r

ot + (0= 1)) = £ (st + (g = D) u(t), (0 + (g = T)) - (115)

for all the values of ¢. To Eqs (1.15) we add the unchanged boundary con-
ditions (1.10) and constraints (1.7), (1.8). The cost functional (1.11), after
changing the variables of integration, assumes an equivalent form, also defined
in the subinterval r

rT

J = / i fo (z(tr + (g —7)T),u(te), (t- + (g - r)T)) dt, (1.16)

(r-1)T 97!

As we can see from the preceding relationships, the problem of optimization
with which we started, given in the interval [0, L] with periodic control u(t)
is equivalent to the problem defined in the subinterval [(r — 1)T,7T], under
nonperjodic control u(t,). The constraints imposed on the variables of state
initially given at fixed, internal points of interval [0, L], become boundary
conditions for the equivalent optimization problem.

The problem of optimization has been reduced to a typical (without con-
straints and periodic control) problem of optimal control, the solution to which
(precondition of optimality) in the easiest way is found for equivalent continu-
ous systems on the basis of, for example, Pontryagin’s maximum principle (cf
Gabasov and Kirillova, 1974; Gajewski and Piekarski [2]). Therefore we shall
be searching for the solution of an equivalent problem of optimization, given
in the subinterval of variable t, € [(r — 1)T,7T)].

If the functions z;(t, 4+ (¢ — r)T') for each g satisfy the equations of state
(1.15) with boundary conditions (1.10), (1.7), (1.8), with constraints imposed
on control coming from (1.5)

u(t,) €U (1.17)
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then we are searching for such optimal Z; and %, which give the cost functional
a minimal value.
For this problem, the hamiltonian takes the following form

H(t) = 3 Hy(t) (1.18)
g=1

where partial hamiltonians H, have the form

Hy(t:) = wofo(a(te+ (g = 1)T),utr), (b + (g = )T)) +
(1.19)
N
+ 3 wilte + (g = D fi(a(t + (= T), u(ts), (b + (g = 7)T))

i=1

Adjoint variables ; dependent on arguments (¢, + (¢ —7)T) must satisfy the
following system of differential equations

d o0H

Ew,(tr +(g-n)T) = P (4 =TT (1.20)
which can be written using Eq (1.18) in the form

d _ OH,(t,)

dtrwl(tT_i_(q_T)T)_ —3Ii(tr+(q——T)T) (121)

true for every ¢, for a given value of r. To the system of adjoint equations
(1.21) we have to add suitable boundary conditions. As emerges from theory,
they take the form of

— for the right-hand limit (in point 0)

¥;(0) = 628(00) (1.22)

— for the left hand-limit (in point L)

";bz(L) = _aza‘ZDL) (1'23)

and adequately at points m7T

dp

¥(mT +0) = Oz;(mT + 0)

P(mT - 0) = (1.24)

Gz (mT = 0)
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In the above formulae, the boundary function ¢ is a linear function of all
boundary conditions. For constraints of the continuous type (1.7) it takes the
form

> pron(2(0), 2(L)) + nij psgs(z(sT = 0)) +
I=1 s=1

(1.25)
n-1 N

+ D> pakler(sT +0) = zx(sT = 0)]

s=1 k=1

whereas for constraints of the discontinuous type (1.8) it takes the following
form

S puan(s(0), 2(L)) +
=1

(1.26)
n-1 N

+ Z Z/Lsk[xk(ST +0) - zi(sT — 0) — hsp(z(sT — 0))]
s=1 k=1

After substituting for 1, @2 into Eqs (1.22) and (1.23) we get the bo-
undary conditions at points 0, L for adjoint variables and both types of
constraints, in the form

= Opi((0),z(L))
; 1(0)
(1.27)
z(L))
3x1(L)

$i(L) = — iplaw(

=1

To get relationships between (0) and (L) in a form resembling Eq (1.10),
we have to eliminate constants p; from expressions (1.27).
For constraints (1.7) after substituting (1.25) into (1.24) we get

n-1 N 0zx(sT — 0 =l 9gi(2(sT - 0
Yi(mT = 0) =D > pok ka 0)) 2 s ;x(i(fnT—O)))

s=1 k=1 s=1 (]28)

”ZI N axk(sT + 0)

Yi(mT +0) = i (mT 4 0)

.slkl
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Because derivatives of functions 2 given at points sT with respect to func-
tions z; at points mT are equal to zero for m # s, so after eliminating the
constants Uy;, we get

0 (z(mT — 0))

i(mT —0) = ¢Y(mT +0) — 92 (mT —0)

(1.29)

The formulae (1.29) represent the jump conditions, which have to be fulfilled
by adjont variables 1);, when we impose constraints (1.7). Additional (n—1)
constraints can be determined from first (n —1) relations of constraints (1.7).
We use the same approach in the case of constraints (1.8).
Substitution of Eq (1.26) into (1.24) gives

n—1 N
(mT = 0) = Z Z [8$k(sT 0) N Ohgi(z(sT — O))]

pufonst mT - 0) dz;(mT - 0)

(1.30)
n—1 N

aflrk sT + 0)

T+0 Iy

(mT'+0)= Zlkz‘; zi(mT + 0)

from which, after eliminating the constants pu,,;, we get
N
Ohpi(z(sT - 0))

;(mT — 0) = Y;(mT (mT 1.31
Pi(mT — 0) = i(m +0)+k§wk(m +0) DA (mT —0) (1.31)

Condition (1.31) defines jumps at points mT, which are experienced by
functions 1;, when the variables of state meet the constraints (1.8). In Eq
(1.31) summation over k appears, because different functions A, for different
values of k, can be dependent on the same function z;, in a fixed point mT.

From the maximum principle (cf Gajewski and Piekarski, [2]) we conclude,
that the control we find in the initial problem, and consequentially in the
equivalent problem, can be determined from the condition of optimality

N
o = t 1.32
Hopy(1) ur(rtl)E}EXUqZ::l H,(t) ( )

After we utilize the relationship (1.18) we get the formula allowing us to de-
termine the control vector u(t,), for an equivalent optimization, which is the
same in each subinterval ¢

N
Hop(t:) = u(rtrlr?é(UZ_:Hq'(tT) (1.33)



402 Z . PIEKARSKI

where partial hamiltonians are given by the formulae (1.19).

On the basis of the previously obtained results, we can formulate a theorem
concerning optimization under a periodic control within a finite interval with
constraints of types given in Eqs (1.7), (1.8).

Theorem

In order to find the necessary conditions of optimality in a system ruled
by the equations of state (1.9) with the boundary conditions (1.10) and the
constraints imposed on state variables (1.7), (1.8), with a cost functional (1.11)
with control constraints (1.5) and additionally (1.6) we have to:

a) Find an optimal control from the condition of optimality (1.33)

b) Solve the equation of state (1.15) with conditions (1.10) and constraints
(1.7) or (1.8)

c) Solve the adjoint equation (1.21) with (1.19) with conditions (1.27) and
constraints (1.29) or (1.31), respectively.

In the above considerations, we have to assume the following conditions;

d) Adjoint variables ;(t, + (¢ —r)T'), and the constant 1y cannot be simul-
taneously equal to zero

e) generally, the hamiltonian H,,(t,) is continuous in subintervals ¢; on a
particular condition when T is given, we get H,,(t,) = const # 0,
whereas when T is unknown, H,,(t,) = 0, from which we can calculate
the value of T.

Note:

In order to eliminate the continuous constraints we have to omit the first
condition in Eq (1.7) during calculation and assume, that p,, = 0 in Eq
(1.29). To eliminate the discontinuos constraints, we have to assume hy,; =0
in Egs (1.7) and (1.31). After eliminating the constraints of both types, the
above theorem takes the form presented by Piekarski (1992).
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2. Example

This example, though very straightforward, illustrates all possible pro-
blems that can be encountered while using constraints (1.7) and (1.8). We
shall consider an object described by the equation of state

L ax(t) = bu(t) 0<t<L (2.1)

with the boundary condition
1 =121(0) — 2o =10 (2.2)

Interval [0.L] is divided into three subintervals, that is we assume n = 3,
T =1L/3,q=1,2,3. Furthermore, we assume that at points T and 2T, the
constraints imposed on variable z; are

— at the point T

z(T+0)- Bzy(T-0)=0 (2.3)
which can also be presented in a form appropriate for Eq (1.8)
21 (T+0)—z,(T~0)=(B-1)zy(T-0)=hyy (2.4)
— at the point 2T

2= (2T —0)—A=0
q ( ) 23)

21(2T +0) = 2;(2T - 0) = 0

where constants zg, A, B are given.
We assume that the control wu(t) is defined, sectionally continuous and
periodic within the interval [0, L]

u(ty) = u(ty) g=1,2,3 (2.6)
where t, is given by the formula (1.4), in which we put r =1

Fpr thos problem we shall be searching for the minimum of functional

L
J = /(alxl(t) + éuz(t)) dt (2.8)
0
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After changing integration variables, using Eq (2.7) and Eq (2.6), the functio-
nal takes the following form

J=0/T[a1

After taking into consideration expressions (2.6) and (2.7), the equation of
state (2.1) can be presented in subinterval [0, L] in a form appropriate for Eq
(1.15)

3
S et + (¢ - DT) + %uz(tl)] diy (2.9)

g=1

Bd;xl(tl + (¢ = DT) = bu(tr) (2.10)

Partial hamiltonians (1.19) for the tested expression take the form
Yo = —1

H(ty) = —éu2(t1) —azy(t + (g — DT) + br(ts + (g = DT)u(t) (2.11)

The relationships (1.21) together with (2.11) form a differential equation
in adjoint variable 1; dependent on arguments (¢, + (¢ — 1)7T)

%wl(tl +(g-1T)=a (2.12)

Solutions to these equations are the functions
w](tl-{-(q—- 1)T):a1t1 + ¢4 (213)

for each g¢. Three constants of integration ¢, can be calculated from the
conditions (1.29) and (1.31) and the boundary condition (2.2). From Egqs
(2.4) and (2.5) we have

2=2:12T -0) - A (2.14)

h-ll = (B - 1)1,‘1(T - 0)
After substituting expressions (2.14) into Eqs (1.29) and (1.31), we get
(2T - 0) = ¥v1(2T +0) — w2 (2.15)
(T = 0) = By (T + 0) (2.16)
From the boundary conditions (2.17) and (2.2), we conclude that

P1(L)=0 (2.17)
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The formulae (2.13), (2.15) and (2.16) allow us to evaluate constants ¢,

c = —alT(2B + 1) — o B
co = =20, T — g (2.18)

C3 = —alT

which are defined using a yet unknown constant pug.
The optimal control u(t;) should be calculated from the optimality con-
dition (1.33) in which we have a hamiltonian in the form

Hn) = 3 My(0) = —5u2(h) —a Yoot + (g - D)+
q9=1

9=1

(2.19)

+ bu(ty) Y it + (¢- 1)T)

9=1

Seeing as in Eq (2.19) there is a minus sign in front of ?(¢;), the condition
(1.33) takes the form

OH(ty) _
Julty) 0 (2.20)
from where we get
w(th) = by it + (¢ - 1T) (2.21)

After substituting Eqs (2.13) and (2.18) into I2q (2.21) we get
’lt(tl) = 3(11bt1 — ,Ll,gb(B + 1) - 20.11)T(B + 2) (222)

The equations of state (2.10) together with Eq (2.22) have solutions in the
form
2
zi(t1+ (g—1)T) = galb%f — j2b%(B + 1)ty — 2a10*T(B + 2)t1 + co43 (2.23)
The quantity p2b(B + 1) and constants c¢,y43 are calculated from the
boundary condition (2.2) and the constraints (2.4) and (2.5). After certain
transformations, we get

(JfoB - A)

B+ 1)T (2.24)

/,LQb(B + 1) = g(lvle - 2a1b(B + 2)T +
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and B( )
o +
4=z 5 = — " cg=A 2.25
o= 20 o : (225)
The first formula substituted into Eq (2.22) allows us to define the optimal
control with known constants

(Il:oB - A)

3
t1) = bty — —a bT —
w(h) = 3abty = gaibT =T

(2.26)
The solutions (2.23) after substituting from (2.25), take the form

zi(ti+ (¢—1)T) = Ealbztf _ §a1b2t1T _ (zoB - 4)

2 2 mtl + Cq43 (227)

where cg43 are given by the formulae (2.24).
In order to get numerical values of the solutions, we assume that

L=6 Il:o—(ll—-bzl

T=2 A=3 .
. (2.28)

B=3 or B=1

On the basis of Eq (1.8), we can see, that for B = 3 the step of the state
variable at the point T has the value 2z,(T - 0), Fig.1. From Eq (2.26) we
get the equation of optimal control

’U.(tl) = 3t1 -3 (229)

State variables in subintervals (2.27), (2.24) and (2.28) are given by the func-
tions

zy(ty) = 1.5t = 3t; + 1 (230)

Jll(tl + T) = Jll(tl + 2T) == 15t¥ - 3t1 + 3

The graphical representation of control (2.29) and of the state variables (2.30)
is shown in Fig.1.

In the case of B =1, we conclude from Eq (1.8), that the state variable
at the point T is continuous, while at the point 27T it is continuous and has
the value of 3, Fig.2. The control in each of the subintervals is defined by the
expression

u(ty) = 3t — 2.5 (2.31)
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A ulty); x(tl' (q-11T)
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U[tl)

Fig. 1.

4 ulty); xlty+(qg-1)7)

X[tl'ZT]

U(tl)

W — e ———

T

|
2

Fig. 2.
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Variables of state from Eqs (2.27), (2.24) and (2.28) are given by the formulae

z1(t) = 1.5t2 —2.5¢; + 1
z1(ty + T) = 1.5t2 — 2.5t + 2 (2.32)
z1(t + 2T) = 1.5t — 2.5¢; + 3

Graphical representation of the functions (2.31) and(2.32) is shown in Fig.2.
From point e) of the theorem, we conclude that for the optimal (%)) and
z1(t1 + (¢ — 1)T) the hamiltonian (2.19) has a constant value.
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Streszczenie

W pracy, na gruncie zasady maksimum Pontriagina, znalezione zostaly wa-
runki konieczne optymalnosci sterowania okresowego w skonczonym przedziale przy
uwzglednieniu wybranych ograniczen na zmienne stanu.
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