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In this paper the method of influence function is applied to solving of the
problem of deflection curve and critical load finding in a variable cross-
section beam. The function describing the deflection curve of an elastic
supported beam with variable flexular rigidity is obtained in terms of the
Cauchy function in a power series form. A general form of a characteristic
equation is obtained which made it possible to calculate the estimators
of critical Euler load. Some examples of different beams being used
frequently in practice are given in details. The results are compared
with the well-known theoretical results and show a good agreement.

1. Introduction

In many cases, like aerial masts, towers, outriggers, spindles of machine
tods, turbine blades, a variable cross section of the structural elements as well
as axial and shear loads should be correctly considered. However, because
of numerous difficulties, the possible framework of such an analysis is limited
and anly a few solutions to a problem of determining deflection curve of a va-
riable cross-section beam have been found (cf Timoshenko and Guder, 1979;
Zoryj, 1982). The similar situation arises in the problem of the stability of a
beam subject to a conipressive Euler force (cf Timoshenko, 1971). Analytical
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and numerical methods (method of successive approximators, iterative varia-
tional, finite difference, finite element and transfer matrix methods) are most
frequently used in such analyses. In the present paper a method of influence
function is applied. The method has been used in the study on vibrations of
flexural beams (cf Jaroszewicz and Zoryj, 1983, 1985). The method is based
on the mathematical similarity of differential equations describing vibrations
and deflection of beams, which are fourth order equations with variable coef-

ficients.
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Fig. 1.

Fig.1 gives a model of elastically supported beam subject to a transverse
load G and an axial compressive load P at the free end (z = b). The rigidity
of the support at z = z, is ¢. The flexural ridigity is f = EJ(z), where
the Young modulus of elasticity £ =const as the material is assummed to be
homogeneaus and the plane moment of interia J(z) is variable. The function
1/ f(z) shoud be continuous, positive definite and should have a finite value
and integral in [a,b].

2. Definition of the problem

The deflection of the model beam given in Fig.1 is defined as follows

Lyl = —=Ré(z — z2) + Gbé(x — z3) (2.1)
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where the differential operator Lly] = (fy")" + fy”, and ¢ is the Dirac
function and R stands for the bearing reaction.
The boundary conditions are

y(a)=0 (fy")|_ =0
(2.2)
(S|, =0 (") + Py)|_, =0
and the following can be written for the supported end
cy(z2) = R (2.3)

The following solution to the general equation (2.1) can be proposed (cf
Zoryj, 1982)

y=Co+ Ci(z — a) + C2Kz1 + C3Kyz1 — ROyy + GPy3 (2.4)

where K = K(z,a)is the Cauchy function of the equation L[y] = 0, which
can be defined as (cf Zoryj, 1982)

K(z,a)= Z]/ﬁ(a: -1)U(t,a)dt (2.5)

The fundamental solution to Eq (2.1) is
P(z,a)= K(z,0)0(z — o) (2.6)

where @(z) denotes the Heaviside function.
The following notation has been introduced in Eqs (2.4) + (2.6)

K. = K(IE, xl) b, = 45(:1:,:1:,-) t=12,3
(2.7)
. oK
I\xl = % a=z
where
K(z,a) - influence function
C; ~ arbitrary constants, ¢ =0,1,2,3.

It has been shown by Zoryj (1982) and (1987) that U = U(z,a) is the
solution to the following problem

1
U"+ ——PU =0
f(z)

U(a)=0 Ule) =1

(2.8)
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The function U can be written in the form of power series (cf Zoryj, 1982
and 1987)

U(z,0) = Y- (~PY¥Ux(a,0) (29)
K=0

where

Uk(z,ag) = /%U["(t,a) dt

(2.10)
Uo(z,0) =2z -« K=1,2,..

The series is convergent for any P and =z,a € [a,b] provided
that: rgaécb[l/f(x)] =M < oo.

3. Solution to the problem

From Eqs (2.4) + (2.6) we have
fy” = CZU.‘L‘I + C3Ul‘l — RUIQOg;Z + GU1'301‘3 (31)
Substituting Eqs (2.4) and (2.8) into Eq (2.2), we have: Cp = 0 and

C3; = 0. Employing some of the conditions (2.2) and (2.3) results in the
following

CoUp + R3Upy = 0
1
Cl(xz - a) + Cz](n - R-(-: =0

From Eqgs (3.2), we have

G 1
C1= ——(=Un - KnUs)
A(zg —a)\c
(3.3)
G G
C2 = - Us2 R=—Un

A A
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where
1

c(zg — a)

Koy

A = Uy Uly — Ul Uy + P[sz (1(,;2 — e

) = U (K4 - )| (3.4)

By taking into consideration the following relation proposed by Zoryj (1987)
K(z,0)= %[(z — a) - U(z,a)] (3.5)
Eq (3.4) can be transformed to a simpler form
A =Up —Upe+ PD (3.6)
where

1
To—4a

D =

(szKza - %Uba) (3.7)

The above yields the following solution to the problem defined by Eq
(2.1) + (2.3)

G
y(z) = Z[—(a: — @)D + Upokza — Upa®Pra] + GPy3 (3.8)

which describes the beam deflection curve. Substituting z = b one obtains
the deflection of the beam end y(b)

y0) = 2{~b-a)D+ -l - G-2)Vil}  (39)

It should be noted, that the lawest solution to the equation A(P) = 0,
where A is defined by Eqs (3.6) and (3.7) corresponds to the Euler critical
force, that is P = Pg. As it has been expected for P — Pg the relations
(3.8) and (3.9) lose their sense, as y — oo is tensile force, than the sign ” +7”
in Egs (3.5) + (3.9) should be replaced by the sign ” —”, but of course in
such a case A(P) # 0.

4. The particular ceses

4.1. From the engineering point of view, it is a very interesting case, when
¢ — o0o. It means that the support at the point z = z, is absolutely rigid.
Then in expressions (3.6), (3.7) and (3.8), (3.9)

1
To — QA

D= UbgKga (41)
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It is obvious that, when ¢ = o0 and z, — b then D — 0, A — Up,,
y(b) — 0.

When ¢ = o0 and z9 — a, after solution for the indeterminacy of type
%, we have found

[(b = a)Upq + Upa] (4.2)

1
y(b) — - Ui P

At P — 0, taking into consideration that Up, — —1 and applying the suitable
formulas, it has been obtained

y(b) — %[—(b—a)—PUl(b—a)—...+(b—a)—PU1+...] s [~(b=a)Th = TT1)

and finaly
b
y(b) — / }%s—)(b—s)z ds (4.3)

The relations (4.2) and (4.3) show a good agreement with the known so-
lution (cf Zoryj, 1987).

4.2, In the peculiar case of the constant cross-section beam
f(z) = fo = EJy, it has been obtained

U(z,a) = %sin k(z — o) k? = f—I: (4.4)
K(z,a)= k%fo [z - ailc—sin k(z — a)] (4.5)

By replacing (4.4) and (4.5) into Eqs (3.8) and (3.9), it is possible to obtain
the deflection curve and the deflection value at the end of a beam.

4.3. When the compressive force P = 0, we have

N
Ulz,a)=z -« I\(x,a)_a/m(z—s)(s—a) ds (4.6)

1 b—a

o —a

A=z,—a Dy = ] (4.7)

[(b — Zz)I\'rza -

The deflection of a beam at its end z = b, which has been determined
from Eq (3.9), has the form

G

o —a

y(b) =

[-(b—@a)(Do + Kp2) + (b — 22) K] (4.8)
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When we assume the constant cross-section f(z) = fo =const, i.e.

K(z,a) = 6—1f;(x ~ay? (4.9)

we have the deflection expression as follows
z(l) = G[l—z- + il(l - x2)2] (4.10)
c:c% 3fo

at a=0and b=1.
In the case of the rigid support of this beam ¢ — oo, it has been obtained

y(l) = %(;Gl(l — ) (4.11)

At z5 — 0 and z, — ! it has been obtained

_GP

y(l) = 3%

y() =0 (4.12)
what is comparable to the formulas (4.1) and (4.3).

The first form shows, that two pivot supports, which are closc together
enough, are equivalent to the rigid fixing.

This conclusion results also from the formula (4.3), that is adequate to the
variable cross-section of a semi-beam.

4.4. The variable rigidity of the tapered beam is taken into consideration
with lelp of the following expression (c¢f Timoshenko, 1971)

f(z) = EJo(1 ~ yz)* (4.13)

where 7 — convergence factor.
In this case the analogical formulas have the form

Ulz,a) = ) sin[(z — a)@(p, z, )] (4.14)
zy0)= —Y2
w(p,2,0) = B N T e (4.15)
_ PP
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5. Example of calculations

The stability of the cantilever beam under conservative force has been
considered as the example of calculations. The exponential change in the
rigidity of a beam has been assumed

f(z) = EJ5** (5.1)

where
z

E:T - < V<40

and p - parameter of the load (4.15).
Upper and lower estimators of critical Euler load p_ and p4 calculated
from the known Bernshtein formulas (cf Bernshtein and Keropian, 1960)

1 )
== o= \] ba[1 + 264 (% - 1)] (5:2)

has been obtained on the basis of the formula (3.6).
The results of calculations of the upper and lower estimators of the critical
Euler load are presented in the Table.

Table

v | 0 1 | -1] 2 | -2] 10 [ -10 [ —100 |
p_ | 245 [1.76 [ 3.26 [ 1.19 [ 4.07 | 0.0064 | 11.66 | 101.53 |
py | 245 1.86 [ 3.30 | 1.29 [ 4.13 [ 0.0069 [ 11.68 [ 101.53 |

6. Conclusions

e The presented method gives possibilities of the solution to the problem
of deflection and stability of a variable cross-section beam in a closed
analytic form (formulas (3.2) + (3.6). It is obvious, that these formulas
holds also for the optional integrable function 1/f(z), what gives a lot
of possibilities of using this method.

e It is possible to observe accuracy of calculations on the example of critical
Euler force compressing a cantilever beam (table) by using the simplest
Bernshtein estimators.

e A lot of problems in engineering, which appear in structural design of
variable cross-section, have been analysed in this model of a beam.
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Analiza ugiecia i statecznosci belki o zmiennym przekroju metoda funkcji
wplywu

Streszczenie

W pracy zastosowano metode funkcji wplywu do rozwigzania problemu wyzna-
czenla ugig¢cia 1 obcigzenia krytycznego belki o zmiennym przekroju. Otrzymano
funkcje opisujaca linie ugiecia sprezyscie podparte] belkio zmiennej sztywnosci gietnej
przy pomocy funkcji Cauchy’ego w postaci szeregdéw potegowych. Otrzymano ogélna
postaé réwnania charakterystycznego, na podstawie ktérego mozliwe jest obliczenie
estymatdow krytycznego obcigzenia w sensie Eulera. Rozpatrzono w szczegdlach kilka
przykladéw belek, czesto spotykanych w praktyce inzynierskiej. Poréwnanie otrzy-
manych wynikéw z dobrze znanymi wynikami pokazalo wysoka dokladnosé zapropo-
nowanej metody.
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