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The main aim of this paper is to present mathematically rigorous fo-
undations of a probabilistic analysis of vibrations in nonlinear dynamic
systems driven by some stationary processes. A class of solvable Fokker-
Planck equations is given and a new method is presented to obtain a
probability density function of the response of a nonlinear oscillator to
stationary excitations. A one-dimensional vibrating system with a non-
linear elastic force is considered.
We analyse the case when the excitation force 1s a stationary 2nd order
stochastic process with a mean value equal to zero and a spectral density
of the form S

0

14+ w?r?

where Sp > 0 and T are certain constants.
Thus, utilizing the Fokker-Planck equations, determination of the den-
sity of the three-dimensional Markov vector of the following components:
displacement, velocity and acceleration of a nonlinear oscillator can be
circumvented. It is presented that the density function has the following
form w®(z,z,ddotz) = &(z,i)exp[¥(z,z)] where &(-,-) and ¥(-,)
are analytically determined functions.

Sy (w) = weER!

1. Introduction

Over a period of recent years the response of nonlinear oscillators to sto-
chastic excitations has been extensively studied. In general, no exact solutions
can be found. In some cases, when excitations can be idealized as Gaussian
white noise, the exact solutions are obtained. The response of such a system
is represented by a Markovian vector and the probability density function
of the response is described by the Fokker-Planck equation (FPE). It has
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proved to be a quite useful tool for deriving exact solutions of problems of
dynamical systems driven by white noise (see References, except Skalmierski
and Tylikowski, 1972). Some results were obtained by this method to obtain
exact and approximate characteristics of dynamical systems caused by broad-
band random excitations (cf Caughey, 1962; Dimentberg, 1962, 1966 and 1989;
Piszczek, 1970, 1971 and 1982; Piszczek and Niziol, 1986; To and Li, 1991;
Skrzypczyk, 1993).

The main aim of this paper is to give the mathematically rigorous foun-
dations of a probabilistic analysis of vibrations in nonlinear dynamic systems
driven by narrow-band stationary processes. Thus, utilizing the Fokker-Planck
equations, determination of the three-dimensional Markov vector of the fol-
lowing components: displacement, velocity and acceleration of a nonlinear
oscillator can be circumvented. Furthermore, the application of presented
methods eventually leads to a relatively more general results in a finite dimen-
sional case.

2. Preliminaries

We consider a one-dimensional vibrating system whose motion is described
by a differential equation in the normalized form

E(t) + Ba(t) + F(z(t)) = 2(t) teR! (2.1)

where (') = d/dt, 8 = const > 0 denotes a coefficient of linear viscous
damping, and the function F(z), 2 € R! represents the characteristic of
nonlinear elastic force. It is further assumed that F(-) is differentiable at
intervals.

We consider the case when the excitation force is a stationary 2nd order
stochastic process with a mean value equal to zero and a spectral density of

the form
So

T 1twir?

S2(w) Yw € R! (2.2)

where Sy > 0 and T are certain constants.
The spectral density S,(+) is given by a Fourier transform

Sy(w) = / K, (7) exp(—iwr) dr Vo € R!

-0
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where K,(-) denotes the correlation function of a certain second-order stocha-
stic process z(-), stationary in a wide sense. In further analysis a stochastic
process named Gaussian white noise appears, i.e. a generalized stochastic
function which is a distributional derivative of the Wiener process. Its gene-
ralized correlation function will be noted as

Ky(r) = I6(r) vr e R!

where I denotes a constant white noise intensity.

The process 2(t,w) is usually assumed to be the output of some dynamic
system called filter. In our case, i.e. for spectral density given by Eq (2.2),
the filter equation takes the form

T3(t,w) + 2(t,w) = /S ¥(t,w) (2.3)

where 9(t,w) is a Gaussian white noise with a unit intensity (cf Skalmierski
and Tylikowski, 1972).

3. Analytical solution of the Fokker-Planck equations

It is a well known fact that it is not possible to write directly the FPE for Eq
(2.1). To obtain a differentjal equation from Eqs (2.1) and (2.3) differentiate
Eq (2.1). Since the stochastic process z(-) is naturally not sufficiently smooth,
this operation is possible in a generalized function sense only. It is assumed
that the reader is familiar with the generalized calculus techniques. We obtain

v OF, 1, .1 VS

z+ﬂz+—z+—z+—ﬂ—z+—F(z): y2o
Oz T T T T

It is not difficult to verify that a standard substitution for y; = z,y2 = %,

ys = z leads to the FPE in the form, for which it is not possible to separate

variables. Following this fact we introduce more suitable variables as follows:

Y1 =T, Y2 = I, y3 = I.

Now we can write Eq (3.1) as the system of 1st order equations

() (3.1)

U= Y2 Y2 =93

oF 1
=Py = 5 v T8 - Eyz - —F(yl) + £

(3.2)
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On the basis of standard considerations (cf Piszczek, 1970, 1971 and 1982;
Piszczek and Niziol, 1986; Risken, 1989) I'PLS corresponding to the system of
differential equations (3.2) can be expressed as follows

(? ow 1487 0 oF 8

2o + = 5 )+ v (5 +) +
81 y38y = - wyY3 y261 EI

(3.3)
ow S() 8211)
+ ;F(yl)a_yz + Z?_C')yg

where w = w(y1,¥2,¥3), ¥1,¥2.¥3 € R denotes the probability density func-
tion.

Having in mind researches into similar problems we make the following
assumption. Assume that the separation principle remains true in the form

w(y1,Y2,¥3) = D(y1,y3) expl¥ (y1, v2)] (3.4)

where &(-,-) and W(-,-) are certain unknown functions.
Substitution of the function (3.4) into FPE (3.3) leads to separation of two
groups of variables and to the following equations

ow ad ow dF g
y¢8 +J2a +y3¢872 2(@4‘;)0—% (3.5)
1+ Bt c') b Sy I*d
T by, Y )+?F(yl)%+ﬁay§ =0 (3.6)
Eq (3.6) can be integrated with respect to y3. We obtain
1+ 871 1 So 0P _
- ¢y3+;F(y1)¢+Fay3 = Ni(y1) (3.7)

where Ni(y1) is a certain function. To solve Eq (3.7) we’ll start with the
homogeneous equation

1 So O
+ﬁr¢3+ ~F(y)P+ 55— =0 (3.8)

272 Qs

The solution of Eq (3.8) is obtained in a routine way, it takes the form
T(14+087) , 27F(y1)
SO Y3 SO y3)

where Nj(-) is another unknown function. We use below the following nota-
tion

B = Ny(y1) exp(- (3.9)

_ _T(l + 81) , 3 21 1I°(y)
p= SO ) SO

Y3 (3.10)
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We are looking for a general solution of the nonhomogencous equation (3.7)
accepting the classical hypotheses that

® = C(y1,y3) exp(p) (3.11)

Substitution for the function @ into Eq (3.7) with respect to Eq (3.8) gives
the form

55— exp(p) = Ni(y1) (3.12)

Integrating Eq (3.12) we obtain

2 ¥3
C(y1,y3) = 2?T—Nl(yl)/eXp(—P) dys + Na(y1) (3.13)
0

Egs (3.13) and (3.11) give us the final form of the solution of Eq (3.6)

3

® = N3(y1)exp(p) + N4(y1)exp(7))/exp(—p) dys (3.14)
0

where Ns(-) and Ny4(-) are certain unknown functions. One of these functions
is determined by the normalization condition

/w(yl,y'z,ys) dyrdyzdys = 1 (3.15)
R3

the other one must be determined from the boundary conditions, so the pro-
blem arises as to which of the boundary conditions must be used. We consider
problems where y;, ¢ = 1,2,3 extends to +oo (natural boundary conditions)
and require that the integral (3.15) exists, therefore N4(y;) = 0 for every y;.
Finally we have

®(y1,y3) = Na(y1) exp(p) (3.16)

To calculate the unknown function ¥(-,-), we substitute for the function &
given by Eq (3.16) into Eq (3.5). This gives

ov ON,
3/2N35— + 3/20— + y2 N3 (——0-—3/3

:y2(dF ﬂ) ( 2T(1+Br)y3_2TF(y1))

d1+ SO SO



506 J.SKRZYPCZYK

Separating variables y; and y3 we notice that the following equations must
be satisfied

ON3  2rF(y;) (dF
i e ((1y1 T)Ng (3.18)
and
ov 27 dF ov dFF 8 27(1 + Br)
y2N38y1 +?/2N3(—So a ya) +y3N38y2 (dyl T>N3( __So—y3>
(3.19)
Integrating Eq (3.18) we obtain
_ 2T dF ﬂ
N3(y1) = Nyexp [—S—o/(d " )F(yl) (lyl} (3.20)

It is obviously that integration of Eq (3.19) leads to the following result

— ‘B 2dF 2
U(y1,y2) = —S—O(l + BT+ d—yl)y2 + N (3.21)

where N5 is an unknown constant.
Combining the partial relations (3.16) and (3.21) we obtain the final result

2T dF
w(y,ye,93) = wO(y1,92,5) = NseXP[—‘S—O/(dyl ﬂ)l“(yl) dy +
(3.22)

Jé] 2dFN 5 r(1+61) 5 27F(y1)
- 5_0(1+ﬂr+rdyl>y2_ S BT g, ys]

where Ng is a constant. Substituting the solution (3.22) into Eq (3.15), we
get

g1 + ﬂ‘r)wN

Ne = 750 (3.23)
where
v1
pr? 2 2B
/ \/m 50(1+ﬂr)F (v1) SOO/F(-T)dw) dyy
(3.24)

Notice, that if zF(z) >0 Vz € R! and F(-) # 0, then wy is well-defined.
With relations (3.23) and (3.24) the probability density function (3.22) is
completely determined. Integrating relation (3.22) with respect to yz, we
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obtain the two-dimensional density function

w®(yy,52) = / w(s)(yl,y%y.'}) dys = wN\/F‘%O .
—0o

vl
Z(y _3'[_3 (la:————(1+ﬂ7'+7' %)yg]

(3.25)

gr’

.exp[———SO(l n ﬁT

0

Observe, that if 7 — 0, 5,(-) — So, the process 2z(-,-)} "becomes” the white
noise process, and

w? (y1,v2) = wnoy ;[;—OGXP /F z) dz — —ﬂ—yz) (3.26)

where
o0 Y1
2
wil = /exp(_géfp(z) dz) dy, (3.27)
—00 0
Similarly
wWD(y) = / w B (y1,32) dys =

(3.28)

)

_ 1 BT g
o g s W, [ e )

{

if 7— 0, weget
28 n
wc()l)(yl) = WNoexp <_5_o / F(z) dz:) (3.29)
0

Relations (3.26), (3.27) and (3.29) are well known solutions of the FPE for
nonlinear oscillator driven by white noise (cf Caughey, 1962; Piszczek, 1970,
1971 and 1982: Sobczyk, 1973; Gutowski and Swietlicki, 1986; Piszczek and
Niziol, 1986).
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4. Analytical solution for nonlinear elastic characteristic which is
plecewise linear

Assume that a nonlinear elastic force characteristic is only linear at inter-
vals. In details
F(z) = I[i(z) =wix + m; (4.1)

for z; <z <zi31,1=1,2,..,n, —00 =21 < T2 < ... < Ty < Tpyp] = +00,
where w; and m; are constants. The motion of the vibrating system will be
described by Eq (2.1).

w,'(s)(yl,yz,yz) = wi(y1,Y2,y3) for z; <y <z Y2,y3 € R' (4.2)

where wi(y1,v2,¥3), i = 1,2, ...,n represents the probability density function
determined in the ith interval of the variable ;.

According to the results of section 2 and after necessary simple integrations
we employ the following notation

w® (1, v2,93) = Ciexp[—(aiv? + biv2 + civ? + dimvs + eyt + givs)] (4.3)

where due to the preceding results

w? o, B )
a; = (W, T+ 8) bi:_(1+wiT2+ﬂT)
SO 50
202
¢i = —(1+ Br) 4 = 27
SO So
(4.4)
_ 2m;, o 2m;T
e; = 5 (wiT+ B) g; = <

for ¢ = 1,2,...,n. The above results are similar to those given by Piszczek
and Niziol (1986) but are obtained with less restrictive assumptions i.e. the
case w; = 0 is possible.

Integration of Eq (4.3) with respect to ys3 gives the two-dimensional density

function
o0

wP(y, 1) = /wfs)(yl,yz,ya)dys

— o0

where the result can be obtained in an analytical way

w11, 92) = CiDi expl—(7i9? + 6:31 + biy})] (4.5)
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da;e; — d? de;c; — 2d;g; T i
_ §, = 26t~ 24igi Di=,/Z 4.6
7 4c¢; 4c¢; (o exp(flc,) (4.6)

Further integration of Eq (4.5) with respect to y» gives the one-dimensional
density function

wi(y1) = /w§2)(ylvy2)dy2
— 00
where the result can be obtained in analytical way too

wl(l)(yl) = C;F; exp[—(‘)’iyf + 6iy1 )] (47)

E; = ,/ exp 4c (4.8)

Since the elastic force characteristic is continuous, the resulting density
distribution function w(-,-,-) must be continuous in all variables, too. This
continuity principle gives the necessary conditions which must be satisfied

w}l)(xﬁl) = wlg_l‘_)l(z,-ﬂ) t=1,2,..,n-1 (4.9)
These equations can be replaced by
CiEi)(2i41) = Cig1 B @) (zi41) i=1,2,..,n—1  (4.10)

where
@ (1) = expl-(viv} + bimn )]
Following Eqs (4.10) we get

. ~(1)¢
Cinn _ _ W, ((]fm) . i=1,2,.m—1 (4.11)
Ci Biaw (i)

Using these n — 1 conditions (4.11) together with the normalization con-
dition
Tigy

i / wi (1) dy = 1 (4.12)

e

we have the system of n lincar algebraic equations with n unknown constant
coeflicients C,;. To complete the analytic considerations notice that
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— for v, >0
Tigl

G;=‘/ &M (1) dyr =

o) ol o+ )] - [+ )]}
—for v, =0
G; = —%[exp(—é;xiﬂ) — exp(—6;2;)]

where ¢ =1,2,...,n, and

erf(z) = exp dt

7]

Using the introduced notation the normalization equation (4.12) takes the

form .
> CiEG; =1 (4.13)
i=1
From Egs (4.11) and (4.13) we can obtain the following recursive sequence
C‘2 = 01101
Ck = Ok_lck_1 = alaz--.ak_lC'l k :3,4,...,7’L

The simple calculations based on Eqs (4.13) and (4.14) gives the solution

1

Cy =
! E\Gi + a1 E2Gy + a1 EsGs + ... + cqag - - -an1 E,G,

and application of the recursion formulae (4.14) gives the remaing coefficients
C;for i=2,3,...,n

4.1. Example 1

For illustration, the above theory is applied to the system, which is the
nonlinear oscillator with a nonlinear spring characteristic. It is assumed that
the nonlinear characteristic takes the following form

0.5(z - 1) for z<-1

Flz)=<( =z for -1<z<1
0.5(x + 1) for x2>1
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Fig. 1. Standard deviation of the response of the nonlinear oscillator with 1st type

nonlinearity
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Fig. 2. Comparison of exact standard deviations of responses of the nonlinar
oscillator with lst type nonlinearity and of the linear one

and again z(-) is a stationary 2nd order excitation with a mean value equal
to zero and the spectral density given by Eq (2.2). The resulting density
functions are easy obtainable following the previous general considerations
with Egs (3.22) and (3.25), eventually particular results (4.3) + (4.8).

In Fig.1 the standard deviation o, of the response z(t,-) of the considered
oscillator is presented as the function of spectral intensity So. The nondimen-
sional parameters selected are: 7 = 1.0, 8 = 1.0, 2.0, 3.0, 4.0, 10.0.

Denote by 0, in the standard deviation of the response of the correspon-
ding linear oscillator with F(2) = z and the same parameter values 7 and f.
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The relation between standard deviations of responses of the nonlinear oscil-
lator and the linear one are depicted in Fig.2.

%4
1.20r 7200
=02
.00 =1.0
1.00 Vi) =10
0.80F =20

0.60}

7:=4.0
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T =100
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0050 100 150 200 250
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0

Fig. 3. Standard deviation of the response of the nonlinear oscillator with 1st type

nonlinearity, — — - white noise
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Fig. 4. Comparison of exact standard deviations of responses of the nonlinar
oscillator with 1st type nonlinearity and of the linear one, — — — white noise

In Fig.3 the standard deviation o, of the response z(t,-) of the considered
oscillator is presented as the function of spectral intensity S for a different set
of selected parameters: § = 1.0,7 = 0.0, 0.2, 1.0, 2.0, 4.0, 10.0. Notice
that by a dashed line is denoted the case of white noise excitation, and compare
it with responses for other 7 # 0. Since the white noise approximation
is widely used in various technical applications, it can be stated from the
presented figure, what is the range of admissible 7 values.
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In Fig.4 the similar analysis is presented for relative values of standard
deviations of a nonlinear system with respect to a linear one. Notice the
strange character of changes of the relative value o./0.in with respect to
T € [0.0,10.0]. It is a result of the resonant character of a system under
considerations.

4.2. Example 2

To show the applicability of the method we discuss further the nonlinear
Duffing oscillator with the spring characteristic in the form

F(2) = kyz + koa®

where ky, ky are certain constants. Resulting probability characteristics are
well known in the case of white noise excitation (cf Caughey, 1962; Piszczek,
1970, 1971 and 1982; Sobczyk, 1973; Gutowski and Swietlicki, 1986; Piszczek
and Niziol, 1986; To and Li, 1991). In the case of other stationary exciting
processes analytical results are not known, or obtained for ”small” values of
7 only (¢f Dimentberg, 1962; Piszczek and Niziol, 1986).

S
0.60

or bound

0.50

0.40

0 050 100 150 200 ',

Fig. 5. Standard deviation of the response of the Duffing oscillator with parameters
k1 = ks = 1.0, 7 = 0.0 — white noise, — — — error bound in white noise
approximation

The resulting density functions are easy obtainable following Eqs (3.22)
and (3.25), eventually Eqs (4.3) + (4.8). Focus our attention on a stan-
dard deviation of a response of the considered nonlinear system. In Fig.5 the
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standard deviation of the dimensionless response of the nonlinear oscillator
is plotted, for different values of parameters: § = 1.0, 7 = 0.0 (white
noise excitation), 0.1, 0.5, 1.0, 10.0. By a dashed line the 10% error bound
of ”small 7" approximation is determined to enhance an error of the previous
results (cf Dimentberg, 1962; Piszczek and Niziol, 1986).

Sk
1.20

1.00

=

Fig. 6. Standard deviation of the response of the Dufling oscillator with parameters

ky, = k2 = 1.0
Y
0.70F =10
0.60 _ky=00
’ ) ,/RZ =01
0.50 -
k,=1.0
—- k2
0.40 -
— k2 =2.0
0.30 —_— k2 =5.0
—— k5 =100
0.20 2
0.10
0 050 100 150 200 ',
Fig. 7. Standard deviation of the response of the Duffing oscillator,- — - linear case

In Fig.6 the exact standard deviations of the nonlinear oscillator are pre-
sented varying the value of damping ratios 4 = 0.1, 0.5, 1.0, 5.0, 10.0 and
for 7 = 1.0.

In Fig.7 and Fig.8 the exact standard deviations of the nonlinear oscillator
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are depicted as the functions of spectral intensity Sp, varying the values
of k; = 0.0 (linear system), 0.1, 1.0, 2.0, 5.0, 10.0, k& = 1.0 and
ki1 = 0.0, 0.1, 1.0, 2.0, 5.0, 10.0, k&, = 1.0 respectively, for 4 = 7 = 1.0.

0 050 Lo 150 200 5,

Fig. 8. Standard deviation of the response of the Duffing oscillator

%A
0.60

0.50
0.40

0.30

0.20

0.10

0 050 L0 150 200 s,

Fig. 9. Standard deviation of the response of the quintic oscillator with parameters
ky = ks = 1.0, 7 = 0.0 — white noise, — — — error bound in white noise
approximation
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4.3. Example 3

0 050 100 150 200 s

Fig. 10. Standard deviation of the response of the quintic oscillator
with parameters &y = ky = 1.04

S A

0.701 =10

ool B =10 . ky=00

0.50
0.40

0.30
0.20

0.10

0 050 100 150 200 %

Fig. 11. Standard deviation of the response of the quintic oscillator,
- — — linear case

Consider another oscillator, governed by the spring characteristic equation

F(z) = kyz + koz®

i.e. the quintic oscillator.Exact probability characteristics are known for white
noise excitation (cf To and Li, 1991). Exact response characteristics of other
stationary solutions are not known. The analysis similar to that decribed in

details in Example 2 is illustrated in Fig.9 + Fig.12.
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0 050 100 150  2.00

Fig. 12. Standard deviation of the response of the quintic oscillator
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Sciste funkcje gestosei prawdopodobieistwa w stanie ustalonym dla
nieliniowych ukladéw dr uglego rzedu poddanych zewnetrznym
wymuszeniom stacjonarnym

Streszczenie

Podstawowym celem pracy jest przedstawienie matematycznie scislej analizy pro-
babilistycznej drgari nieliniowego ukladu dynamicznego poddanego wymuszeniu, kté-
rym Jest pew1en proces stochastyczny stacjonarny, 2-go rzedu. Analizowana jest taka
klasa réwnan Fokkera-Plancka, dla ktéorych mozliwe jest podanie rozwiazania ana-
litycznego. Podana jest czqs’ciowo nowa metoda analizy réwnan Fokkera-Plancka,
ktéra pozwala na uzyskanie funkcji gestosci prawdopodobieristwa stacjonarnej odpo-
wiedzi nieliniowego oscylatora poddanego wymuszeniu stacjonarnemu. Analizowany
Jest jednowymiarowy uklad drgajacy z nieliniows czescia sprezysta w przypadku gdy
sila wymuszajaca jest staqonarnym w szerokim sensie procesem stochastycznym z
wartoscia oczekiwana réwng zeru i gestoscig spektralna postaci

So

1
T+wir? weR

Se(w) =
gdzie Sp > 01 7 sa pewnymi stalymi.

Pokazano, ze wykorzystujac réwnanie Fokkera-Plancka mozliwe jest okreslenie
gestosci prawdopodobieristwa tréjwymiarowego wektora Markowa ze skladowymi:
przemieszczeniem, predkoscia 1 przyspieszenlem nieliniowego oscylatora. Wyka-
zano dalej, ze ta funkcja gestosci prawdopodobienstwa ma nastepujaca postaé
~w®(z,z,ddotz) = &(x,%) exp[¥(z,z)] gdzie D(-,-) 1 ¥(,) sa funkcjami, ktére
mozna okresli¢ analitycznie.

Manuscript recetved March 8, 1993; accepled for print October 25, 1993



