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This paper presents the hysteretic damping effect caused by a shape me-
mory alloy spring which is used as a support of a cantilever beam. Free
vibration diagrams of the discrete-continuous system are compared with
amplitude envelopes obtained for two equivalent one-degree-of-freedom
systems with the nonlinear pseudoelastic spring. Also the logarithmic
decrement to amplitude relations have been calculated. The problems
of modelling of the considered discrete-continuous structure by means
of the proposed simplified one-degree-of-freedom systems, and some re-
marks concerning inaccuracy of the applied asymptotic method have
been presented and discussed.

1. Introduction

Shape Memory Alloys (SMA) are materials that reveal unique characteri-
stics which do not appear in conventional alloy materials. The most remarka-
ble characteristic is the Shape Memory Effect (SME) which is associated with
a reverse transformation of the martensitic phase to the higher temperature
austenite phase. Shape memory alloys have also ability to change their mate-
rial properties: stiffness and internal friction during a temperature activated
phase transformation.

If a temperature is much higher than the austenitic finish point, shape
memory alloys show the pseudoelastic effect with hysteresis during loading
and unloading cycles. This phenomenon is the result of the reverse phase
transformation induced by the change in stress. The pseudoelastic behaviour
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of SMA is observed in the working temperature range so it can be exploited
in passive/adaptive vibration control (cf Liang and Rogers (1991)).

The analysis of free vibrations of a cantilever beam with a shape memory
alloy support has been presented by Pietrzakowski and Galkowski (1993). The
system response was calculated using a simulation method and was compared
with results obtained for the equivalent one-degree-of-freedom system applying
an asymptotic method.

In this paper the authors focused on the damping effect due to the pseu-
doelastic hysteresis of the SMA support, and some problems of modelling
of discrete-continuous structures in terms of equivalent one-degree-of-freedom
systems.

2. Free vibrations of a discrete-continuous system

The system presented herein is the same as analyzed by Pietrzakowski and
Galkowski (1993). The dynamic model is composed of a cantilever beam with
a concentrated mass, m, and a pseudoelastic SMA spring as a support on the
other end of the beam (Fig.1).

N —
\\ m
§ 2, A,/E, J SMA%

M

Fig. 1. Sheme of the investigated discrete-continuous system

According to the idea described by Liang and Rogers (1991) it was assumed
that the pseudoelastic support reveals a nonlinear behaviour which may be
represented by the force-displacement relation with hysteresis as shown in
Fig.2.

The limiting forces F; and F; relating to the martensitic and austenitic
transformations, respectively, and the spring stiffness, K, can be assumed to
be constant parameters within the testing temperature range.

To determine free vibrations of the structure the equations of motion repre-
senting all sections of the pseudoelastic characteristic are solved. The problem
has been described in details by Pietrzakowski and Gatkowski (1993). In this
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Fig. 2. Simplified pseudoelastic force-displacement relation

paper only the governing equations and basic relations used in the algorithm
of the numerical simulation are presented.

The equation of motion corresponding to the elastic range of the support
characteristic (0A section) is

0%y 0%y

EJ — + pA— = 2.
Oz T ot2 0 (21)
where
E - Young moduls
p - mass density
J — moment of inertia of the beam
A - cross-section area of the beam.
The boundary conditions are given by
0
y(0,1) =0 o0 =
ves (2.2)
0%y 03y K, m 0%y
bl = -4 = 2l )+ — =2
0z le=t 0z3 o=t EJy( Rk EJ 0t2 lz=i

The shape of the nth vibration mode for the investigated structure has the
following form

Xn(z) = (sinkpz — sinh kpz)(cos kpl + cosh kpl) +
(2.3)

— (cosknpzx — cosh knz)(sin k! + sinh k. /)
where the infinite series of eigenvalues k,, (n = 1,2,...) is found in a well

known manner from the characteristic equation which is obtained employing
the boundary conditions, Eqs (2.2).
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The solution to Eq (2.1) free vibrations is determined using the separation
of variables technique

y(z,t) = Z(Kn coswnt + Ly, sinw,t) Xn(z) (2.4)

n=1

where w, is a natural frequency which satisfy the relation

W= k2 22 .

Assuming initial conditions
y(2,0) = yo(w)

9(2,0) = vo(x)
and after the orthogonalization, the modal coefficients K, and L, are obta-
ined

{

K, = 71—2[ [ w0@)Xa() do + ptyo() X (D)
° (2.7)
|
Lo = 721% [/ v0(2) Xo(2) d + v (1) Xn(01)]
where
l§
vi= [ Xe)det ulX20D) (2.8)
0

and p = ﬁ—l — is the ratio of the concentrated mass to the mass of beam.

When the displacement of the end of the beam, y(l,t), exceeds the elastic
range of the SMA spring, (y(l,t) > y1), the support reaction is equal to the
force F) acting against the displacement. The movement of the system can be
expressed as a result of free vibrations and vibrations induced by a constant
force loading the end-point of the beam.

The equation of motion becomes

0%y 0%y

EJ—+ A—

oo o5 = —Fib(z - 1) (2.9)
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where the symbol é(z) indicates the Dirac delta-function.
Now, in the boundary conditions the shearing force caused by the support
response is not involved

y(O,t) =0 % =0 =

(2.10)
0%y _ 0%y _ m 0%
dx?le=t — dz3le=t T EJ 912 lo=i

The Equation (2.9) fulfils the initial conditions which are obtained from the
solution (2.4) at an instant t,, when the displacement of the SMA spring
reaches the limit of elastic deformations, i.e., when y(/,t,) = vy,

y(x’tA)zyA(x) (2.11)

y(x’tA) = UA(‘,E)

Free vibrations can be solved from the homogeneous equation, Eq (2.1), with
the boundary conditions, Egs (2.10), by applying the initial conditions, Eqs
(2.11). The solution has the form given in Eq (2.4), where the modal coef-
ficients, K, and L,, depend on displacements and velocites of the system
at the time ¢, which represents the change of the path of the pseudoelastic
characteristic

l

K, = 71—3[ [ 5.2)Xa(2) de 4 pty, (DX
(2.12)
i
L= 73%"[0/ 0,(2)Xu() do + plo, (DX (D)

Since there-is a concentrated mass in the analysed structure, forced vibra-
tions for zero-value initial conditions have been obtained using the Lagrange’s
equation. Finally, the general solution to Eq (2.9) can be written as

Fl Xn(l)

oA 22 (1- coswnt)]Xn(z) (2.13)

y(z,t) = Z [(Kn coswnt+ Ly sinwpt) —

n=1

At the considered stage of motion, the amplitude, y,, of the beam end-point
is unknown. In the worked out computer programme it is assumed that the
ratio of the concentrated mass to the mass of the beam, u, has a value, which



538 M.PIETRZAKOWSKI, Z.GALKOWSKI

allows to apply a change of the velocity sign as a criterion for entering the
next section of the pseudoelastic characteristic.

At the instant ¢, when'the end of the beam begins to move towards the
equlibrium state, the displacements and velocities of the system are calculated.
Therefore, in the range of the elastic response of the SMA support determined
by the BC section of the characteristic the initial conditions are

y(z,tg) = yB(l.)

(2.14)
Yz, tp) = vp(2)
The equation of motion is
EJ(9 Py _ K l
5—+”Aat2 = (y2 —y)Ks6(z — 1) (2.15)

The above equation fulfils the boundary conditions (Egs (2.2)) for the can-
tilever beam supported on the other end. The solution of the initial-value
problem can be represented in terms of the Fourier series (Eq (2.4)), where
the modal coefficients K, and L, depend on the initial conditions, Eqs (2.14)

{
K = 5[ [ 10(0)Xa(0) da ity (0 X0

n

(2.16)
l§
= /vB (2)Xn(2) dz + plvg (DX n(D)

2

Employing the forced vibrations for zero-value initial conditions, the general
solution to Eq (2.15) has the following form

y(z,t) = Z [(Kn coswnt + Ly sinw,t) +

n=1

(y2 — 1) K, X (1)
pA v2w2

(2.17)

+ (1 —coswnt)}Xn(z)

The movement described by Eq (2.17) occurs up to the time ¢, when the
displacement of the beam end-point decreases to the value of y3 which can be
found assuming the same slope of the elastic sections of the characteristic.
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The next stage of motion represents the CD section of the pseudoelastic
characteristic, so, the response of the SMA support can be replaced by the
constant force F,. The governing equation of motion is

0ty 0%y
EJ8—+ A32

The initial conditions at given time ¢. are obtained using Eq (2.17)

y(@,tc) = ye(z)

= —Fyb(z ~ 1) (2.18)

(2.19)
¥(z,t.) = ve(x)

The displacements of the structure for the CD section of the SMA spring
characteristic can be determined applying the same procedure as at the second
stage of motion (AB section). It is clear that the new initial conditions appear
in the formulae for the modal coefficients, K, and L,

{

Ky = 7171 [0/ 0o (2)X () dz + plys (D) Xn(0)]
(2.20)

{

721, [ ve(@)Xale) do + utoc(DXo(0)]
0

L, =

The general solution to Eq (2.18) has the form analogous to the displacement
response, Eq (2.13)

F Xa(D)

el — coswat)| Xu(2) (2:21)

o0
y(z,t) = Z [(Kn coswyt+ Ly, sinw,t) —
n=1
The movement defined by Eq (2.21) occurs until the time ¢,, when the
displacement of the beam end reaches the value of y,.
Furthermore, the movement of the structure is given by Eq (2.4) represen-
ting the linear elastic behaviour of the SMA support. The initial conditions
at the instant ¢, can be calculated using the equation (2.21)

y(zvtv) = yD(I) (2.22)

?)(x’tv) = vD(‘,l’.)

Following the described procedure, the vibrations of the system during next
cycles can be determined. In every cycle, in which the range of elastic displa-
cements of the SMA spring is exceeded the energy dissipation caused by the
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hysteresis appears. Therefore, the system finally stabilizes to undamped free
vibrations.

3. Discrete systems with pseudoelastic spring

For dynamic analysis it is useful to replace a continuous or a discrete-
continuous system with a discrete model which is much easier to solve. The
general condition of this simplification is to keep the main dynamic properties
of the modeled systems.

In the paper the damping effect caused by the SMA support in the con-
sidered discrete-continuous structure is compared with the energy dissipation
in two models of one-degree of freedom. This comparison.is possible because
the movement of the end of the cantilever beam is analyzed, and it was also
assumed that the mass cancentrated on the beam end is significantly greater
then the mass of the beam, so the first mode of the system is mainly expected.

The first proposed model is composed of a mass and a pseudoleastic SMA
spring, and has been investigated by Pietrzakowski and Galkowski (1993).The
second model differs from the first one in adding another linear spring, which
referes to the beam stiffness. For the sake of simplicity, in the both cases
the pseudoelastic force-displacement relation is modified by a separation of
the linear elastic component and the nonlinear component which describes
hysteretic damping in the SMA spring (Fig.3).

A A

Force

g
[

Fig. 3. Modified pseudoelastic force-displacement relation

Displacement
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The modified characteristic can be expressed in analitical form

Ko(ys—ys) for yzs<y<y, and 0<fB<f;
) K(y—wya) for ys<y<ys and Bz<B< B4
eF(y) =signg§ o for ys<y<wys and By<f<pfs
Ky(y—ys) for y<ys and fGs< @<

(3.1)

where ¢ is a small parameter concerning with the applied method for analysis.

3.1. One-spring model

This model is simply a mass with a SMA spring (Fig.4).

Fig. 4. Scheme of the one-spring model

The equation of motion of the system can be written as
maj+ Koy +cF(y) =0 (3.2)

The above equation describes a harmonic oscillator with a disturbance given
by Eqgs (3.1).

To obtain the system which, in the same way, is equivalent to the investi-
gated discrete-continuous structure, the mass, m,, have to the relation
K

m, =
wf

(3.3)

where wj is the first natural frequency of the discrete-continuous system.
The asymptotic Bogolubov-Krylov-Mitropolski method described by Mi-
tropolskii (1971) has been employed to solve the equation of motion (3.2).
Applying the first approximation leads to the following equations in the am-
plitude derivative and the phase derivative (see Pietrzakowski and Gatkowski
(1993))
dy2

= = :_Zyz [cos O3 — cos G4+ cos By — %(cos2 05 — cos® 84 + cos? G + 1)] (3.4)
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and

% = awg + 2“7’r—°a [%(sin 2f3 — sin 284 — sin 281) + (B — Ba — ﬁl)] (3.5)

where
wy = %: - natural frequency of the linear vibrations
cos (3; = % — ratio of the limiting displacements
o — non-dimensional coefficient, in the considered case

a=1
The equivalent damping factor and the equivalent natural frequency are
given by

heg(y2) = ;r—(;[cos B3—cos @;-{—cosﬂl—%(cos2 B3~ cos? B4+ cos? ﬁl-{—l)} (3.6)
and

2 _ 22 &’_(_%_ 1. o o _ — 3, —

weo(y2) = awy + - [2(5111263 sin 284 — sin 23)) — (f3 — P4 61)] (3.7)

Employing Eqs (3.6) and (3.7), the logarithmic decrement, &, can be deter-
mined

§ = hegTey = 2 (3.8)

3.2. Two-spring model

The model considered herein after is composed of a mass and two springs.
The first coil is the pseudoelastic SMA spring, and the second one has the
constant stiffness which replaces the stiffuess of the cantilever beam (Fig.5).

SMA =

Fig. 5. Scheme of the two-spring model

Applying the modified characteristic, Eqs (3.1), free vibrations of the sy-
stem are described by

meg+(Ks+ Ko)y+cF(y)=0 (3.9)
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where
K, - reduced stiffness of the beam, K, =3EJ/I3
m, — reduced mass.

The reduced mass is obtained following the standard Reyleigh procedure,
and for the cantilever beam with the additional mass concentrated on its end

can be expressed as

31
m,=m+ Tag™ (3.10)

where my indicates mass of the beam (my = pAl).

The solution to Eq (3.9), assuming the first approximation, is given in
Eqs (3.5) and (3.6). Therefore, the equivalent damping factor and equivalent
natural frequency as well as the logarithmic decrement are of the same forms
as relations given in Eqs (3.6), (3.7) and (3.8), respectively. But for the two-
spring model the natural frequency, wy, refers to the reduced mass, m,, and
the non-dimensional coeflicient, a, becomes

K 3
az\/l+—\_,—b=\/1+-— (3.11)
K, Ks

where k, — is the ratio of the support stiffness to the bending stiffness of the
beam

KB

3.12
ol (3.12)

R

4. Results and discussion

In order to obtain the dynamic response of the considered discrete-
continuous system it were assumed non-zero initial displacements due to the
static force P loading the end of the cantilever beam. Therefore, the initial
conditions can be expressed as

(4.1)
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The dimensions of the beam and properties of material and parameters of
the SMA support as follows

{=10m A=1.0-10"% m? J=50-10"°%m?
E=20-10"" N/m? | p=7.8-10% kg/m® | p = 3.0
F;=200N Fo=50N

The influence of the slope of the pseudoelastic characteristic of the SMA
spring on dissipation of energy is investigated.

In Fig.6, Fig.7 and Fig.8 free vibrations of the end of the cantilever
beam are shown. They were simulated for three different values of the non-
dimensional stiffness coefficient x,, but the same initial displacements.
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Fig. 6. Free vibrations of the cantilever beam with the SMA support (x, = 0.5)
and the amplitude envelopes of the one-spring model (lower curve) and the
two-spring model (upper curve)

It can be observed that the rate of the energy loss (per cycle) increases
for the high stiffness of the pseudoelastic spring. This effect is caused by the
greater initial area of the force-displacement hysteresis. With time, vibrations
of the system stabilize and continue with the amplitude determined by the
maximum elastic deformation of the SMA support.

Calculations were also performed for the two discrete models equivalent to
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Fig. 7. Free vibrations of the cantilever beam with the SMA support (x, = 1.0)
and the amplitude envelopes of the one-spring model (lower curve) and the
two-spring model (upper curve)
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Fig. 8. Free vibrations of the cantilever beam with the SMA support (ks = 1.5)
and the amplitude envelopes of the one-spring model (lower curve) and the
two-spring model (upper curve)
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the discrete-continuous system. Their parameters were chosen according to the
governing equations, Eqs (3.2) and (3.9), respectively, and to the explanations
given in Section 3. On the presented diagrams the amplitude envelopes for
free vibrations of the proposed discrete systems are shown. The lower curves
represent the varying in time amplitude obtained for the one-spring model. In
this case the amplitude stabilizes much faster in comparison with vibrations
of the beam end-point. The damping is so intensive because the elastic beam
energy is neglected in the one-spring model. The better results are obtained
using the two-spring model. The amplitude envelope (the upper curve) is
close to the amplitude of the beam system particularly for a low stiffness ratio
(ks = 0.5 + 1.0). When the stiffness of the SMA spring increases the effect
of diminishing hysteretic damping is observed in the both discrete models.
This unexpected behaviour can be explain by an inaccuracy of the employed
asymptotic method.

The above observations are confirmed by the analysis of the logarithmic
decrement.

0.20

decrement
~
/

0.16[ / - —

Logarithmic
(=]
|l
[ 8]
1

0.08p. . ..

—_——

!

0.04 ,
o
|

l

1
0 0.02 0.04 0.06 0.08 0.10
Amplitude [m]

Fig. 9. Logarithmic decrement vs. amplitude courses

Figure 9 illustrates the logarithmic decrement vs. displacement amplitude
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course. The dashed lines represent the decrement of free vibrations of the
end-point of the cantilever beam while the solid lines correspond to vibrations
of the two-spring discrete model. The curves were obtained for a few values
of the SMA spring stiffness expressed by the nondimensional coefficient &,.
Generally, the logarithmic decrement value obtained for the discrete model is
smaller than that calculated for the discrete-continuous system. For relatively
small stiffness ratio k, = 0.5 both dash and solid lines are close to each other.
When the SMA spring stiffness becomes greater, the distance between the
compared curves increases except for the range of the amplitude close to the
amplitude of elastic undamped vibrations.

The clear evidence that applied asymptotic method is inaccurate is inter-
section of the curves (solid lines) obtained for x; = 1.0 and x; = 1.5. The
inaccuracy is more glaring for the greater stiffness of the elastic range of the
SMA spring characteristic.

5. Conclusions

The energy dissipation appearing in the investigated systems depends on
the stiffness of the SMA pseudoelastic spring. Assuming the same initial
conditions, it is more intensive for the high stiffness because of an increase
in the force-displacement hysteresis area.

The logarithmic decrement value calculated for the discrete-continuous sy-
stem as well as that obtained for the one-degree-of-freedom model shows an
extremum. Therefore, there is a range of amplitude when the most effective
hysteretic dumping occurs.

The two-spring model simulates vibrations of the end-point of the can-
tilever beam much better than the one-spring model. However, the results
obtained for the high stiffness of the SMA spring differ glaring because of the
inaccuracy of the applied asymptotic method which is sensitive for strongly
nonlinear characteristics.
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Modelowanie ukladu dyskretno ciaglego z podpora ze stopu z pamiecia
ksztaltu

Streszczenie

W pracy zbadano efekt tlumienia drgan belki wysiegnikowe] wywolany przez
pseudosprezyste wlasnosci podpory ze stopu z pamiecig ksztaltu. Przebieg drgan
swobodnych wybranego punktu ukladu dyskretno-ciaglego poréwnano z obwiedniami
amplitud wyznaczonymi dla dwéch zastepczych ukladéw o jednym stopniu swobody.
Dla poréwnywanych ukladéw wyznaczono takze zaleznosci logarytmicznego dekre-
mentu tlumienia od amplitudy. W pracy zwrdcono uwage na problemy zwiazane
z modelowaniem ukladu dyskretno-ciaglego przez zaproponowane uklady o jednym
stopniu swobody oraz na niedokladnosc stosowanej metpdy asymptotycznej.
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