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The aim of this paper is to present the accuracy analysis of dynamic
systems described by nonlinear Volterra integral equations of the second
kind. A nonstationary dynamic system is considered as well as a statio-
nary one. The technique of harmonic analysis of noncommutative causal

operators from L! (’R,; L(R",’R,")) is used to analyse the special Banach

algebras of integral operators being limiting filters. A bound of the sta-
tistical linearization error between the exact and approximate solutions
is given. The conditions under which mean-square continuous exact so-
lutions exist are considered too. To compare presented methods with
exact analytical solutions for different statistical linearization methods
an illustrative example is given.

1. Introduction

The method of nonlinear stochastic systems linearization has been used wi-
dely in structural dynamics analysis (cf e.g. Atalik and Utku (1976); Booton
(1954); Bunke (1972); Caughey (1963); Gutowski and Swietlicki (1986); Ka-
zakov (1975); Krasovskii (1974); Piszczek (1970), (1972) and (1982); Piszczek
and Niziol (1986); Pugachev (1962); Roberts and Spanos (1990); Skrzypczyk
(1994a,b); Sobczyk (1973); Spanos and Iwan (1978); Spanos (1981)). The rich
bibliography is given in monographs (cf Gutowski and Swietlicki (1986); Ka-
zakov (1975); Piszczek and Niziol (1986); Roberts and Spanos (1990); Sobczyk
(1973)). There are several different methods of nonlinear stochastic problems
linearization. The best known is, probably, the statistical linearization techni-
que invented independly by Booton (1954) and Kazakov (1975). In principle,
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the statistical linearization should be applied in the case of weak nonlineari-
ties, but it turns out that this method gives also good results in the case of
severe nonlinearities, even when discontinuous terms appear. As pointed out
above, the related technique was very widely used,but the exact analytical ac-
curacy analysis was omitted. Known cases, in which linearization errors were
analysed can be classified into three groups.

The first one, contains papers in which approximate linearized solutions
are compared with exact ones, it works for analytically solvable, usually very
simple, dynamical systems driven by white noise or stationary type proces-
ses (cf Gutowski and Swietlicki (1986); Kazakov (1975); Krasovskii (1974);
Piszczek (1970), (1972) and (1982); Piszczek and Niziol (1986); Skrzypczyk
(1994a)).

In the second one, generally,the accuracy of linearization methods is veri-
fied against the Monte-Carlo simulation for different dynamical systems, and
for a variety of external excitations (cf e.g. Atalik and Utku (1976); Roberts
and Spanos (1990); Sobczyk (1973); Spanos and Iwan (1978)).

The third group contains attempts to obtain some theoretical results which
are not satisfactory enough because of some aspects of mathematical exactness
(cf Artem’ev and Stepanov (1978); Holtzman (1968); Kazakov (1975); Kra-
sovskii (1974)). Our approach is a continuation of the papers (cf Skrzypczyk
(1985) and (1986)), however we dwell more on some practical aspects of the
mathematical analysis.

The aim of the present paper is to illustrate the exact accuracy analysis of
statistical linearization technique, applied to multidegree-of-freedom stocha-
stic systems, based on the modern system theory and the theory of stochastic
processes with values in Banach spaces. We adapt the technique of stochastic
stability to obtain a bound of the error between the exact and the approximate
linearized solutions, respectively.

2. Definitions and notion

The following symbols are in use: 7R™ was reserved for the set of n-di-
mensional reals, R! = R, C" - the set of n-dimensional complex numbers,
R — the set of nonnegative n-dimensional reals.

AT and zT denote, respectively, the transpose of the matrix A and the
vector z. A* and z* denote the complex conjugate and transpose of the
matrix A and the vector z, respectively, A and z the complex conjugate of
the matrix A and the vector z, respectively (i.e. A* = AT). The Euclidean
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norm of the vector z is denoted by |z|, the scalar product of vectors z and
y by <z,y> and the determinant of the matrix A by det(A), thus we have

|z| = (z*z) <z, y>=1z"y

For any given matrix A, the square roots of the eigenvalues of A*A are
called the singular values of A. For any matrix A, we use the notation
Omax(A) to denote the largest singular value of A and opin(A) to denote
the smallest singular value of A. Singular values are always nonnegative
real numbers since A*A is always the Hermitian (positively semidefinite). In
analogous way we denote by Amax(A4) (Amin(A4)) the largest eigenvalue (the
least one) of the Hermitian matrix (A4 + A*)/2.

An ordered triplet (§2, B, P) will be called a probability space (cf Gihman
and Skorohod (1980)). Let z(w), w € §2 be a measurable mapping 2 — C"
(event. R™), it will be called a complex (real) random value. Further we use
the notion

E{x()} = /z(w)P(dw)
n
2l s= ( [ el P(@)”” 1<p <o

it

Let z(t,w), t € R', w € §2, be a sccond-order, mean-square conti-
nuous, stationary in wide sense, stochastic process with values in R™ and
E{z(t,w)} = 0. It has a spectral representation

z(t,w) = /exp(iut)((du)

R

where ((-) is the spectral process of 2(-), and
E{((du)¢*(du) } = F*(du) trF®(R) < 00

Here the nonnegatively definite matrix F*(-)is the structural matrix function
of the process z(-) (c¢f Gihman and Skorohod (1980); Rozanov (1974)). The
results presented below are only in part based on the monograph by Gihman
and Skorohod (1980).

Let LZ%*(z) be the closed linear span in L?($2,B, P) of components
of z(t,w), t € RL, with scalars from the field C'. We define a
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space L%(F%; L(R",R™)) of n X n-dimensional measurable matrix func-
tions defined on RL with the following property: the matrix function

k() € LAF7 LR RM) iff [ te{k(in) F=(du)k*(in) } du < co.
R

We deal quite freely with spaces of the form C(R; L¥( 2, B, P)),
L?%(R) = L¥(R; L¥(2,B, P)), LY(R;L*,B,P)), etc., where for example,
C(R; L%(2,B, P)) is the space of continuous maps of into the Hilbert space of
second-order random values and the notion is generally similar to that used
in the theory of generalized stochastic processes with values in Banach spaces
and mixed-norm spaces. The inner products in the spaces L? and L?? are
denoted by <-,->; and <-,->22 respectively.

3. Statistical linearization of nonstationary systems

Consider the feedback nonlinear dynamic system described by the equation

r=KFz+z (3.1)
where
z - mn-dimensional stochastic process defined on Ry C R
F - nonlinear operator
K - causal linear integral operator.

Assume, that the operators [’ and K, respectively, have the following

forms
(F2)(t,w) := f(t,2(t,w)) teRL (3.2)

where f: R} x R™ — R™ is a nonlinear function and
¢
(K2)(t,w) = /k(t,s)x(s,w) ds teRL (3.3)
0

where the kernel k(¢,s) is defined on A and A := {(t,s) ¢ t,s € RY,
0 <s<t< oo}, k(t,s)=0for s>1t, k(t,-) € L},.(R}) and integration
is over the set [0,¢[C R}.
Generally the method of statistical linearization replaces the nonlinear
problem desribed by a nonlinear integral equation of the form
¢
z(t,w) = 2(t,w) + /k(i,s)f(s,m(s,w)) ds teRL (3.4)
0
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by a linear problem of the following form

t

y(t,w) = 2(t,w) +/k(t,s)l(s,y(s,w)) ds te Ry (3.5)
0

where I(t,y):= Cn(D)y+c(t), vy = [y1,%2)" € R", y1 € R?, p < n. We assume
further that

Cry =[C,0ly=Cyy C:RP - R"

Thus, the formulation of statistical linearization method (SLM) is similar
to that given by Kazakov (1975), Booton (1954) in the proposed analysis
assumed that ¢(-) = 0.

Naturally, the linearized Eq (5) will be a good approximation of the non-
linear problem (1 = 4) if the exact solution z(:,-) and the approximate one
y(-,-) differ a "little” from each other. The accuracy of SLM, i.e. a measure
of the difference |z(t,w)—y(t,w)|,for ¢t € RL, can be defined in many ways,

e.g.

€= sup \/E{la;(t,w) - y(t,w)lz} (3.6)

t€[0,00]

or

o0

€= /E{|z(t,w) - y(t,w)|2} dt (3.7

0

In such a formulation of a statistical linearization problem a fundamental
fault appears. The point is, that the exact analytical solution of such formu-
lated problem is not known. As a test of SLM accuracy we take usually other
forms of quality functionals, different from Eqs (3.6) and (3.7). There is no
one mind in this problem (cf Caughey (1963); Kazakov (1975)).

Assume that the linearization coefficients C, and ¢ are chosen on the
ground of a certain functional criterion.

We will discuss now problems of SLM accuracy in the nonstationary case.
We first omit the existence and uniqueness of solutions.

¢ LEMMA 1. Assume that the following conditions are satisfied:

(i) there exist real numbers A € R!,r € R} such that, for each
t € R!,andsomerandom functions zy,22 € C(RY; L%($2,B, P))
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the following relation is true
E{|f(t,21(t,0)) = f(t, 22(t,0)) = Aa1(t,0) — 22(t,0)]|2} <
< 7‘2E{|:1:1(t,w) - mg(t,w)|2}

(ii) the resolvent kernel associated with k(t,s), say r(¢,s), exists on
A and is such that

A
< |Z
IRl < 12

where
t

[R||c := sup |r(t,s)| ds
tE[O,oo[o

Then there is a real constant a > 0, such that all exact and approximate
solutions (if exist) of equations of the form (3.4) satisfy the inequality

”.’L‘(t,w) - y(t’w)”C(Rﬁ_;L%ﬂ,B,P)) < ap(l)

where

)= sup \/E{|ft y(t,w)) = Cr(t)y(t,w) — C(t)lz}

defines the error of statistical linearization.

Proof. Assume, that the solutions of Eqs (3.1)=(3.4) and (3.5) exist and
are measurable stochastic processes. We can rewrite Eqs (3.4) and (3.5)
in the equivalent forms

z— Az =KFz—-)AKz+ 2 (3.8)
Yy—AKy=K(Cphy+c—-Ay)+ 2 (3.9)
It follows from Eq (3.8) and (3.9) that

(I-AK)z-y) = K(Fz—-Xdz—-Cry—c+Ay) =
(3.10)

= K(Fz—Fy-XAz—y)+ K(Fy—Cry—c)
Let recall first that the resolwent kernel »(2,s) satisfies the equation

t

r(t,s) = k(t,s)+/r(t,r)k(r,s) dr (3.11)

3
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We refer the reader to Skrzypczyk (1987) for details. From Eqs (3.10)
and (3.11), we obtain

2(t,w) = y(t,w) +

te[0,00
(3.12)
1 1
< oollller sup [lz(t,w) = y(t, w)ll2 + 571 Rllep(l)
Al t€[0;00] BY

It follows directly from Eq (3.12) and the Assumption (ii) that the sta-
tement of Lemma 1 is true.

Remark. The condition (ii) is a restrictive one. To satisfy it, sometimes,
it is necessary, but often possible, to take into considerations some special
weight function spaces of continuous functions.

When the nonlinearity is a time-invariant function, and k(¢,s) = k(t — s)
for all (t,s8) € A, we can formulate more precise results, similar to that of
Lemma 1.

e LEMMA 2. Assume that the following three conditions are satisfied:

(i) there exist real numbers X € R, r € RL
such that, for each ¢t € RL, and some random functions
z1,z2 € LY(RL; L*(2,B, P)) the following relation is true

t

E{If(t,21(t,0)) = f(t, 22(t,w)) = Alwa(t,w) = zp(t,w)][2} dt <

o,

t
< TZ/E{|1‘1(,(.U) - xz(t,w)|2} dt

0
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(ii) ilelgamax ([f(m)) < % where d(iu) = [I — Ak(iv)] " E(iu)
(iif) det[/ — Mk(iu)] £0 Yue R

Then there is a real constant a > 0, such that all exact and approximate
solutions (if exist) of dynamic systems (3.4) satisfy the inequality

||:L‘(t,w) - y(t’w)”L2(Ri;L2(D,B,P)) < 5p(1)

where

i

A0 = | [ E{15vw) - Catw) - c(vl?) de

0

defines the error of statistical linearization.
Proof. Tt is quite similar to that of Lemma 1.

Remark. In the Lemma 2 the constant A can be replaced by some sta-
tionary and causal linear operator of the class Bp(Wp) (cf Skrzypczyk
(1987)). In this case the condition (iii) takes the form

(iii)’ det[] — E(iu)b(in)] #0 Yu € R
where b(-) is the operator kernel, and
d(iv) = [T — k(iu)b(iu)] " k(iv)

The proof is almost the same.

o LEMMA 3. Assume, that the following conditions are satisfied:
(i) supamax(E(iu)) < 00
u€R
(ii) there is a real number « € R! such that, for each t € RI,
and every stochastic processes zi,;22 € L%(RY; L%(12,B, P)) the
following relation holds

Re/ B{< f(a1(1,0)) = f(za(t,0)), 21(1,0) — 22(t,0) > } di >

t

> o [ B{| /(@) - f(ea(t, )}

0
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(iii) supAmax (E(Ju)) <a
ueER
Then the statement of Lemma 2 remains valid.

Proof. Assume, that there are, not necessary unique, solutions of Eqgs
(3.4) and (3.5). Subtracting these equations, we get

t—y=K(Fz—-Cpy—c)=K(Fz—Fy)+ K(Fy—-Cry—c) (3.13)
Multiplying Eq (3.13) scalarly by Fz — Fy, we obtain
<Fz—-Fy,x—y>2 = <Fz-Fy K(Fz-Fy)>22+

(3.14)
+ <Fz - Fy,K(Fy—Cpy—c)>22

Following the Assumption (iii) we get

o||Fz — Fyll3, < (sup,K)||Fz — Fy|l3,+

(3.15)
+ [K|l2llFz = Fyll22[|Fy — Cay — cll2,2

It is natural to assume ||Fz — Fyll22 # 0, and it follows from (i), (iii)
and inequality (3.15), that

(@ = supyK)||Fz = Fyllz,2 < || K2]|F'y = Cry — ¢ll2,2
(3.16)

[P

Fr - F < 7
[Fz = Fyll2z < — sup, IC

p(l)
With inequality (3.16), from Eq (3.13) it follows that

15113

—_ p(l
o sapc +IKI) )

1z = llz2 < K [la| Fo = Fyllaa + 1K]125(0) < (

This statement ends the proof.

LEMMA 4. Assume, that the Condition (i) of Lemma 3 is satisfied and
additionally:

(i) there is a real number B € R! such that for every ¢t € R1,
and every stochastic process z1,z2 € L*RL;L2%(12,B,P)) the
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following relation holds

e/E{<f (z1(t,w)) — f(z2(t,w)), 21(t,w) — 22

t

/E{|f (z1(t,w)) — f(.’l,‘2(t,(.¢)))|2} dt

0
(ii) 1irel7f2/\m;n(Ic(lu)) > B
Then the statement of Lemma 3 remains true.

Proof. 1t is similar to that of Lemma 3.

(tw)>} dt <

The results of Lemmas 1+4 illustrate the fact, that the ”distance” between
the exact solution of Eq (3.4) and the approximate one of Eq (3.5), remains in
a strict connection with the linearization error introduced in Eq (3.6) or (3.7).

¢ THEOREM 5. Assume, that the following four assumptions are true.

(i) There exist a constant 7 > 0 and a matrix B, satisfying

|Fzq — Fay — B(z1 — 22)|2,2 < 7|21 — 2]l2.2

for every 1,z € L*(RL;L*(2,B,P))
(i) #(-) € LY(R1) and ig{zldet[I—E(iu)B]l >0
(iii) supramax(é\(iu)) <1

u€R

where d(-) is defined in (iii)’ of Lemma 2

(iv) There is a resolvent for the lincarized integral kernel k(1 — s)Cy(3)

in the space L?(R}).

Then there exists a unique exact solution to the nonlinear Eq (3.4). The
exact solution can be obtained by the method of successive approxima-
tions, and the linearization error remains the same as in Lemmas 2 = 4.

Proof. Let the solution 7, to the linearized Eq (3.5), be the first approxi-
mation for the method of successive approximations, applied to Eq (3.4).
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On the assumption (i) we can write
c=(I-KB) 'KFr+(I-KB)™"'z (3.17)
where Fz = Fz — Bz. Now define the operator A as follows
Az:=(I-KB) 'KFz+ (- KB) ™'z
We note, that Eq (3.5)=(3.17) is equivalent to the form
z = Az (3.18)

As mentioned above, we will investigate the convergence of the method
of successive approximations, applied to Eq (3.18). Let

xozg

(3.19)
Tiy1 = AIE,‘ 1= 0, 1,2,

with zo being the statistical linearization approximation. The approxi-
mation zg is the solution to Eq (3.5). Following (iv) we can write

o= - KCp) " (Kc+2) (3.20)
and
21 —29=(I - KB) 'KFzo+ (I - KB) 'z — 2o =
(3.21)
=(I-KB) 'KFzo—~(I - KB) 'KBzo+ (I = KB) 'z — g
Then
20— KBzxy= KLag— KDBxo+ 2
and
o= (I~ KB) 'K(Lzo — Bxo)+ (I — KB) 'z (3.22)
Now with Eqs (3.21) and (3.22) we have
T1 —Tp = (I - I\,B)_II\,(FQIQ ol Livo) (323)
21 = zoll2,2 < (I = K B)~ K ||25(!) (3.24)

We can estimate a difference between succeding iterations z;4; and z;
with Eq (3.17)

Tip1— 2= (I — KB)'IK(f’a:,- - F:l:,'._1)
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and next
lzivt = @illze < ([(I = KB)'K|lo[| Fai — Fai_q|l22 <
(3.25)
< (I = KB) K |lor|lzi — @izl

Thus using the Assumption (iii), we have a Cauchy sequence and there
is a limit 7 of the sequence {z;}, which is the exact solution to Eq
(3.4).

Furthermore, with relations (3.24) and (3.25) we can estimate the line-
arization error ||Z — zgl|2,2, as a function of (/). For details of this
familiar argument see the proof of the contraction mapping fixed point
theorem.

The last statement ends the considerations.

4. Statistical linearization of stationary systems

The statistical linearization method is usually used for nonlinear statio-
nary dynamic systems. Consider the feedback nonlinear stationary system
described by the equation

t=KFz+z (4.1)
where
z — n-dimensional, stationary stochastic process, defined on R
F - nonlinear, time-invariant operator

K - limiting filter (cf Gihman and Skorohod (1980)).

Assume, that

(Fz)(t,w) = f(z(t,w)) (4.2)
where t € R, f: R™ — R", and the operator K is defined as follows
(Kn)(t,w) = / exp(iut)F(iu)C(du) teR (4.3)
R
and
n(t,w) = /exp(iut)((du) teR
R

The rest assumptions are the same as in Section 3.
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Generally, similarly as for nonstationary systems, the SLM replaces
Eq (4.1) by
y=KLy+z (4.4)

where L is a linear, time-invariant operator, defined similarly as in the non-

stationary case
Ly = Cny + c o

where C,, and c are time-invariant and notions are the same as in Section 3.
Assume, that the linearization coefficients C, and c¢ are chosen by some
arbitrary method.

e THEOREM 6. Assume, that 2(¢,w) is a stationary in strong-sense,
mean-square continuous, second-order stochastic process and the follo-
wing conditions are satisfied:

(i) there is a limiting filter B, generated by a kernel b(iu) and

527% |det[] — k(iu)b(iu)]| > 0

(i1) Jlelgzl det[] — k(iu)Cy]| > 0

(iii) there is a constant » > 0, such that
sup E{|f(@1(t,w)) = f(z2(t,w)) = Blaa(tw) = 2t )’} <

<r supE‘{|a:1 t,w) — z2(t,w)| }
teR

for every z1,z9 € C(R; L% 12,5, P))
(iv) suprOmax (6(iu)) <1

ueR

where @(iu) = [T — k(iu)b(in)]~k(iu).

Then there is a stationary mean-square continuous solution to Eq (4.1).
The error of SLM can be estimated as follows

sup \/E{Iz (t,w) — y(t,w) } < const sup p(!)
terR teR

where p(l) = \/E{|f(y(t,w) - Cry(t,w) — c|2} and P(t,w) denotes a
solution to the approximate Eq (4.4).
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Proof. We first note that all operations are exactly parallel those of
Theorem 5. Eq (4.1) is equivalent to
t—KBxr=KFz -KBx+z=KFa+z (4.5)

where Fz = Fz — Bz. Let 7(t,w) be an approximate solution to Eq
(4.1). Approximating Eq (4.2) is equvalent to

(I-KCp)y=KC+ 2z (4.6)

On Assumption (ii) there is a stationary, mean-square continuous solu-
tion to the approximate Eq (4.4)=(4.6) and

y=I~-KC,) Y(Ke+ 2) (4.7)
Let the limiting filter D be defined in the form
Dz:=(-KB) 'KFz+(-KB)™ 'z
Assume, that z¢ = % and
Ziy1 = Dag for ¢=0,1,2,...

define successive approximations of the solving procedure.

Following known, from Theorem 5, considerations we have

z1—z0=(~KB)Y'KFzo— (I - KB)"'K Bxg +
(4.8)

+(I = KB) 'z -z
zo= ([~ KB)'K(Lzo — Bzo)+ ({ -~ KB) 'z (4.9)
and with Eqs (4.8) and (4.9) we get
1 —z0= I - KB)'K(Fzo — Lzo)

The process wg = 1 — xo is stationary, second-order, mean-square
continuous, since it is the result of combination of stationary operations.
With the stationarity, second-order and continuity properties assured,
we can use the spectral representation

wo(t,w) = /exp(iut)(o((lu)

R
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where
B{(o(du)g3(du)} = Fo(du) tr(Fo(R)) < oo
Notice additionally, that
sup E{|wo(t,w)|?} = tr(Fo(R)) < o sup p(1) (4.10)
teR teR
where
a = ”(I - ]"B)—lllC(R;Lz(_()'g'P))

o) = \[B{|Fz0 ~ Laol?)

We will estimate the difference
tiy1 —2; = ([ = KB)"'K(Fz; — Fz;_,) i=1,2,3,..
All of the w; = z;41 — z; are stationary, second-order and continuous

in the mean, following similar arguments, as in the case of wg. We use
the spectral representation

wilt,w) = /exp(iut)C,—(du) (4.11)
R

where

E{¢i(du)¢; (du)} = Fy(du)

tr(Fi(R)) < o*E{|Fa; - Fa;_1[?}

With Assumption (iii), we can write

sup E{|:z:;+1 - :1:,-|2} = tr(Fi(R)) < a*rZsup E{|:z:,~ - :z:,-_1|2} =

teR teR

(4.12)
= a’rtr(F;_1(R))

forall :=1,2,3,..
Thus, using Assumption (iv) with inequalites (4.10) and (4.12), we have,
that {z;},7=0,1,2,.... is a Cauchy sequence and there is a limit % of
that sequence. Using similar argument as in the Theorem 5 we get the
following estimation

sup ‘/E{I.’E - 2:0’2} < (1 —ar) ' supp(l) (4.13)
teR teR

since ar < 1. This argument ends the proof.
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5. Methods of statistical linearization

¢ METHOD 1. The first SLM replaces the nonlinear function f(¢,z),

fi: RXR*® - R" by a n-dimensional linear function

I(t,y) = C(yr + (t)

where y = [y1,12]T € R*, y1 € R™, m < n, that minimizes, over all
matrices C(+) and ¢(-) the mean-square difference

pol) = B{|f(t,2(t,w)) = I(t, 2(t, )1}
for each ¢t € R and for a certain class of stochastic processes.

LEMMA 7. The functional p4(!)takes a minimal value, foreach ¢ € R,
for the following values of coefficients:

(K1)
E{f(1,2(t,w)) - C1() E{a(t,w)}}
EE( 2(t,0))a(t,w) = Efe(t,w)}]"}
El

tw) = Bl{z(t,0))]2(t,w) - E{a(t,w)}]T}
The minimal value of the functional appears for the coeflicients

()
(i

(i
(

Ci(t) =
aft)
()
(t)

-
(4
 ——
= S

I(t,y) = Ci(t)y + & (1)

Proof. 1t is given by Bunke (1972).

METHOD 2. Consider, similarly as above, the nonlinear function
f(t,z(t,w)) and the linear approximation I(¢,z(t,w)). Notion is the
same as in Method 1. The idea of considered method is well known (cf
Kazakov (1975); Krasovskil (1974); Pugachev (1962)). We are looking
for such a linear function (¢, z(¢,w)) of the random value z(t,w), which
has a mean value and a covariance matrix equal to those of f(t, z(¢,w)),
for each t € R. We get the following Lemma.
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¢ LEMMA 8. Assume, the following conditions are satisfied:

) Cat) = DK -1/2(1)

(i) &)= E{f(,2(t,0)) - Ca(t) E{a(t,w)}}

(i7)  Iy(t) = B{[f(t,2(t,w)) = B{f(t,2(t,w))}]-
[rtatw) - B w)] )

(iv) K@) = E{[z(t,w) - E{z(t,w)}] [m(t,w) - E{z(t,w)}]T}

then the expected value and the covariance matrices of the linear function
[(-,-) and the nonlinear function f(-,-) are equal.

Proof. Tt is given by Skrzypczyk (1994a).

Remark. Generally the presented methods are very close to each other,
and in the example only the first method is considered.

¢ METHOD 3. Skrzypczyk (1994) and Zhang et al. (1991) propose a
new linearization technique, namely, the mean-square value of the dif-
ference of the potential energies, associated with the original nonlinear
equation, denoted as (-), and its equivalent linear counterpart, is to
be minimized. Below the general scheme for multidimensional systems
is presented. Assume that nonlinearity f(-) is time-invariant. For sim-
plicity we denote that U/(0) = 0.

In the proposed linearization scheme, we require that

1 n n
pi= E{|U(z(t,w - 5;}; cirzi(t,w)zE(t,w)|? } =

(5.1)
= E{[U(z(l,w)) - %gz-r(t,w)a-zg(t,w)l?} = min

where U(-) denotes the potential energy corresponding to the nonlinea-
rity f(:) and

C = [C{k] = [C],C2,.-.,Cn]
Ck = [Ck1, Chay woey Chn) T
for ¢,k=1,2,...,n. Let
8 T

g 0
V.r = |3y
aIII] 82:2 ail:n
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This is accomplished by the condition

Ve = E{[U(.’v(t,w)) - %Xn::vT(t,w)C,-:vi(t,w)Jz(t,w):rk(t,w)} =0
=1

(5.2)
20 = im;a
=1
where we denote
I:=[Iy, sy Iy I == E{U(z(t,0))z(t,w)zi(t,0)}
 := (Br] Bri 1= E{wx(t,w)ai(t,w)z(tw)e " (t,w))
for i,k =1,2,...,n. Finally we get
oI = &C (5.3)
C=2¢"T (5.4)

Eq (5.4) ends the considerations.

Skrzypczyk (1994) and Zhang et al. (1991) suggest that the new method of
statistical linearization turns out to be superior to conventional linearization
methods 1st and 2nd, for some systems with hardening nonlinearities.

6. Example

To illustrate considerations on accuracy of statistical linearization and
to compare approximations we consider a one-dimensional vibrating system,
whose motion is described by a differential equation in the normalized form

(1) + B2(1) + F(z(1)) = 2(1) teR! (6.1)

where (:) = ?id_z’ B = const > 0 denotes a coelficient of linear viscous damping,
and the function F(z),z € R! represents the characteristic of the nonlinear
elastic force. It is assumed further that F(-) takes the form

Y(z-1)+1 for z<-1
Flz)=4¢ = for -1<z<1
yz+1)—-1 for z2>1
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and two cases are considered v = 0.5 and v = 2.0.

We consider the case when the excitation force is a stationary 2nd order
stochastic process with a mean value equal to zero and a spectral density of
the form

(lu) m u € Rl (6.2)

where So > 0 and 7 are some constants. The resulting density function
p(+,+,-) is easy obtainable following considerations given by Skrzypczyk (1993)
and (1994b) and has the form

dF
p(y1, Y2, Y3) = P(a)(yly Y2,y3) = Nexp|— S—T/ ﬂ F(Z) dz +
(6.3)

p

——53(1 + pr + Tzd—F)yz - —T(l + ﬂr)y2 - —ZTF(yl)ys]

dy 2 So 3 So

where y; = 2, yo = &, y3 = ¥ and N is a constant, which is found from the
normalization condition

+00 +00 400

/ / /P(S)(yl,yzvys) dy1dyadys = 1

—_—00 —00 — 00
We recall that the one-dimensional probability density of y; =z is

400 + 00
pV(z) = / /P(S)(yl,yz,ys) dyadys

— 00 =00

and the exact mean-square displacement

can be found analytically or numerically.
A linearized form corresponding to Eq (6.1) is a linear, stochastic differen-
tial equation

(1) + B(1) + Ciy(t) = =(1) teR! (6.4)

and a value of C;, ¢t =1,2,3 depends on the choice of a linearization method.
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We denote by Z(-) and #;(-) R-solutions (cf Bunke (1972)) of Egs (6.1)
and (6.4) respectively and by o, oy ; their corresponding standard deviations.
Further we use the notation o for a standard deviation of a solution to a
linear version of Eq (6.1) i.e. for v = 1.0. We discuss absolute standard

deviation errors

Oerri = |(71' - Uy,il

as well as relative errors
2 2
= oerr,i/oo

and o2;/o? associated with the conventional (i =1,2) and the new (i = 3)
SLM’s. For simplicity only stationary solutions are considered.

The exact mean-square displacements are computed numerically according
to Eq (6.3) for a nonlinear case, as well as for a linear one. Corresponding
numerical values, for discussed SLM’s, follow the results of Section 5.

2 2 2 2
ollosd oo
x 0 x 0 ‘
1.6} ,8=1.0 LiF 1.0
1.5+ 1.0
1.4}
0.9
1.3
1 0.8
1.2
11 0.7
1.0 0.6
0.9 ) IT !5 - 0.5 . 1 ) T
0.0 0.5 1. 1. O_oz 0.0 0.4 0.8 1.2 1.6 O_oz

Fig. 1. Comparison of relative mean square displacements in the nonlinear oscillator
via stochastic linearization with the exact solution (curve i — SLM of ith type)

Fig.1 contrasts relative values of mean square displacement evaluated exac-
tly, along with the results furnished by the three different SLM’s. Curve ¢
is associated with the ¢th SLM, compare notion in Section 5. Comparison
between the exact solution and the SLM was performed earlier by Skrzypezyk
(1994a) and Zhang et al. (1991). Fig.2 depicts relative errors 1); associated
with the ith SLM, respectively. As is seen from I'ig.1 and Fig.2, the conven-
tional linearization methods (i = 1,2) yield results which are closer to the
exact solution, than those calculated on the basis of the new one (i = 3).
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7i i\
0.20} B=1.0 0.25f
=10 3
¥ =05 0.20r
0.15F 1
2
0.15f
0.10r
0.10
0.05F
0.05r
L L L 1 - Il L I} 1 [y
0 0.40 0.80 1.20 1.60 ;2 0 0.40 0.80 1.20 1.60 2
0 0

Fig. 2. Comparison of relative standard deviation errors for diflerent SLM’s
(curve i — SLM of ith type)

allol | allol
0.03 0.10f p
=1.0
7=1.0 -
0.08f 5 _ 5 -
0.02} 006
0.04} K
0.01} y
0.02} v
// . R
0 ;02 0 0.0 0.40 0.60 0.80 1.'00;02

Fig. 3. Comparison of absolute standard deviation errors in the nonlinear oscillator

via stochastic linearization with theoretical bounds (continuous line - exact error of

a conventional SLM of type 1st, dashed line — exact error of a new SLM of type 3,
lines with centered symbols — theoretical bounds of errors of associated SLM’s)



862 J.SKrRzZYPCZYK

Following results of Theorem 6 we get theoretical bounds for standard
deviation errors since

sup |0z — 0y| < sup \/E{ﬁ(t,w) - ﬂ(i,w)P} < const sup p({)
teR teR teR
and the constant is given by Iq (6.4). Further the conventional SLM’s
(¢ = 1,2) are not distiguished, since results are very close to each other.
Fig.3 portrays the absolute standard deviation errors |o, — oy, for two
linearization methods (1st and 3rd), evaluated exactly, along with theoretical
bounds calculated following Eq (6.4).

Zerr ‘ Grr ‘
0.20 ﬂ 1.0 0.30F
7=1.0
¥ =0.5
0.15r
0.20f
0.10f
0.10f
0.05¢

0050 1.00 1.50 2.00 2.50 3.'00§0 0050 1.00 1.50 2.00 z.sTs.‘oo?O

Fig. 4. Comparison of relative mean square displacements errors in the nonlinear
oscillator via stochastic linearization with theoretical bounds (continuous line —
exact error of a conventional SLM of type lst, dashed line — exact error of a new
SLM of type 3, lines with centered symbols — theoretical bounds of errors of
associated SLM’s)

The relative standard deviation errors (05 —oy)?%/ad, for the same lineari-
zation methods, evaluated exactly, as well as theoretical bounds, are presented
in Fig.4.

7. Conclusions

The main aim of above considerations it is not only to contrast th-
ree, actually used, methods of statistical lincarization technique, applied to
multidegree-of-freedom stochastic systems, but to give a modern error theory



ACCURACY ANALYSIS OF STATISTICAL LINEARIZATION METIIODS... 863

of used methods and to obtain bounds of the error between the exact and the
approximate linearized solutions. Proposed mathematical technique is strictly
related to stability analysis of nonlinear stochastic systems and gives results
of similar accuracy. To obtain more accurate error bounds, other, more subtle
techniques must be used.
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Analiza dokladnosci metod linearyzacji statystyczne] w cigglych ukladach

nieliniowych opisanych losowymi réwnaniami calkowymi

Streszczenie

Celem pracy jest zbadanie dokladnosci przyblizonych metod analizy, opartych na
koncepcji linearyzacji statystycznej, ukladéw dynamicznych opisanych nieliniowymi
réwnaniami calkowymi Volterry drugiego rodzaju. Rozpatrywane sa zaréwno uklady
dynamiczne niestacjonarne jak i stacjonarne. Technika analizy harmonicznej nieprze-
miennych operatoréw przyczynowych z przestrzeni Ll(R;L(R",R")) zastosowana
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zostala do analizy specjalnych algebr Banacha operatoréw calkowych, ktére sg tzw. fil-
trami granicznymi. Otrzymano, scisle z matematycznego punktu widzenia, oszacowa-
nie bledéw analizy nieliniowych ukladéw dynamicznych wynikajacych z zastosowania
réznych metod linearyzacji statystycznej. Podano oszacowanie bledu, wynikajacego z
linearyzacji statystycznej, pomiedzy rozwiazaniami: dokladnym i przyblizonym pro-
bleméw nieliniowych. Przeanalizowano réwniez warunki istnienia, ciaglego w sensie
$redniokwadratowym, $cislego rozwiazania stacjonarnego. Dla poréwnania przedsta-
wionych metod z wynikami $cislymi, dla réznych metod linearyzacji statystycznej,
dokonano analizy prostego ukladu dynamicznego z wymuszeniem, kidre jest stacjo-
narnym procesem stochastycznym.
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