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The paper presents methodological assumptions for the search for time
prognoses of possible perturbations in the operation of a monitored be-
aring node. A way of determining the departure time of the monitored
diagnostic signals from permissible areas is proposed. Its realization is
determined by a solution originated from the method of ”functionals
supporting the availability area”. An idea of proposed estimation con-
struction is presented on the example of a two-dimensional isothermal
model of a hydrodynamic bearing.

1. Introduction

Early detection of perturbations in machine is supported by the systems
that monitor its condition. With regard to high-speed machines with slide be-
arings these are most often systems that monitor vibrations of the shaft neck
in the bearing bushing. Machine condition is estimated by the continuous me-
asurement of shaft neck vibration in two mutually perpendicular directions,
related to assumed criteria values. Monitoring of vibrations realized in such a
way, i.e. determination of the trajectory of shaft neck motion and its position
relative to areas of stable equilibrium is a useful method of recognizing symp-
toms of destruction phenomena that occur at such nodes. Since the trajectory



932 T.BANEK, W.BATKO

changes are related to exploitational disturbances (changes in lubricant vi-
scosity, external loading, rotational spced) or changes in bearing parameters
(geometrical dimensions, clearance, etc.). Those changes can bring about the
disturbance of the equilibrium of external forces and the hydraulic force, which
in consequence, can lead to the self-excited vibration of high amplitude causing
the carrying film of oil to be broken and the bearing to be destroyed.

Two of the most essential problems of the design of such systems when
monitoring the condition of bearing nodes are the following:

e Problem of filtration of the disturbances occurring change trends reco-
gnition

e The task of selecting algorithms for values of the monitored vibration
symptoms which permit the time of their departure from the admissible
areas to be estimated; the estimation determines the prognosis of the
time up to the occurrence of the failure conditions.

Introducing those solutions into monitoring systems results in the increase
of effectiveness of their functioning.

The direction of searching for proper algorithms was determined so far
by the solutions to filtration (cf Cempel (1989)) and prediction problems (cf
Batko (1984); Batko and KaZmierczak (1985)). Their major drawback is a
relatively low generality despite the fact that the results are interesting from
the practical applications point of view. The lack of generally applicable results
from their incomplete verifiability, due to the assumptions made.

The present work will present a new approach to the estimation problem
of the time till to the departure of the monitored signals from the admissible
areas, similarly as with regard to filtration problems (cf Batko and Banek
(1993a,b)).

2. Problem formulation

The question of forecasting the machine failure conditions is consists in the
estimation of the time up to departure from the admissible areas controlled
by the system that monitors diagnostic signals. In the solutions suggested so
far, that problem is presented as a question of estimation and extrapolation of
the change trends in the values of the monitored trajectories basing on various
calculation procedures (cf Batko (1984); Batko and Kazmierczak (1985)). The
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paper presents a theoretical analysis of the possibility to formulate this pro-
blem on the ground of control theory, which results in a greater universality.
The approach allows a more complete analysis of the phenomena monitored.

As the basis of our considerations we shall adopt the observation equation
of perturbed movements of a shaft neck in the bearing bushing of the slide
bearing monitored. The equatjon corresponds to the model and to the simpli-
fying assumptions made by Kurnik and Starczewski (1985). Concerning the
conditions of determining the operation area of the oil film and hydrodynamic
forces.

” B

Fig. 1. Considered model of the bearing node system

In the formulation given by Kurnik and Starczewski (1985), the forces that
act on the shaft neck have a distribution as in Fig.1, while the equation of neck
motion in the bearing bush in the ¢, 7 system of coordinates is

mé = Pgcosa — P;sina
(2.1)

mi) = Pgsinoa + Prcosa + ()

where
Y] — acceleration of the neck centre in the directions § and
n respectively
Pg, P, - components of the buoyancy (uplift) forces of the oil

wedge
Q — external loading
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m — mass of the shaft neck

angle between the OO’ straight line that connects the
centres of neck and bush, respectively, and the positive
direction of ¢ axis.

Q
|

The lubricant buoyancy (uplift) forces
Pﬂ:Pﬁ(wvﬂvﬁvd) PT:PT(W”B,,&C‘V)

are nonlinear functions of the relative eccentricity 8 = e/e (i.e. the ratio
of neck eccentricity e = OO’ and absolute clearance ¢ = Ry — R), as well
as of the neck rotational speed w, the radial velocity B and circumferential
velocity a.

In the model formulation (2.1), the neck motion relative the coordinate
system (3, a (which is more convenient for analysis) is given by

IB = fﬂ(a’ﬂ7daﬂ.)
(2.2)

a = fa(ﬂ,ﬂ.aavd)

For stationary operation conditions, of load @ and the rotational speed w,
the neck reaches the position [y, ap in the circle 8 < 1. That position
is determined by the conditions @ = 8 = & = 8 = 0, that determine the
geometric locus of the equilibrium positions of the neck centre for various
pairs of [w,@] that depend on the design parameters of the bearing node.
Monitoring of the machine condition is reduced to an analysis of the neck
motion around the equilibrium position. It can be described by the variables

B = Bo a — ag (2.3)

The linearized equation of the neck motion (that bears out the simplifying
assumptions adopted) around the equilibrium position (8, ag,0,0) in matrix
formulation takes the form

X = AX X(0)=z (2.4)
The matrix A appearing in Eqgs (2.4) is given by

0 1 0 0

_ kii e k2 e
A= 0 0 0 1 (2'5)
kar e kop co
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where:  k;j, ¢;; are coeflicients of elasticity and attenuation (damping), re-
spectively, and the vector X is

X = [m1,$2a$3,$4]T = [ﬂ - ﬂOvBaa - aOyd]T

The values of coefficients of elasticity k;; and of damping ¢;;, respectively,
for arbitrary bearing design can be determined by means of the perturbation
method or its generalization (cf Kicinski (1993)). The analysis of changes in
the trends monitored, can be related to the equation being perturbed by a

”small noise” .
X =AX +¢Bw X0)== (2.6)

where w = [w;, wy]" is the Wiener process, and the matrix B has the form

(2.7)

OO = O
= o O O

The perturbing term eBw appearing in Eq (2.6) can be related to small
external perturbations that act upon the system in the process of its exploi-
tation, or to the interactions due to nonlinearities which were neglected when
the linearized description (2.4) was introduced. Their presence can be reduced
to changes in the system parameters, and, in consequence, to the departure
of trajectory from the stable positions. As a result, the self-excited vibrations
can be generated, with high amplitudes that cause the carrying oil film to be
broken and the bearing to be destroyed.

Let the solution of Eqs (2.4) and (2.6) be denoted by X%, X%¢. Let
D C R* be an open set including zero. The set D consists of the stable
neck positions that correspond to the correct bearing operation. The time of
departure from the area of admissible changes 2 € D (being of interest in the
monitoring process) is defined by the relationship

P =inf{t>0: X*(1) €D} z€D

Proper interpretation of the time 7%¢ depends not only on the set D form,
which determines permissible shaft neck vibrations, but also on the location
of the point at which the trajectory X*¢ reaches the boundary 9D of the
set D,

If the set D is of the form

D={zeR: |ax|<re, >0, k=1,2,3,4} (2.8)
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then, for the corresponding 74, and t > 7%¢ the linearized equation of
motion (2.4) may no more be a sufficiently correct description of the shaft
neck behaviour in the bearing bushing.

If, on the other hand, we have

X7 (™9 2 1

where 7y is the criterion value in the monitoring system, that determines
the permissible amplitude of the shaft neck vibration, then 7% is the time of
signalling by the monitoring system the possibility of a failure, or conditioning
machine shut-down.

The aim of the present work is an analysis of the possibility to estimate
the time 7%° of the departure from the areas of neck stable positions, as a
result of perturbations that occur in such systems (see Eq (2.6)).

3. Application of the results to estimation of departure time of
the monitored trends from admissible areas

The task of estimating the instant when the monitored trajectory of the
shaft rotor neck exceeds the permissible boundaries for tle first time, can be
related to the problem put forward originally by A.N.Kolmogorov pertaining
the departure time of the trajectory of a given dynamic system from given
areas. There exists a comprehensive literature on theoretical mathematical
considerations on the subject. However, only few publications and results are
suitable for the applications given in the present work due to the assumption
of "uniform ellipticity” that nearly always appears in mathematical works
concerning diffusion processes. Because of the properties of the matrix B
that appears in the problem analyzed, this assumption is not valid.

The solutions given by Zabczyk (1985a,b) do not have the limitation men-
tioned above. Thus, they constitute a good basis for searching for solutions
to the problem under investigation.

A synthesis of these results constitutes the Theorems 1 and 2 presented
below. They pertain to the following problem.

Let y®* stand for solution (for u € L%([0,00),R)) to the differential
equation

y=Ay+ Bu y(0)==z (3.1)
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defined for ¢ > 0. For arbitrary z € R* and for the number 75 > 0 we define
the following subset v%(n) C R4

ym=d{yer: y=y"),
1 t
for a certain ¢ >0 and control u such that §/||u(s)||2 ds < 77}
0

where the abbreviation ”cl” denotes the closure of a set, that is cld = A.
¥%(n) denotes the closure of the set of end points of the trajectories y**(t),

when the control energy
t
s [P d
= s s
2
0

does not exceed 7. Let K(z,r) denote a sphere with the centre at z and
the radius r; p(z,A) denotes the Luclidean distance of the point z and
the set A; the symbol F denotes the mathematical expectation with respect
to the probability P from the space ({2, F, P), where the Wiener process is
defined. Let (Fig.2.)

Do={zeD: y*%t)eD vt>0}

where Dg denotes the set of initial conditions for Eq (3.1), such that all free
trajectories starting from Dy stay in D for all ¢ > 0.

7=sup{n: +°(n)c ﬁ}

where 77 denotes the maximum of control energy, such that all trajectories of
(3.1) starting from z = 0 stay in D all the time

F=D\ K(0,r)
G = 9F Nn~°(%)

where the symbols N, \ denote the intersection and the difference of sets,

respectively.
With this notation we have the following theorems, that result directly

from Zabczyk (1985a,b).
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Fig. 2. Geometrical interpretation of the analyzed dynamical neck-bushing system
conditions

e Theorem 1
If matrix A is stable, then for all 2z € D

lime? In E(r™€) < 7 O
e|0
Theorem 1 says that the expected value of the exit time, E(7%¢), does not
exceed exp(m/e?), where the constant 7j depends only on the deterministic
system (3.1). Hence, the Theorem 1 expresses some probabilistic properties
of Eq (2.6) in terms of the classical control theory.

e Theorem 2

If matrix A is stable, then, for any = € Dy and § > 0 we have

: I,E(..T,E _
161%1 P{p(X (r ,G) > 5} =00

Theorem 2 says that, with probability close to one, trajectories of Eq (2.6)
may leave D only through the neighbourhoods of the points A or B (see
figures).

As can be seen {rom the above theorems, the set °(7%) and its common
points with @D are of basic importance. Below we assume that the set D
has the form of Eq (2.7). Let ® = (¢;5), 7,5 = 1,...,4, be the fundamental
matrix of Eq (2.6), and let b € R* be an arbitrary vector.

Let us denote

Ay(b,m) = sup {<b,/¢’(t — s)Bu(s) ds> : %/Hu(s)”? ds < 77} (3.2)
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and

X(b,m) = sup{Au(b,m): >0}

¢
E{/Qt—sBu %/ s|||2ds<n}
0

The set R,(n) is called (in the control theory) the area of availability (cf
Goérecki and Turowicz (1970)). It can be proved that R.(n) is a closed and
bounded domain, symmetrical with respect to the point z = 0, continuous for
the argument ¢ > 0; in addition A is a convex body (cf Gérecki and Turowicz
(1970)). It can also be proved that the boundary OR(n) of the set R,(n)
has no corner points, i.e. that at any point of the boundary OR,(7n) there are
unique external normal and tangent (supporting) hyperplanes. It can easily
be seen that

/\t(ba 77) = (b7 d)
where d is a certain point of 9R,(n), and that the equation

(2,b) = A(b,7)

is represents the hyperplane supporting the set R(7n) at the point d. It can

also be easily seen that
Yo(n) = A{J Ru(n)}
>0

where | J is the union of sets, and that the equation
(z,0) = A(b,7) = (b, 4)

where A is the point of the boundary dv°(n) of the set 7°(n), represents the
hyperplane that supports the set 7%(n) at A.
We shall now determine the functions X;(b,7) and A(b, 7). Let

¥,(t) = Ip®(1)b
where Ipdiag(0,1,0,1).

e Lemma 1

M(b, ) 2n/||wb )2 ds
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Proof
From Eq (3.2) it follows that

At(b,m) = sup {/(Io‘l’(t — s)b,u(s)) ds:
° (3.3)

By —

t
S ds < n, = [o,ul,o,uzf}
0

The term under the symbol "supremum?” is the scalar product in the space
L2([0,1]; R?) of the vectors ¥y(t —-) and u(-). Thus, for a fixed ¢ > 0, the
supremum is reached on collinear vectors. Hence, the best u = ug is given by

the formula 1

Xt

’U.()(S) =

Vy(t —s) s €[0,1] (3.4)

where

t
1
xi= |5 [ 1w -9 ds
n
0

Substitution for u = up into Eq (3.3) and change of the integration variable
s — t — s yields the proof of the lemma.
Remark 1

It can easily be verified that, for any ¢t > 0

N —

t
o) ds =
0
e Lemma 2

From Lemma 1 it follows that the function ¢+~ A, (b,n) is smooth. From
the general results of the theory of linear differential equations with constant
coeflicients it follows that the elements ¢;; of the fundamental matrix & are
of the form pg(t)exp(okt), where o are the roots of characteristic equation,
and pi are polynomials of the order depending on the multiplicity of the
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corresponding root. For a stable matrix A, all o have negative real parts,
thus ¢;; € L?([0,00),R) and the following estimates hold true

Ml < [20fe- ([ 1970 - )8t - )llas)b] < 2 /ER)
0

for a certain M > 0 (depending only on the matrix A, and independent of 1),
and for all ¢t > 0.

Let us employ the matrix norm defined as the maximum of eigenvalues of
the fundamental matrix. It is of the form

p(t)e™?"

where p(-) is a polynomial of degree at most n, and ¢ > 0. Since

k _ —-ot _ v
/t e %t dt = T
0

then the constant M does not depend on t; it does depend on p(-), and con-
sequently, on A. As the function t— A,(b,n) is an integral of a nonnegative
function, thus it is a non-decreasing and bounded function. This implies the
existence of a limit A(b,n), towards which the function tends asymptotically.

Let e € R4, k = 1,2,3,4, such that < e;,e; >= &;;, where §;; is the
Kronecker delta.

Because of the special form of set D, we take the vector b of the form
b= {e}; k=1,2,3,4.

The equality

Mewm) = |20 [ I1o®(s)eslds
0

results immediately from the Lemmas 1 and 2. As the expression under the
symbol of integration does not depend on 7, we conclude that

7= sup{n; 7°(n) c D}
is equal to the number 7 for which
/\2(61:7 77) - Tl%

for the first time for some k € {1,2,3,4}.



942 T.BANEK, W.BATKO

Thus

2
Tk

T =ming M %= — ,k=1,...,4
2 [ || Io®(s)ex||2ds
0

At the same time, the number £, for which 7, = 7, determines the coordinate
of the border of the rectangle D that touches the set y%(7). We can summarize
the above conditions in the following form:

o Theorem 3

If the matrix A is stable and the set D has in the form of Eq (2.7), then for
the time 7% of the system given by Eq (2.6), we have

2

Jex||?ds

1
li_mszlnE(‘rI’E)Sk_rrllin4 — 2
B = S I

0

and forany z € Dand 6 >0

. T, T, —
Efgp{p(x (r°%,G) > 6} =0
where G is the subset consisting of these points of the boundary 9D of the
set D, for which 7=r;. O

Theorem 3 says that FE(7%¢) does not exceed exp(7/c?), where 7 is
defined above. The second part of theorem says that a trajectory of Eq (2.6)
leaves D through a point at which k-coordinate

Tk = /\(ek, ﬁ)

Hence, it specifies the critical coordinates.

The above results determine, for the monitoring system, the estimation
conditions of the time at which the alarm signals can be generated by the
monitoring system. This requires only the analyzed state vector to be trans-
formed to a system of coordinates that are determined by the location of the
axis of measuring sensors of a given monitoring system. They can enforce
the necessity for a closer analysis of the behaviour of the bearing node in the
exploitation process, or shutting the monitored machine down. This will result
from the problem algorithmization elaborated on the basis of its formalization
corresponding to the constraints determining the form of the set D.
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4. Conclusions

The methodological suggestion presented in the paper, and the results
obtained are not of a final nature. Basing on a simplified two-dimensional
isothermal model of a hydrodynamic bearing they present new possibilities of
realization of monitoring tasks within the scope of the search for time pro-
gnoses of possible perturbations in the operation of the monitored bearing
node. A new research field related to possible estimation of failure conditions
formulated in such a way is presented.

An essential advantage of the suggestion formulated is its universality. It
results from the possibility of considering the dynamic properties of arbitrary
bearing designs when simulating the estimated phenomena.

The solution presented in the paper (after its proper algorithmization,
suitable for the adopted model of the system ”neck-bushing-external support”)
can be used in looking for prognoses of possible perturbations in the correct
operation of the bearing node of a machine.

The work was realized within the framework of the research program Grant
No. 8.1157.91.01.
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Metoda funkcjonaléw podpierajacych w procesie estymacji stanéw
alarmowych w systemach drganiowego monitoringu

Streszczenie

W artykule przedstawiono zalozenia metodologiczne dla poszukiwarn prognoz
czasowych mozliwych zaburzen w pracy monitorowanego wezla lozyskowego. Za-
proponowano pewlen sposéb wyznaczenia czasu wyjscia kontrolowanych przez sy-
stem monitorujacy sygnaldw diagnostycznych z obszaréw dopuszczalnych. Jego
realizacje okresla rozwiazanie wywodzace sie z metody ”funkcjonaléw podpierajacych
obszar osiagalnosci”. Idee proponowanej konstrukeji estymacyjnej przedstawiono na
przykladzie dwuwymiarowego 1zotermicznego modelu lozyska hydrodynamicznego.
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