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The aim of this contribution is to formulate and investigate a model of
the periodically laminated medium made of two isotropic highly-elastic
constituents. The main feature of the proposed approach is that the
resulting relations depend on the microstructure length parameter and
hence describe dispersion phenomena and higher free vibration frequen-
cies in the dynamic behaviour of a micro-laminated body. The obtained
model will be used to the dynamic stability and the wave propagation
problem analysis.

1. Introduction

The linear elastodynamics of periodic composite materials, which takes
into account the eflect of microstructure length dimension on the dynamic be-
haviour of the medium, was developed by Wozniak (1993¢) and Wozniak et al.
(1993) as the refined macro-dynamics of periodic structures and then applied
in a series of papers (cf Wozniak (1993a,h), Wierzbicki (1993), Mazur-Sniady
(1993)) to the analysis of special problems. In this paper there are conside-
red laminated bodies made of highly-elastic isotropic constituents, which in
the reference configuration of a body have a periodic structure. For the sake
of simplicity we restrict ourselves to composite bodies made of two different
elastic materials but more general case can be also described by the proposed
approach. We also assume the perfect bonding between the adjacent laminae
and homogeneity of constituents related to the reference configuration in which
the laminated body has a periodic material structure. It has to be remembe-
red that under arbitrary finite deformations the obscrved material structure
of the composite can be no longer periodic and the strain energy function of
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every constituent (per unit volume of the deformed body) depends on a posi-
tion of the material particle under consideration. Ilowever, in the engineering
problems concerning lighly deformed elastic laminates, we usually deal with
the class of deformations for which the adjacent repetitive material cells of
the composite (which in the reference confliguration coincide with a certain
representative volume element of the periodic structure) undergo only sligh-
tly different strain distributions. It means that, roughly speaking, the small
fragments of the deformed composite (made of a few adjacent rcpetitive ma-
terial cells) behave as "nearly periodic” in the considered dynamic processes.
This fact will be a basis of the modelling approach proposed in this paper and
will make it possible to apply certain procedures of modelling, typical for the
refined linear-elastodynamics of periodic structures, to the macro-modelling
of highly elastic laminates. The characteristic feature of the proposed below
macro-modelling procedure is that it retains length-dimension parameter of
a laminae and hence the resulting relations also involve terms describing the
macro-inertial properties of a composite body. Such situation docs not arise in
the known asymptotic approaches to the modelling of micro-periodic compo-
sites, where the resulting equations represcnt a certain homogenized model of
a periodic material independent of the microstructure length-dimension para-
meter (cf Francfort and Marat (1992), Boutin and Auriault (1993), Cherkaev
(1993), Wagrowska (1986) and (1988), Matysiak and Nagdrko (1989), Nagérko
(1989), Kaczynski and Matysiak (1988)). Since in the proposed approach this
length parameter is retained then the obtained cquations will be referred to
as the equations of the macro-micro dyunamics of laminated materials.

Denotations. By 0x,z; we denote the orthogonal cartesian coordinate
system in the physical space; mathematical objects related to this system are
endowed with the latin sub- and superscripts ¢, 7,... running over 1,2,3. The
material coordinates of particles will be denoted by X* and hence the greek
sub- and superscripts «, 3,... are related to the material coordinate system,
which in the reference configuration of the body is assumed to coincide with
the cartesian orthogonal system. In tlie motion of the body X“ are treated
as the convective coordinates. Summation convention holds for all kind of
indices. The subscript R is used in order to underline the fact that the
corresponding mathematical object is a density related to the unit volume of
the body in its reference configuration. The region occupied by this body in
the reference configuration will be denoted by I3p and the points of this region
by X, X € Bg, where X = (X!, X2 X3) = (X?). By ¢ we denote time
coordinate. The deformation function of the body at a time 1, t € [to, 1], will
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be denoted by
I; = X,‘(X,l) X = (X“) € Bp (1.1)

and hence the covariant components of the metric deformation tensor are

Caf = Xia XiB (1.2)

while contravariant components are ¢*?, where ¢*Pcg, = §2. The body forces
(per mass unit) will be denoted by 0b; and are assumed to be constant. The
boundary surface tractions, related to the reference configuration are denoted
by tg; and to the actual configuration, described by the convective coordinate
system, by 1, respectively.

2. Modelling hypotheses
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Fig. 1. Relerence and deformed configurations of a certain {ragment of the
laminated body

The object of considerations is a two-constituent laminated body which in
the reference configuration has a periodic material structure. For the time be-
ing we assume that laminae interfaces are normal to X3-axis. The reference
and the deformed configurations, respectively, of a certain {ragment of this
body are shown in Fig.1. It is assumed that the smallest characteristic length
dimension of the whole region DBp, occupied by the body in the reference
configuration, is sulficiently large compared to the thickness [ of the repre-
sentative two component layer of the laminate in its periodic reference state,

5 — Mechanika teoretyczna i stosowana
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cf Fig.1. Parameter ! will be treated as the microstructure length parameter.
Every basic layer of the laminate is made of two homogeneous sublayers having
thicknesses !/, " and representing two diflferent materials with constant mass
densities pp, p%% and strain energy functions Wg(F), Wg(F) (depending on
the deformation gradient F') rclated to the specilic volume of the reference
configuration.
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Fig. 2. Diagram of the micro-shape function in [0,!]

In order to formulate the modelling hypotheses we adapt the general line
of approach given by WoZniak (1993c) to the highly deformed materials. To
this end we introduce what is called microshape function A = A(X3), X3 € R,
which is [-periodic and continuous; the diagram of this function in [0,{] is
shown in Fig.2. Let us observe, that h(X3) € O(l) and h,3(X3) € O(1). We
also apply the concept of a macro-function (related to the [-periodic material
structure of Bgr) F(-), which is real valued, dcfined on Bp and satisfies
conditions

(*) V(X,2)eBp || X-2Z||<!l—|F(X)-F(Z) < Ar

where Ap is a certain small numerical-approximation parameter related to
calculations of a function F. In the sequel we shall deal with regular macro-
functions, which can also depend on 1 and have to satisly condition of the
form () together with all their derivatives, including time derivatives. Using
the concept of a macro-function we shall apply the following formula for calcu-
lation of integrals over Bp, involving [-periodic function f(.X3) and macro-
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function F(X)

(+%) /f( X3)F(X) dVR =< f > /F(X) Vi + O(AF)
Br Br

where

L
2
1
<f>=7 / F(X3)dX3
_L

which is the averaged constant value of f(-). Moreover, since h(X3) € O(I)
and F,o (X) € O(A/1), then

(% %) (M(X?)F(X))sa = ko3 (X%)6a3F(X) + O(AF)

where h(X?3) is the microshape function introduced above.

The first modelling hypothesis is the kinematic modclling hypothesis which
restricts the class of all possible deformations of a laminated body to the
deformations given by

Xi = Xi(X,1) = P(X,1) + h(X*)QuX, 1) XebBr (21)

where P;(X,1), Q:(X,!() are regular macro-functions. The function Pi(X,1)
determines what are called macro-deformations of the laminated body while
the second term in Iiq (2.1) describes the expected form of micro-disturbances
caused by the micro-inhomogeneity of this body. Functions @Q;(X,1) will
be called inhomogeneity correctors. Let us obscrve, that under denotations:

¢ = =lJI',¢" = —1/I", the deformation gradient will be given by
’
Xi,a(X,t) = Pi.a(Xat) + a3 { :;:H }Q-,’(X,t) + O(’\Q) X € Br

where ¢, ¢" are related to the deformation gradients in laminae with thick-
nesses ', I", respectively. Denoting N’ = ¢'é,3, N = ¢"d,3, we obtain the
alternative form of the above equation

Xio(X,1) = Poa(X, 1) + { ¥ }@-(X,z) +00g)  Xeba (22)

which also holds in an arbitrary system of material coordinates. llence in the
sequel planes X3 =const may be not parallel to the laminae interfaces in the
reference configuration.
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The second modelling hypothesis will be relerred to as the macro-
approzimalion hypothesis and states that in calculations of the global energy
terms O(Ar) in formulas of the form (**), (¥ ¥ x) can be neglected (F stands
for an arbitrary macro-function).

It is easy to see that this hypothesis is strictly related to the concept of a
macro-function and to the class of deformations given by Lq (2.1).

3. Modelling approach

The passage from micro- to macro- mechanics for the bodies under conside-
ration will be based on the assumption that P;(X,1), Q;(X,t) are independent
dynamic variables. We shall use the principle of stationary action 64 = 0,
where

t
A:/(I\'—P—W)(lt (3.1)
to

is the action functional where A', P arc kinetic and potential energies, respec-
tively, W is the encrgy of external loadings, given by

K =5 [ o0 Vi P= [ er(X,Vx) aVp
Br

Bgr

(3.2)

W= /pR(X)b,-X,- AV + }{ thixi dAR
Br 9BR

where (X, V) is the strain encrgy function given by e7(Vx) and €”(Vy)
in both material constituents ol the laminate, respectively.
The modelling approach consists of:

(i) Substituting the right-hand sides of Eq (2.1) into Eqs (3.2)

(ii) Calculations of integrals in ISq (3.2) by using formulae (*#), (* * *); setting
o' =UJl, 0" =1"]l, after some transformations we obtain

K = % /(<pn> PP dVp+ <pph®> QiQi) dVr+ O(Ap) + O(Ag)
Bpr
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P = / [0'€'(VP+ N'© Q) + oa"eh(VP + N"© Q)] dVa +

Br
(3.3)

+ O(Avp)+ O(Xg)

w

it

[ <or> bR Vet [ tnidan+ O()
Br aBr

where we have taken into account Lq (2.2) together with < pph>= 0
and we have neglected terms

/ LrpihQ; dARp
8Bgr

which is a certain extra condition imposed both on dBpr and (p;

(iii) Neglecting in Eqs (3.3) terms O(Ap) by using the macro-approximation
hypothesis

(iv) Applying the principle of stationary action 84 to the functional (3.1)
given by the formulae (3.3) (in which terms O(Ag) are neglected) which
leads to the Lluler-Lagrange equations for macro-deformations P;(X,1)
and correctors (J;(X,1).

Under denotation
<er>(VP,Q)=d'c'(VP+ N' @Q) + c"<p(VP+ N"® Q)

we obtain the Euler-Lagrange equation in the form

0 <ep> -~ _
<W)v"_ <pr> P+ <pr>b; =0
(3.4)
. 0 <ep>
<pph®>0Q;+ —== =90
P> Qi+ Qi

which holds for every X € Bg, and the natural boundary conditions on Bp

Jd<ep>

b, e = th (3.5)
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where np, is the unit outward normal to dBpr. Since Eqs (3.4) and (3.5) in-
volve exclusively macro-lunctions, being independent of any highly-oscillating
function describing the material properties of a laminated medium, then they
represent a certain macro-model of the body under consideration which can be
used in engineering applications of the thcory. The microstructure properties
of this composite are given by the micro-inertial modulus
2 2
<pph®>= =(o'p'+ o"pR) = 15 <pr> (3.6)

which depends on the square of the microstructure length parameter . In the
subsequent section we shall transform the obtained results to the form typical
for continuum mechanics.

4. Governing relations

Introducing the following rclations

o O<er> . J<ep>
= 1, = ——— 4.1
R OP.. R 20, (4.1)
we can rewrite Eqs (3.4) Lo the form
S}ga— <pr> P+ <pp>b' =0
(4.2)
<prl?> Q'+ 115 =0
and Eq (3.5) will be given by
Sinp, = th (4.3)

Object with components S& will be referred to as the first Piola-Kirchholl
macro-stress tensor and vector Il will be called the micro-dynamical force
(related to the reference configuration). These objects have a simple interpre-
tation. Bearing in mind that

o ok (4.4)
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are the first Piola-Kirchhoff stress tensors in both constituents, respectively
(which can be called micro- or partial-stress tensors) and

Oc’p _ Iy o o<t _ IER o

aQi 8Pi.oz “ ()Ql (?Pi,a “
from Eqs (4.1) and definitions of N, we obtain the following interrelations
between the Piola-Kirchholl micro-stress tensors and macro-stresses as well as

micro-dynamical force

S;’? -/ 1_-;?0_/ +// l’)g(T”
(4.5)

Hy ="t NLo +" ¢ No"

If X3-axis is normal to the laminae interfaces in the reference configuration,
then by means of N'o’ + N6” = 0 we obtain Hj =' {3 =" i3, Let us
observe that if in Eqs (4.2) the micro-inertial term < pph? > @Q; will be
neglected (as being of an order O((2), cf Eq (3.6)) then I[} = 0, i.e., the
micro-dynamical force is equal to zero. The condition I} = 0 holds in quasi-
stationary problems and in the asymptolic approximation thcory. where the
microstructure of the laminate is scaled down by assuming ™, 0 (cf Franclort
and Marat (1992), Boutin and Auriault (1993), Cherkaev (1993), Wagrowska
(1986) and (1988), Matysiak and Nagdrko (1989), Nagérko (1989), Kaczyfiski
and Matysiak (1988)). In these cases, taking into account the above formula
for H}%, on the laminae interfaces we obtain the stress continuity conditions
Si3 =" i3 =" 3. Eqs (4.1) + (4.3) constitute the governing equations of what
will be called the nonlinear macro-microdynamics of highly-elastic laminates
or the nonlinear refined macro-dynamics of laminates. Similarly to WoZniak
(1993c), the term "refined” is related to the presence in the above equations of
the microinertial modulus given by Iiq (3.6) depending on the microstructure
length parameter [. The cquatious of the nonlinear refined macrodynamics
(similarly to those of the linear theory, Wozniak (1993c)) involve the con-
stitutive relations (4.1), the equations of motions (4.2) and natural boundary
conditions (4.3), respectively. 1t has to be emphasized that the unknown fields
P(X,1), Q:(X,1), X € Br, L € [tg,1/], satisfying these equations have a phy-
sical sense only il they are macro-functious (related to the [-periodic material
structure of DBpg). The general discussion of the above obtained governing
relations of the non-linear refined macrodyvnamics is analogous to that of the
linear refined macrodynamics; for details the reader is referred to Woiniak
(1993c). Let us transform Iigs (4.1) = (4.3) to the alternative form bearing in
mind that
er(Vx) = Ug(e) er(Vx) = Up(e)
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where ¢ is a metric deformation tensor given by Iq (1.2). Taking into account
Eq (2.2) we obtain

c, oV NiN!
{cgg}zcaﬁz{jvz,}oﬁ{NC,:NZ,}Q? (4.6)
where
Co,g = P,"aP,'_g Qﬁ = Pi,ﬁQi Q2 = QiQ:

In the sequel the strain energy functions will be assumed in the form
U' = Up<pr>"1,U" = Ufj <pr>"", which yiclds

<U>(C,Q,Q% = d'U'() + a"U"(") (4.7)
where ¢ and ¢’ are given by IEq (4.6). Defining
J =detVP p=J' <pr> p'=J"V<pph?>  (4.8)

and introducing matrix Z¢ inverse to P;,, we shall transform Eqs (4.1) +
(4.3) to the convective coordinate form. The convective macro-stress tensor
and the micro-dynamical force related to the actual configuration of the body
(at time t) will be given by

§oB = j-1gdo=h) e = J U1=e (4.9)

t

The constitutive equations in S8, I[* are

0 <U> 0<U>Qm)

5P = p(2=
p( Ocaﬁ * OQ(a
(4.10)
d<U> g <U>
e = 2 o
"(Zoa. > o @)
and the equations of motion take the form
5B |ﬁ — pPES + pbize =0
(4.11)

pQZ8 + =0

where the vertical bar stands for a covariant derivative in the metric Cyg.
Eqs (4.10) and (4.11) have to be satisfied in By, B, = P(DBg,t), for every (.
The natural boundary conditions are

5Png =12 (4.12)
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where ng are components of the unit normal vector to 913, and (* are bo-
undary tractions related to the actual configuration of the body. Eqs (4.10)
+ (4.12) represent the convective form of nonlincar refined macrodynamics of
the laminated composites under considerations. They have to be considered
together with Eqs (4.5) + (4.8) and constitute the system of governing equa-
tions in macro-delormations P; and correctors @;, which are related to the
actual configuration of the body.

5. Alternative form of constitutive relations

Substituting the right-hand sides of Eqs (4.4) and (4.5) into definitions
(4.9) and introducing strain energies (c[ Eq (4.7))

U'(d) = Up(e) <pr>"" U'(d"y=Up <pr>~

with ¢/, ¢” given by Eqs (4.6), we obtain

N/ AT
5B = 2p (al(')ac('a,a + 0" ‘;)éa/3)
(5.1)
1° = 2p(o’ aac(*:ﬁ Nj+ 008_CUC,% /)
where we have taken into account that
=2 AR (52)
0C4p ()cf),[3 ICup c‘)cgﬁ

Eqs (5.1) constitute the alternative lorm of the macro-constitutive relations
for the laminates under considerations. Introducing the partial stresses related
to the averaged mass density p = J~! <pp>, given by

ou’ ou”

= ZPOCO,[; = Zpacaﬁ (5.3)
we shall write Eqs (5.1) in the simple form
GoB =t Byl 41 oB g
(5.4)

Ho =" 1P Njo' +" 1P No"

which corresponds to Fqs (4.5). If X3-axis is normal to the laminac interfaces
in DBp, then I =' (o3 " yo3,



302 E.WIERZBICKI
6. Isotropic laminates

Now assume that both constituents are isotropic. Then
Uy = WL, I3, 1) UMy = WL LT (61

where Iy, I4, A =1,2,3, are strain invariants which can be assumed in the
form

I = ¢op8°? = K| + J
1 2 ay c06 - -
I = 5(1l — CapCys8187) = Ky + K1 Jy + .o

I3 = det Cap = Ky+ Kodi + K(Jy + J3

where

Ji = Coapg®s

Iy = %(J?—Caﬁcw&w“)

Jy = %(J? — 31 CapCos 18P + 2CasCrsCrg876%7877)

Ky = 2Q3Na6%% + NyN,6%PQ?

K, = (Nanéaﬁy — (NaNsCos62767) Q2 — Qa6 ) (NyNs8™) +
= 2(NaQpCrs676%)

Ky = (Q*NaNsCysCro6 8787 +2(NoQpCosCrob™8°78°7) +

+ (Qu@sCys6776%) (NoNps®) + (NaNpCys676%) (Q0Qp8*”) +

— 2(NaQpCrs6778%) (Naps™?)

and where ¢, No, K1, Ky, K3, stand for c;ﬁ, NNy 'Ky "W, i Ty = T
and for c’o’,ﬂ, NI 'Ky, "R, "R, if T4 = 1Y, respectively. Together with the
invariants Jy, Ju, J3, 'Ky, 'Ra, 'K, "IV, "4, "5, we shall introduce the
denotations

= Cop(§7°6°7 + 67°6%9)
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81\"3 . :
EY = = = (Q*Ng+20Q3)NyCrpb™16°76°8
e (@Q*Ns +2Q5) NaC +
+ (QaQut 78" ) (NaNss™) + (Nu Nt 6%9) (Q,Qp6°%) +
- Q(NaQﬁé‘”éﬂ‘s) (NaQﬁaaﬁ)
D’Y& _ 0K, - —(NﬁQ2 +2Q )N 50176&5
= 9Cs Bl
and note that
aJl 5 a-]:} 5 81\71
9Cs 9C, = ¢ 20, =0

where, as before, cqp, No, K1, N2, K3, stand for cgﬁ, NLIK Yy 'K, 'Ry, i
Iq =1y and for ¢ 5, NJ,"Ky," Ko, " K3, if 14 = I}, respectively. From Egs
(6.1) it follows that here and in the sequel(summation over A = 1,2,3 holds!)
ou' au’ ar,
ICys O, ICs

(6.2)
au” au" oIy
dCys 01T Cs
where
oy _ It _ o
ICys  Oc
ar, ol . s .
= ='D" 4§79 B 6.3
9Cys ~ 0c, + 1+ (6.3)
1 1
0l _ 95 i s 4 iy 4 70 4 71D 4 B
ac,yg ac,yé‘

and the similar formulae hold for I’} and cZ;. Substituting Eqs (6.2) into
Eqgs (5.1) we obtain

ow' ar, |, awr ol
Saﬁ =9 A A _n
”(ou 9Cs." t oy acﬁa">
(6.4)
oW’ ar oW QI
HY = ¢ Nl A " A "
2 vor, C,. " TN o ac.’ )

Egs (6.4) combined with Eqs (6.3) represent the general form of constitutive
equations for highly-clastic laminates made of the isotropic layers.
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7. Incompressibility

Now assume that one from the isotropic constituents of the laminated
body is made of an incompressible material. Under incompressibility condition
det ¢/,5 = 1 leading to

det (Cap + 2N{,Qp) + NLNSQ) = 1 (7.1)

we obtain W'(I], 1) and from Eqs (6.4) (subscripts A, B run over 1,2,3 and
1,2, respectively, here and in the sequel the summation convention holds for
both A4 and B)

W' Ol W Ol
oI 0Cpa’ ' I 0Cq

S§oB = 2p( a”) + CoBy

oW’ ar oW oIt
o _ N/ B " . A
e = 2N, Al 0Cre. DI OC,

O’”) + COWN'/yp/

where p' represents what will be called the partial pressure in the first con-
stituent of the laminate. If both constituents are jsotropic and incompressible
we obtain two incompressibility conditions

det (Cap +2N(,Qp) + NINAQ) =1
(7.3)
det (Cap +2N{,Qp) + NINSQ) = 1
and instead of Eqs (7.2) we shall write
oWw' oI} oW ory
Saﬂ =9 B _t B _n Caﬂ ’ "
”(alg 0Csa’ * 0T 9Csa’ ) +CoPW ) -

JOW! DLy, W DI

He = 20( vor, 9c,. " T arg ac,,

a") +C7 (nyp' + N,'Y’p”)
where p’, p” are partial pressures in both components.
Setting [ = J3 = det C, 3, we obtain
Iy =detecosg =1+ K3+ Koy + K41y
and hence in Eqgs (6.4) we can assume

oW oW’ QW oW
aly ~— oI o1y~ ol
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Let us introduce what will be called the macro-incompressibility condition
det Copp =1 (7.5)

Then remembering that Nlo' + NZo” = 0, from Iqs (7.2) we derive the
formulae

oW 9l AW dIY
50,8 =9 C B 1 B _n af
”(afg 9Csa" T 013 9Csa" )+ ¢
(7.6)
oW’ ar, oW oI
e =2 NI B 1 " B _n
o vars a0, Ve ac,.’ )

where p will be called the macro-pressure. It can be seen that if the partial
pressures p’, p” in Eqs (7.4) are interrelated by p’ = o'p, p” = o”p, where p
is the macro-pressure, then Eqs (7.4) imply Iigs (7.6).

For laminae made of the nco-hookean materials we have

W' = K'(I' - 3) W = K"(I" - 3)

where K’, K’ are material constants. In this case we obtain from Eqs (7.4)
the explicit form of constitutive relations

SR = 9pCah (0'1\'" + a"l\"') + CB( +p")
H® = 2pC™P(Njo' K" + Njo" k") + Co(N's, + N"pf)

which has to be considered together with the incompressibility conditions (7.3).

8. Conclusions

In this contribution it was shown that for the laminated structures, made
of two isotropic highly-elastic constituents which are periodic in a certain re-
ference configuration, it is possible to formulate the approximate governing
relations which do not involve any macro-oscillating functions and hence can
be applied both to the analysis and numerical calculations of engineering pro-
blems. The main results are given in the form of cquations of motion (4.11)
and the constitutive relations (6.4) and (7.2), (7.4), (7.6) for incompressible
materials. The results can be easily generalized on the case of laminates made
of a larger number of constituents; this generalization requires introduction
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of a large number of micro-shape functions and correctors. The characteristic
feature of the proposed approach is the possibility of describing, on the macro-
level, the micro-dynamical behaviour of the composites due to the presence
of the micro-inertial terms in Eqs (4.2) and (4.11). That is why the proposed
model can be referred to as the refined macrodynamics (using the termino-
logy introduced by Wozniak (1993c)) or the macro-micro elastodynamics of
highly-elastic laminates. The obtained equations of motion (4.2), (4.11) invo-
lve the microstructure length-dimension parameter [ and hence describe the
dispersion and scale-length effects due to the micro-inhomogencity of a com-
posite; such problems cannot be analyzed within a framework of the known
homogenization approaches which are based on tlhe asymptotic approxima-
tion [\, 0 (cf Turbe and Maugin (1991), Tartar (1990), Francfort and Marat
(1992), Boutin and Auriault (1993), Cherkaev (1993), Wagrowska (1986) and
(1988), Nagérko and Matysiak (1989), Nagérko (1989), Naczyiiski and Ma-
tysiak (1988)). The applications of the derived equations to the analysis of
special problems will be reserved for the subsequent investigations.
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Nieliniowa makro-mikro dynamika struktur laminowanych

Streszczenie

Celem opracowania jest znalezienie makro-miodelu periodycznie laminowanego
osrodka zbudowanego z dwéch izotropowych sprezystych skladunikéw i poddanego sko-
nczonym odksztalceniom. W proponowanym podejsciu otrzymane réwnania zaleza od
charakterystycznego wymiaru mikrostruktury i dlatego opisuja zaréwno zjawiska dys-
persyjne jak 1 swobodne drgania wysokoch czgstotliwadci dla rozwazanych laminatow.
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