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The paper deals with the problem of surface gravitational waves genera-
tion in fluid of constant depth. The main goal of the investigations is to
find the impulse response function for the generator-fluid system. Two
independent formulations of the original task are considered. These two
formulations lead to different formulae describing the same characteri-
stic feature of the system. One on these formulations however is more
advantageous then the other one since it takes shorter time of computer
calculations.

1. Introduction

In analysis of water waves generated in fluid of constant depth we often
deal with the initial value problem of fluid motion starting from rest. An
example of such a case is the generation of water waves in a hydraulic flume
where the generator-fluid system starts to move at a given moment of time.
Usually, laboratory experiment results describe the transmission of the gene-
rator motion into the free surface elevation measured at a chosen point. In a
general case, the data obtained in experiments has the form of a sequence of
numbers corresponding to the discrete sequence of time steps. In theoretical
description of the aforementioned problems a very useful tool is the impulse
response function of the system considered. Assuming that the generator-fluid
system is the linear, time-invariant one, a solution for an arbitrary excitation
of the fluid motion may be obtained by superposing unit impulse solutions in
the time domain.
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In the present paper the problem of generation of water waves in a semi-
infinite layer of fluid of constant depth is considered. The waves are generated
by a piston-type wave-maker placed at the beginning of the layer. The aim of
analysis is to find the impulse response function for the system mentioned. In
order to obtain the function two independent formulations of the problem are
considered. The first one is based on the complex frequency response function
for the generator-fluid system. The second one adapts direct solution to the
initial motion of the system starting from rest. These two formulations lead
to solutions which are expressed by different formulae. Apparently, these solu-
tions seem to be different from each other but careful numerical computations
show that they provide identical results.

The initial value problem of fluid motion starting from rest has been stu-
died by many authors. A number of problems of this kind was discussed by
Lamb (1975). Within the framework of the linear theory Stoker (1957) obtai-
ned closed form analytical solutions to water wave problem due to disturban-
ces originated at the free surface points. Some general theorems associated
with the initial value problems in hydrodynamics may be found in Wehausen
and Laitone (1960). As concerns the generation of water waves in a flume
of constant depth, the important contribution has been given by Biésel and
Sequet (1951). These authors formulated the classical wave-maker theory for
steady-state harmonic generation of waves. The generation of water waves
by a piston type wave-maker starting from rest was investigated by Madsen
(1970). The theoretical results obtained were compared with experimental
data. The experiments showed second order effects in wave amplitudes and
thus an approximate second order wave-maker theory was presented. For a
sinusoidally moving wave-maker, the same author (Madsen 1971) extended
the classical linear theory to a second order solution. Recently, Hudspeth
and Sulisz (1991) have presented a complete second-order solution for the
two-dimensional wave motion forced by a sinusidally moving generic planar
wave-maker. They shown that the first-order part of solution, represented by
evanescent eigenseries, cannot be neglected when computing the amplitude of
the second-order free wave. Wilde and Szmidt (1993) investigated properties
of random generation of water waves in a layer of fluid. The discussion was
confined to the linear transformation of a certain class of stochastic processes
describing the generator motion into the free surface elevation processes. The
impulse generation of waves in fluid of finite depth was discussed by Szmidt
(1993). The solution for the output response function was obtained by means
of the Fourier transformation technique. The contents of that article is closely
related to the problem investigated in the present paper.
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2. Formulation of the problem

We will focus our attention on the plane problem of generation of water-
waves by a piston type wave-maker as it is shown in Fig.1. The fluid flow is
induced by horizontal motion of the rigid wall 0A. It is assumed that the
fluid is inviscid, incompressible and the velocity field is potential.

I}Z
7(x,4)

=
X

Fig. 1. Definition sketch for the generator-fluid system

For the assumed irrotational motion, the linearized equations governing
the fluid motion generated by the wave-maker are

V2®(z,2,t)=0 >0 0<z<h t>0 (2.1)
o®
JE— = 2.
0z lz=0 0 ( 2)
. 09
(17 - 5;) z=h 0 (2.3)
(@+gm)|_, =0 (2.4)
where

&(z,z,t) - velocity potential

7(z,t) - surface elevation

g — gravitational acceleration, and the dot denotes diffe-

rentiation with respect to time.
The third and the fourth equations describe kinematic and dynamic con-
ditions for the free surface, respectively. At the wave-maker the boundary

condition reads
od

o loco = (1) (2.5)

r=0
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where () is the horizontal velocity of the wave-maker. For the case of
steady-state motion, the boundary conditions (2.2)+(2.5) are supplemented
by the Sommerfeld condition describing the potential behaviour at z — oo.
For the case of initial motion starting from rest, the velocity potential and
its derivatives die out when going to infinity. For the latter case the initial
conditions of the system should be specified. Without loss of generality it will
be assumed that

P(z,2,t <0)=0 7z, <0)=0 (2.6)

3. Complex frequency response and impulse response functions

As it is known (see Crandal and Mark (1973)), for the linear time-invariant
systems the complex frequency response function H(o) and the impulse re-
sponse function h(t) are mutual Fourier transforms, namely

+o00

H(o) = / h(t)e 7 dt

(3.1)

+o00
IM:%/H@WM
—00

Knowing the complex frequency response function H(c), the impulse response
function h(t) my be calculated from the second one of Eqs (3.1) by performing
integration in the frequency domain. Such a method of solution of the problem
considered may be found in Szmidt (1993). To make the discussion unbiased,
some important results obtained in this paper are summarized herein. In
order to obtain the H(o) function the steady-state harmonic generation of
the waves is considered. Thus, let the velocity of the generator be expressed
in the form

Z(t) = Ael! (3.2)
where
A — constant
o — angular frequency of vibrations.

The solution to the Laplace equation (2.1) satisfying all the boundary
conditions prescribed is given by the formula (cf Szmidt (1993))
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4i sinh(koh) cosh(koz)
ko 2koh + smh(2k0h)

lko.‘L‘

&(z, z,1)
(3.3)

i 4 sin(k;h) cos(k; z)e ]Aei‘”
o k; 2k; h + sin(2k;h)

where ko, k1, k2, ... are eigenvalues and cosh(kgz), cos(kyz2),... are eigenfunc-
tions of the boundary-value problem considered. The eigenvalues must satisfy
the following dispersion relations

0?2 = gko tanh(koh)
(3.4)
0% = —gk; tan(k;h) 3=1,2,..

To save the space it is convenient to introduce the dimensionless variable

o2h
o= — 3.5
7 (3.5)

and to rewrite the dispersion relations as

a = ﬂo tanh ﬂo (3 6)

a= ——ﬂj ta.nﬂj i=12,..

where f¢ = koh and B; = k;jh (j = 1,2,...). It is seen that for small values
of a (a — 0),f; — jm, while with growing values of o (a » 1), §; tend to
(27 - 1)w /2. With respect to the solution (3.3), the free surface elevation may
be obtained

B Pea Slnh(2ﬂ0)
n(z,t) = [gko 260 + sinh(26,)

—lko.r +

(3.7
i°° o sin(26;)
= gk; 26; + sin(28;)

+ -—k a:] Aeiat

The first part of the solution describes the surface gravitational wave pro-
pagating from the wave-maker to infinity. The second part of the solution,
represented by the infinite series, describes the standing wave which die out
when going to infinity.
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The complex frequency response function H (o) is defined by the quotient
of Eqs (3.7) and (3.2). Simple calculations give

H(o,z) = g[Fl(a)e_”‘” ~ iFy(0, )| (3.8)
where
sinh? By
File)= 230 + sinh(20o) (3.9)

sin ﬂ] ,,—k'.‘z,‘
Fy(o,2) = E <20, +sin(26;)°

As o — 0, we have

lin}) F(o)=0 ]jrrtl’ Fy(o,z)=0 (3.10)
o— o—

x>0

At the same time, the following relations hold (cf Szmidt (1993) and (1984))

lim Fi(o) ==
=00
(3.11)
1 &, e ke 1 Tz
lim F = —1 th —
:: 2(0,2) = E 2] -1 2= n(co 4h)
where 0i 1
o J — _
k] = 2h T J = 1,2,

For a chosen value of z, from substitution of Eq (3.8) into the second one
of Egs (3.1) it follows
h(t) = J1(t) + J2(2) (3.12)

where

Ji(t) = = / m cos(sz — rt) ds

° (3.13)

sin(ot) — sin? g; —kjz
Jo(t) = 0/ E 35+ Sm(wj) do



ON THE IMPULSE RESPONSE FUNCTION... 583

and
r? = gstanh(sh) a = —f;tan g; i=12,.. (3.14)

For greater value of z the second term of the right hand side of Eq (3.12) may
be neglected and thus, the impulse response function may be assumed in the

following form

h(t) = %/Mcos(sx —rt)ds (3.15)
0

4. Direct solution to the initial value problem

Let us assume that for ¢ < 0 the whole system is at rest. At the instant

= 0 the generator begins to move with the velocity Z(¢). In order to solve

the problem at hand it is convenient to split the velocity potential into two
parts

P(z,2,t) = d(z,2,t)+ P(z, 2,1) (4.1)

where the components satisfy the Laplace equations
V¢ =0 Vi =0 (4.2)

and the appropriate boundary and initial conditions. The boundary conditions
are

96| 9 _,
Oz lz=0 ~ Oz lz=0 — (4.3)
oy s oy _ _
E];_:p:()_z(t) Ez:O_O wz:h_o

Combination of the boundary conditions (2.3) and (2.4) and Eq (4.1) leads to
the boundary condition for the upper surface of layer

¢ 8¢)

(6+95-+95 0 (4.4)

z=h -

With respect to the linear combination (4.1) and the boundary conditions (4.3)
the solution for the potential (z, z,t) may be found independently from the
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second part of the potential &(z,z2,t). The Fourier method of separation of
variables leads to the result

(x,2,t) ZAJ e™ "% cos(k;z) (4.5)
=1
where 9i 1
kj=2 " x j=1,2,.. (4.6)

2h
The functions A;(t) entering the solution are found from the boundary con-
dition at the wave-maker. Simple transformations yield

2-1p%
A;(t) = ———72(1) (4.7
and, finally
0 J+l
P(x,2,1) 8h$ Z (25— 1) e "% cos(k;z) (4.8)

J=1

It is seen, that the solution obtained expresses the standing wave only. In order
to find a solution for the second part of the velocity potential we apply the
one side cosine Fourier transform according to the formulae (Nowacki (1972))

¢*(s,2,1) = /¢(x,z,t)cos(sx) dz
0 (4.9)

> e]
2
H(x,2,1) —/QS‘sztcossx)ds
0

N

where s is the parameter of the transforms. The Fourier transform of the
Laplace equation V2¢ = 0 leads to the ordinary differential equation

d*¢*(s,z,1) 5 .
T—S ¢ (S,Z,t):() (410)
The solution to the equation satisfying the bottom boundary condition is
$*(s,2,t) = A(s,1) cosh(sz) (4.11)

where A(s,?) is a constant of integration. The Fourier transform of the
boundary condition (4.4) gives

=0 (4.12)

(¢ + g?* +ga(;f)

z=h
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In order to obtain the last term in this equation let us calculate the relevant
derivative of Eq (4.8). With respect to the second of Eqs (3.11), this derivative
may be expressed in the closed analytical form
oy”
0z

47 &, e~kiz 2% TT
sh = —7]’=1 2] ] = 7111 (COth E) (413)

Accordingly, the Fourier transform of the result obtained is (cf Bateman
(1954))

oY* 2% T TZ
97 loeh = T/ln (coth 4_h) cos(sz) dz =
0
(4.14)
_ _1:_/ sTn(s::j dr = Etanh(.sh)
hs J sinh 37 3
Finally, from substitution of Eqs (4.11) and (4.14) into the Eq (4.12) it follows
Acosh(sh) + g As sinh(sh) + zta“tﬂ] ~0 (4.15)
or, in a more concise form
A+ A+ F(s)z =0 (4.16)
where the following substitutions have been made
tanh(sh)
2 — gstanh(sh F(s) = $2°05%) 4.17
r* = gstanh(sh) (s) s cosh(sh) (4.17)

The solution to Eq (4.16) takes the form

A(s,1) = Ao(s) cos(rt) + Bo(s)sin(rt)

/ 7)sin[r(t — 1)} dr (4.18)

where Ag(s) and Bg(s) are constants of integration.
On inserting Eq (4.18) into Eq (4.11) and then carrying out the inverse
transform we arrive at the following solution

H(z,2z,t) = %/{Ao(s) cos(rt) + Bo(s)sin(rt) +

° (4.19)

/ )sin[r(t — 7)] dr} cosh(sz) cos(sz) ds
0

6 — Mechanika Teoreryczna
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Taking the initial conditions (2.6) into account one can obtain

Ao(s) = Bo(s) =0 (4.20)
and, finally

T F(s)

Hz,z,t)= —= {/ Z(7)sin[r(t — 7)) dT} cosh(sz) cos(sz) ds (4.21)

o\

Following the solution obtained the free surface elevation is expressed by the
formula

n(z,t) = /z )[ /tanh (sh) cos(r7) cos(sz) ds] dr (4.22)

The function in square brackets is simply the impulse response function
h*(t) = Ji(t) + J5(1) (4.23)

where, like in the previous formulation, the following substitutions have been
made

T tanh(sh
Ji@t) = %/MT(S)COS(S.’L‘—TQ ds

° (4.24)

1 7tanh(sh)
s

J5(t) = - cos(sz + rt) ds

0

From comparison of the results (3.13) and (4.24) it may be seen that the
second terms of these solutions (J3(t) and J3(t)] are expressed by different
formulae. It is not a simple task to prove that these formulae describe the
same functions and thus, each of them may be converted into the other one. To
investigate the solutions obtained, numerical computations have been made.
Some of the results obtained in this way are presented in Fig.2 where the plots
of Ji(t) = J5(t) and Ja(t) = J3(t) for chosen values of z/h are given. From
these graphs it is seen that with growing values of z the function Ja(t) is
decreasing. Moreover, for large values of time (say t > 1 sec) the effect of
Ja(t) on the value of the impulse response function is very small and may be
ignored in practical calculations.
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L

0 0.25 0.50 0.75 100 s

Fig. 2. Components (a) J1(t) and (b) J2(t) of the impulse response function

5. Concluding remarks

We have obtained the impulse response function for water waves in fluid of
constant depth by means of two different formulations. The resulting final for-
mulae for each case considered have different shapes but in fact they describe
the same inherent feature of the system mentioned. Although we have not
proved that the formulae may be converted into each other, numerical tests
performed show that they provide identical results. From the computational
point of view more convenient is the formulation based on the complex frequ-
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ency response function of the generator-fluid system since it needs less time of
computer calculations. The choice of formulation is a matter of convenience,
but one should be aware that each of them may lead to different formulae and
it may be difficult to convert from one formula to another.
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O funkcji odpowiedzi impulsowej dla fal wodnych generowanych w cieczy
o stalej glebokosci

Streszczenie

W pracy rozwaza sie problem generacji powierzchniowych fal grawitacyjnych w
cieczy o stalej glebokodci. Gléwnym celem badan jest wyznaczenie odpowiedzi im-
pulsowej dla ukladu generator-ciecz. Rozwaza sie¢ dwa niezalezne sformulowania pro-
blemu. Te dwa sformulowania prowadza do réznych wzoréw opisujacych te sama
wladciwosé ukladu. Jedno z tych sformulowari jest lepsze z uwagl na to, ze wymaga
ono mniejszego czasu obliczen numerycznych.
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